Motion Planning

Howie CHoset
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Questions

 Where are we?
e Where do we go?
e \Which is more important?
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Corpegelellon

Encoders — Incremental

Photodetector

Encoder disk

LED Photoemitter
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Encoders - Incremental

fixed
SeNsors
A 0O
B 0O
INDEX O
0° I 360°
direction of positive track motion
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0
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Encoders - Incremental

e Quadrature (resolution enhancing)

forward (CW) reverse {CCW)
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Where are we?

e If we know our encoder values after the
motion, do we know where we are?
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Encoders - Absolute

More expensive
. o fixed
Resolution = 360 /2N SENsors
hit 3 (MSB) O

where N is number of tracks Eﬁf E

bit 0 (LSB) [

direction of positive track motion

bit 3

4 Bit Example

bit 2

= =

bit 1

o, UL

(a) schematic and signals

—_

(b) actual disk (Courtesy of Parker
Compumotor Division, Rohnert Park, CA)
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What is Motion Planning?

e Determining where to go
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Overview

e The Basics
— Motion Planning Statement
— The World and Robot
— Configuration Space
— Metrics

 Path Planning Algorithms
— Start-Goal Methods
— Map-Based Approaches
— Cellular Decompositions

« Applications
— Navigating Large Spaces
— Coverage
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The World consists of...

e Obstacles
— Already occupied spaces of the world
— In other words, robots can’t go there

e Free Space
— Unoccupied space within the world
— Robots “might” be able to go here

— To determine where a robot can go, we need to discuss
what a Configuration Space Is
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Motion Planning Statement

If W denotes the robot’s workspace,
And C; denotes the 1’th obstacle,

Then the robot’s free space, FS, Is
defined as:

Andapathc ZP%isc:[0,1] = FS
where ¢(0) IS Qo @nd (1) 1S Oy
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Example of a World (and Robot)
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What Is a good path?
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Basics: Metrics

* There are many different ways to measure a
path:

e Time

Distance traveled
EXxpense

Distance from obstacles
e Etc...
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Corpegelellon

Bug 1

* known direction to goal

But some computing power! _ _
» otherwise local sensing

walls/obstacles & encoders

“Bug 1" algorithm

1) head toward goal

- 2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

| 3) return to that closest point (by
“wall-following) and continue

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 19
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Corpegelellon

Bug 1

* known direction to goal

But some computing power! _ _
» otherwise local sensing

walls/obstacles & encoders

“Bug 1" algorithm

1) head toward goal

- 2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

| 3) return to that closest point (by
“wall-following) and continue

Vladimir Lumelsky & Alexander Stepanov: Algorithmica
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CorpegieXdellon

Bug?2

Call the line from the starting “BUQ 2" AlgoriThm

point to the goal the m-line
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A better bug?

Call the line from the starting “BUQ 2" AlgoriThm

point to the goal the m-line
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A better bug?

Call the line from the starting \\B o Al :
point to the goal the m-line ug gor thm

1) head toward goal on the m-line

- 2) ifan obstacle is in the way,
- follow it until you encounter the
~m-line again.
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A better bug?

"Bug 2" Algorithm

m-line

1) head toward goal on the m-line

- 2) ifan obstacle is in the way,
- follow it until you encounter the
~m-line again.

- 3) Leave the obstacle and continue |
- toward the goal
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A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

. 2) if an obstacle is in the way,
follow it until you encounter the
~m-line again.

3) Leave the obstacle and continue
. toward the goal |

Goal Better or worse than Bugl?
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A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

- 2) ifan obstacle is in the way,
- follow it until you encounter the
~m-line again.

- 3) Leave the obstacle and continue |
- toward the goal

’ Goal

NO! How do we fix tiisPs
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A better bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

. 2) if an obstacle is in the way,
follow it until you encounter the
- m-line again closer to the goal.

- 3) Leave the obstacle and continue
- toward the goal |

Goal Better or worse than Bugl?
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Start-Goal Algorithm:
Lumelsky Bug Algorithms

bath uzing left lozal direction
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Lumelsky Bug Algorithms

* Unknown obstacles, known start and goal.
e Simple “bump” sensors, encoders.

« Choose arbitrary direction to turn (left/right) to make all turns, called
“local direction”
* Motion is like an ant walking around:

— In Bug 1 the robot goes all the way around each obstacle
encountered, recording the point nearest the goal, then goes around
again to leave the obstacle from that point

— In Bug 2 the robot goes around each obstacle encountered until it
can continue on its previous path toward the goal
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Assumptions?
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Assumptions

 Size of robot
 Perfect sensing
 Perfect control
 Localization (heading)

What else?
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What is the position of the robot?

Expand
obstacle(s)

Reduce
robot




CorpegiedMellon

Example of a World (and Robot)
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COﬂfIgurathn SpaCe Accommodate Robot Size

Free Space

Obstacles

Q Robot
X,y (treat as point object)

@
Ly
ROBOTICS
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Trace Boundary of Workspace

workspace ' @ @

C-space - (_(ﬁ /j |

Pick a reference point...
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Carnepiedellon

Translate-only, non-circularly

). = (g e O | Ria\ (YW, =£ () . .
Q0; = {g € Q| R(q)[\WO; # 0}. Pick a reference point...
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The Configuration Space

e Whatitis

— A set of “reachable” areas constructed from
knowledge of both the robot and the world

e How to create it

— First abstract the robot as a point object. Then,
enlarge the obstacles to account for the robot’s
footprint and degrees of freedom

— In our example, the robot was circular, so we

simply enlarged our obstacles by the robot’s radius
(note the curved vertices)

£
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Start-Goal Algorithm:
Potential Functions
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Attractive/Repulsive Potential Field

I‘_-;TI:QJ — 'Uutt(q} + er.:p{‘fir)

— U, IS the “attractive” potential --- move to the
goal

— Uy, IS the “repulsive™ potential --- avoid
obstacles
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Artificial Potential Field Methods:

Attractive Potential

N

Quadratic Potential ,y N2
/T\

1 SN \=>
(a)

E"TaLtt{q) — Eqd’z(q’qg'wl}’

(b)

|
Fatt(q): VUa(q) = V(Eﬁdz (f}.?(}gc.ul)),

1 .
— ECVdE{q QEnjal)ﬂ
— f((} — (I,I-_Ililill}:-
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Corpegelellon

Distance

d: F*F xR = R

L1 Metric [ tamiond | dla,b) = |ar = be| 4 [ay = byl

.2 Metrix [cirele) dia. b = .If."rl:-re., br)* + (@ = by
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Distance to Obstacle(s)




The Repulsive Potential

Jr‘~ Ohstacle

whose gradient is

VUep(q) = L (fj N D%q)) Dgl(q}VD(q)’ Diq) < @7,
0, D(q) > Q.
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Carnepiedellon

Repulsive Potential
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Total Potential Function

Ny, i
ll%!lg
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Local Minimum Problem with the Charge Analogy

T A Y O B
‘+




The Wavefront Planner

e A common algorithm used to determine the
shortest paths between two points

— In essence, a breadth first search of a graph

 For simplification, we’ll present the world as a
two-dimensional grid
e Setup:
— Label free space with 0
— Label start as START
— Label the destination as 2
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Representations

 World Representation

— You could always use a large region and distances
— However, a grid can be used for simplicity
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Representations: A Grid

» Distance iIs reduced to discrete steps
— For simplicity, we’ll assume distance Is uniform

 Direction is now limited from one adjacent cell to another
— Time to revisit Connectivity (Remember Vision?)
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Representations: Connectivity

e 8-Point Connectivity < 4-Point Connectivity

— (approximation of the L1 metric)

H fh
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The Wavefront Planner: Setup
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The Wavefront in Action (Part 1)

o Starting with the goal, set all adjacent cells with
“0” to the current cell + 1

— 4-Point Connectivity or 8-Point Connectivity?

— Your_Choice. \WWe’ll use 8-Paoint Connectivitv in our examnl

7/o|o|jofo|o|o|o|lojoloflojolololo)loO
6 |o|o|ofo|o|lo|lo|lojololololololo|o
tlo|lo|ofo|o|o|o|lojolo|lojolo|lolo)|oO
4|loflojofoj2/2/2|2/1 21|11 0|lo|o|oO
3|ojlojofoj2l2/2|1/1 1|1 1 00|00
2lo|lo|ofo|o|lo|lololololololololo|o
llojojojojojlolojlolo|lojlolololol 2|3
o|o|o|oflo|o|lo|o|lololo|lololo|lol3 |2

o 1 2 3 4 5 /6 7 8 9 10 11 12 13 14 1§

THE
ROBOTICS
INSTITUTE



The Wavefront in Action (Part 2)

« Now repeat with the modified cells

— This will be repeated until no 0’s are adjacent to cells
with values >= 2

» 0’s will only remain when regions are unreachable

f|/o|o0 |0 |0 (0|0 |/O|O0|ODjO|O0|OD OO0 O
& |0|0|/0|O0|O0|D0|D|O|D|O DO O|O|0O|DO
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s |/ojofojof2/1/11|1 1 1|1 00|00
2|00 |0ojo 0|00 OO0 jOojO|O|0O| 4|44
ljo|o0|0|0|/0o|O0|0|O0O|D|OD|D|OD|D 4|3 3
g/o ooy o (oo jojoyofojo ool 4 3|2
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THE
ROBOTICS
INSTITUTE



Carnepiedellon

The Wavefront in Action (Part 3)

e Repeat agalin...

£

ROBOTICS
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Corpegelellon

The Wavefront in Action (Part 4)

« And again...

£
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Carnepiedellon

The Wavefront in Action (Part 5)

* And again until...

£
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The Wavefront in Action (Done)

e You’re done

— Remember, 0’s should only remain if unreachable
regions exist
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CorpegieXdellon

The Wavefront, Now What?

« To find the shortest path, according to your metric, simply always
move toward a cell with a lower number

— The numbers generated by the Wavefront planner are roughly proportional to their
distance from the goal

Two T
. 6 |17
possible |. 1.
shortest |4 (17 [1e
paths 3 1716
Shown 2 |17 |16
1|17 |16
o |17 |16
g1 2 2 4 &5 o ¥ & 9 10 11 12 12 14 15
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Wavefront (Overview)

 Divide the space into a grid.

* Number the squares starting at the start in
either 4 or 8 point connectivity starting at
the goal, increasing till you reach the start.

 Your path is defined by any uninterrupted
seqguence of decreasing numbers that lead to

the goal.
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Return to Configuration Spaces

 Non-Euclidean
e Non-Planar
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What If the robot is not a point?

The Scout should probably not
be modeled as a point...

Nor should robots with extended
linkages that may contact obstacles... 0
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Configuration Space:
the robot has...
« A Footprint

— The amount of space a robot occupies

e Degrees of Freedom

— The number of variables necessary to fully
describe a robot’s configuration in space

* You’ll cover this more in depth later
e fun with non-holonomic constraints, etc




Carnepiedellon

Configuration Space “Quiz”

An obstacle in the robot’s workspace

Where do we put ‘ ?

Oa

360

270 +

180 T

90 +

>

45 90 135 180

Torus
(wraps horizontally and vertically)
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Carnepiedellon

Configuration Space Obstacle

Reference configuration

An obstacle in the robot’s workspace

How do we get from A to B ?

360

270

180

The C-space representation
of this obstacle...
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Corpegelellon

Two Link Path

Thanks to Ken Goldberg
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Two Link Path

F 4
‘

=g

‘ - A
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with workspace
Free moving (no wheels) I‘ObOt(I)n pIaPe: )

— workspace R2
— configuration space $R?

3-joint revolute arm in the plane
— Workspace, atorus of outer radius L1+ L2+ L3
— configuration space T3=S1 x S1 x S1

2-joint revolute arm with a prismatic joint in the plane
— workspace disc of radius L1 + L2 + L3
— configuration space T2 x R

3-joint revolute arm mounted on a mobile robot (holonomic)
— workspace is a “sandwich” of radius L1 + L2 + L3
] R2x T3

3-joint revolute arm floating in space
— workspace is R3
— configuration space is SE(3) x T3
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Carnepiedellon

Map-Based Approaches:
Roadmap Theory

"“‘mPW}: ag

- Emn :\E_jﬁf - ‘
* Properties of a roadmap: _ Rmﬂw g R
— Accessibility: there exists a collision-free ' aggigl.;t

path from the start to the road map

— Departability: there exists a collision-free
path from the roadmap to the goal.

— Connectivity: there exists a collision-free
path from the start to the goal (on the
roadmap).

Yuhn{ghany

o
\,.-5'-': “Fa ersun |II FuItiJn
‘:‘ II. ra‘n Da‘

: I;E;chedale

@1999N15p(] =t.com, In @1999[‘1 ntDnT chnokbgiss

e aroadmap exists < a path eX|sts

e Examples of Roadmaps

— Generalized Voronoi Graph (GVG)
— Visibility Graph
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Two-Equidistant

e Two-equidistant surface

S Qe 2 d. (X) — 0~
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More Rigorous Definition

Going through obacles

‘k(x){ﬁ;pdj(x)

QO,
FYOSRERRN 8% = d () <d, (x), Yh =i, j}

RRRRRRR



General VVoronol Diagram

GVD =Dl LJF,

i=1 j=i+l
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What about concave obstacles?

i
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What about concave obstacles?

vd.
VS

vd.

RRRRRRR



What about concave obstacles?

vd.
VS

vd.

vd

Vd, QO

vd

vd.
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Two-Equidistant

e Two-equidistant surface

Sij ={X € Qn:d;(x)—d,(x)=0}

- - i i d.
Two-equidistant surjective surface v

SSij :{X S Sij :Vdi (X) 7 VdJ(X)} vd,
F, ={x eSS, :d;(x) <d,(x),vh =i} C

GVD:D1 LHJFU. S S

Two-eguidistant Face | }

RRRRRRR
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Corpegelellon

Roadmap: GVG

« AGVGis
formed by paths
equidistant from
the two closest
objects

 Remember
““spokes”’, start
and goal

» This generates a very safe roadmap which avoids obstacles as
much as possible
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Voronol Diagram: Metrics

2 2
{(x,¥) : x|l + Iyl = const} {(x,¥): Xx+vy =const}

L1 L2
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Voronol Diagram (L2)

Note the
curved
edges
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Voronol Diagram (L1)

Note the
lack of
curved
edges

RRRRRRR



Roadmap: Visibility Graph

« Formed by connecting all “visible” vertices, the
start point and the end point, to each other

« For two points to be “visible” no obstacle can
exist between them
— Paths exist on the perimeter of obstacles

* In our example, this produces the shortest path
with respect to the L2 metric. However, the close
proximity of paths to obstacles makes it dangerous

£
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The Visibility Graph in Action (Part 1)

 First, draw lines of sight from the start and goal to all
“visible” vertices and corners of the world.
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Cornegiedlallon

The Visibility Graph in Action (Part 2)

« Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.
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Cornegiedlallon

The Visibility Graph in Action (Part 3)

« Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.
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Cornegiedlallon

The Visibility Graph in Action (Part 4)

« Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.
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The Visibility Graph (Done)

* Repeat until you’re done.




Visibility Graph Overview

 Start with a map of the world, draw lines of sight from the
start and goal to every “corner” of the world and vertex of
the obstacles, not cutting through any obstacles.

« Draw lines of sight from every vertex of every obstacle
like above. Lines along edges of obstacles are lines of
sight too, since they don’t pass through the obstacles.

 |f the map was in Configuration space, each line
potentially represents part of a path from the start to the
goal.
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Exact Cell vs. Approximate Cell

e Cell: simple region
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Corpegelellon

Adjacency Graph
— Node correspond to a cell

— Edge connects nodes of adjacent cells
» Two cells are adjacent if they share a common boundary
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CorpegieXdellon

Set Notation

Some set notation

e Interior of A (int(A)) is the largest open subset of A
e Closure of A (cl(A)) is the smallest closesd set that contains A

e Complement of A (A) is everything not in A.
e Boundary of A (0A) is the closure of A take away its interior.

THE
ROBOTICS
INSTITUTE



Examples

Examples

e int[0,1] = (0,1), int(0,1) = (0,1)
. CJ[U: 1] = [U: 1]: EI(U: 1) = [U: 1]

o [U: 1] = (—‘I*:U) U(LDG)
o a[ﬂn 1] = 6([], 1) = {U: 1}
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Definition

Exact Cellular Decomposition (as opposed to approximate)

e 1 is a cell

e int(v;) Nint(v;) = 0 if and only if i # j

o Fsn(cl(v;)ncl(v;)) # 0 if v; and v; are adjacent cells
o I's = U;(1)
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Carnepiedellon

Cell Decompositions: Trapezoidal Decomposition

» A way to divide the world into smaller regions
* Assume a polygonal world
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Carnepiedellon

Cell Decompositions: Trapezoidal Decomposition

o Simply draw a vertical line from each vertex until you hit an obstacle. This
reduces the world to a union of trapezoid-shaped cells
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Corpegelellon

Applications: Coverage

» By reducing the world to cells, we’ve essentially abstracted the world to a
graph.
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Find a path

» By reducing the world to cells, we’ve essentially abstracted the world to a
graph.
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

start goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

sar &

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple

!

traversal

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

!

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

—

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

!

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

!

goal
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Find a path

» With an adjacency graph, a path from start to goal can be found by simple
traversal

l goal
=

THE
ROBOTICS
INSTITUTE



Connect Midpoints of Traps
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Applications: Coverage

First, a distinction between sensor and
detector must be made

Sensor: Senses obstacles
Detector: What actually does the coverage

We’ll be observing the simple case of
having an omniscient sensor and having the
detector’s footprint equal to the robot’s
footprint
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Carnepiedellon

Cell Decompositions: Trapezoidal Decomposition

* How is this useful? Well, trapezoids can easily be covered with simple back-and-forth
sweeping motions. If we cover all the trapezoids, we can effectively cover the entire
“reachable” world.
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Applications: Coverage

o Simply visit all the nodes, performing a sweeping motion in each, and you’re
done.
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Boustrophedon Decomposition




Conclusion: Complete Overview

V  The Basics
— Motion Planning Statement
— The World and Robot
— Configuration Space
— Metrics

b1 ¢ Path Planning Algorithms

— Start-Goal Methods
» Lumelsky Bug Algorithms
» Potential Charge Functions
» The Wavefront Planner

— Map-Based Approaches
» Generalized Voronoi Graphs
 Visibility Graphs

— Cellular Decompositions => Coverage

z * Done with Motion Planning!
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