
Motion Planning

Howie CHoset

Questions

• Where are we?
• Where do we go?
• Which is more important?

Encoders

Encoders – Incremental

LED Photoemitter

Photodetector

Encoder disk

Encoders - Incremental

Encoders - Incremental

• Quadrature (resolution enhancing)

Where are we?

• If we know our encoder values after the
motion, do we know where we are?

Encoders - Absolute

4 Bit Example

More expensive

Resolution = 360° / 2N

where N is number of tracks

What is Motion Planning?

• Determining where to go

Overview

• The Basics
– Motion Planning Statement
– The World and Robot
– Configuration Space
– Metrics

• Path Planning Algorithms
– Start-Goal Methods
– Map-Based Approaches
– Cellular Decompositions

• Applications
– Navigating Large Spaces
– Coverage

The World consists of...

• Obstacles
– Already occupied spaces of the world
– In other words, robots can’t go there

• Free Space
– Unoccupied space within the world
– Robots “might” be able to go here
– To determine where a robot can go, we need to discuss

what a Configuration Space is

Motion Planning Statement

If W denotes the robot’s workspace,
And Ci denotes the i’th obstacle,
Then the robot’s free space, FS, is

defined as:
FS = W - (∪ Ci)

And a path c C0 is c : [0,1] FS
where c(0) is qstart and c(1) is qgoal

Example of a World (and Robot)

Obstacles

Free Space

Robot
x,y

What is a good path?

Basics: Metrics

• There are many different ways to measure a
path:

• Time
• Distance traveled
• Expense
• Distance from obstacles
• Etc…

1) head toward goal

2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

3) return to that closest point (by
wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

• known direction to goal

• otherwise local sensing
walls/obstacles & encoders

But some computing power!

1) head toward goal

2) if an obstacle is encountered,
circumnavigate it and remember
how close you get to the goal

3) return to that closest point (by
wall-following) and continue

Bug 1

“Bug 1” algorithm

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

But some computing power!
• known direction to goal

• otherwise local sensing
walls/obstacles & encoders

Bug2

Call the line from the starting
point to the goal the m-line

“Bug 2” Algorithm

A better bug?

Call the line from the starting
point to the goal the m-line

1) head toward goal on the m-line

“Bug 2” Algorithm

A better bug?

Call the line from the starting
point to the goal the m-line

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

OK ?

m-line
“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

NO! How do we fix this?

Goal

Start

“Bug 2” Algorithm

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again closer to the goal.

3) Leave the obstacle and continue
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

Start-Goal Algorithm:
Lumelsky Bug Algorithms

Lumelsky Bug Algorithms

• Unknown obstacles, known start and goal.
• Simple “bump” sensors, encoders.
• Choose arbitrary direction to turn (left/right) to make all turns, called

“local direction”
• Motion is like an ant walking around:

– In Bug 1 the robot goes all the way around each obstacle
encountered, recording the point nearest the goal, then goes around
again to leave the obstacle from that point

– In Bug 2 the robot goes around each obstacle encountered until it
can continue on its previous path toward the goal

Assumptions?

Assumptions

• Size of robot
• Perfect sensing
• Perfect control
• Localization (heading)

What else?

What is the position of the robot?

Expand
obstacle(s)

Reduce
robot

not quite right ...

Example of a World (and Robot)

Obstacles

Free Space

Robot
x,y

Configuration Space: Accommodate Robot Size

Obstacles

Free Space

Robot
(treat as point object)x,y

Trace Boundary of Workspace

Pick a reference point…

Translate-only, non-circularly
symmetric

Pick a reference point…

The Configuration Space

• What it is
– A set of “reachable” areas constructed from

knowledge of both the robot and the world

• How to create it
– First abstract the robot as a point object. Then,

enlarge the obstacles to account for the robot’s
footprint and degrees of freedom

– In our example, the robot was circular, so we
simply enlarged our obstacles by the robot’s radius
(note the curved vertices)

Start-Goal Algorithm:
Potential Functions

Attractive/Repulsive Potential Field

– Uatt is the “attractive” potential --- move to the
goal

– Urep is the “repulsive” potential --- avoid
obstacles

Artificial Potential Field Methods:
Attractive Potential

)(

)()(

goal

attatt

qk

qUqF

δ−=

−∇=

Quadratic Potential

Distance

Distance to Obstacle(s)

)(min)(qdqD i=

The Repulsive Potential

Repulsive Potential

Total Potential Function

+ =

)()()(repatt qUqUqU +=

)()(qUqF −∇=

Local Minimum Problem with the Charge Analogy

The Wavefront Planner

• A common algorithm used to determine the
shortest paths between two points
– In essence, a breadth first search of a graph

• For simplification, we’ll present the world as a
two-dimensional grid

• Setup:
– Label free space with 0
– Label start as START
– Label the destination as 2

Representations

• World Representation
– You could always use a large region and distances
– However, a grid can be used for simplicity

Representations: A Grid

• Distance is reduced to discrete steps
– For simplicity, we’ll assume distance is uniform

• Direction is now limited from one adjacent cell to another
– Time to revisit Connectivity (Remember Vision?)

Representations: Connectivity

• 8-Point Connectivity • 4-Point Connectivity
– (approximation of the L1 metric)

The Wavefront Planner: Setup

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with
“0” to the current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice. We’ll use 8-Point Connectivity in our example

The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells

with values >= 2
• 0’s will only remain when regions are unreachable

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

• And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

• You’re done
– Remember, 0’s should only remain if unreachable

regions exist

The Wavefront, Now What?
• To find the shortest path, according to your metric, simply always

move toward a cell with a lower number
– The numbers generated by the Wavefront planner are roughly proportional to their

distance from the goal

Two
possible
shortest
paths

shown

Wavefront (Overview)

• Divide the space into a grid.
• Number the squares starting at the start in

either 4 or 8 point connectivity starting at
the goal, increasing till you reach the start.

• Your path is defined by any uninterrupted
sequence of decreasing numbers that lead to
the goal.

Return to Configuration Spaces

• Non-Euclidean
• Non-Planar

What if the robot is not a point?

The Scout should probably not
be modeled as a point...

β

α

Nor should robots with extended
linkages that may contact obstacles...

Configuration Space:
the robot has...

• A Footprint
– The amount of space a robot occupies

• Degrees of Freedom
– The number of variables necessary to fully

describe a robot’s configuration in space
• You’ll cover this more in depth later
• fun with non-holonomic constraints, etc

θ

x,y

Where do we put ?

Configuration Space “Quiz”

An obstacle in the robot’s workspace

β

α

270

360

180

90

0
90 18013545

qA

β

α
qB

A

B

Torus
(wraps horizontally and vertically)

Configuration Space Obstacle

An obstacle in the robot’s workspace

β

α

270

360

180

90

0
90 18013545

qB

qA

The C-space representation
of this obstacle…

β

α

How do we get from A to B ?

A

B

Reference configuration

Two Link Path

Thanks to Ken Goldberg

Two Link Path

More Example Configuration Spaces (contrasted
with workspace)

• Free moving (no wheels) robot in plane:
– workspace ℜ2

– configuration space ℜ2

• 3-joint revolute arm in the plane
– Workspace, a torus of outer radius L1 + L2 + L3
– configuration space T3 = S1 x S1 x S1

• 2-joint revolute arm with a prismatic joint in the plane
– workspace disc of radius L1 + L2 + L3
– configuration space T2 × ℜ

• 3-joint revolute arm mounted on a mobile robot (holonomic)
– workspace is a “sandwich” of radius L1 + L2 + L3
� ℜ2 × T3

• 3-joint revolute arm floating in space
– workspace is ℜ3

– configuration space is SE(3) x T3

Map-Based Approaches:
Roadmap Theory

• Properties of a roadmap:
– Accessibility: there exists a collision-free

path from the start to the road map
– Departability: there exists a collision-free

path from the roadmap to the goal.
– Connectivity: there exists a collision-free

path from the start to the goal (on the
roadmap).

a roadmap exists ⇔ a path exists
Examples of Roadmaps

– Generalized Voronoi Graph (GVG)
– Visibility Graph

Two-Equidistant
• Two-equidistant surface

}0)()(:{ free =−∈= xdxdQxS jiij
iQO

jQO

More Rigorous Definition

Going through obstacles

Two-equidistant face },),()()(:{ jihxdxdxdSSxF hjiijij ≠∀≤=∈=

iQO

jQO

)()()(xdxdxd jik =≤ ijSS
kQO

General Voronoi Diagram

∪ ∪
1

1 1

GVD
−

= +=

=
n

i

n

ij
ijF

What about concave obstacles?

vs

What about concave obstacles?

vs
id∇

jd∇

id∇

jd∇

What about concave obstacles?

vs
id∇

jd∇

id∇

jd∇

id∇

jd∇

jd∇

id∇

Two-Equidistant
• Two-equidistant surface

Two-equidistant surjective surface

Two-equidistant Face

}0)()(:{ free =−∈= xdxdQxS jiij

jC
iC

ijS

id∇

jd∇

)}()(:{ xdxdSxSS jiijij ∇≠∇∈=

}),()(:{ ihxdxdSSxF hiijij ≠∀≤∈=

∪ ∪
1

1 1

GVD
−

= +=

=
n

i

n

ij
ijF

Roadmap: GVG
• A GVG is

formed by paths
equidistant from
the two closest
objects

• Remember
“spokes”, start
and goal

• This generates a very safe roadmap which avoids obstacles as
much as possible

Voronoi Diagram: Metrics

Voronoi Diagram (L2)

Note the
curved
edges

Voronoi Diagram (L1)

Note the
lack of
curved
edges

Roadmap: Visibility Graph

• Formed by connecting all “visible” vertices, the
start point and the end point, to each other

• For two points to be “visible” no obstacle can
exist between them
– Paths exist on the perimeter of obstacles

• In our example, this produces the shortest path
with respect to the L2 metric. However, the close
proximity of paths to obstacles makes it dangerous

The Visibility Graph in Action (Part 1)

• First, draw lines of sight from the start and goal to all
“visible” vertices and corners of the world.

start

goal

The Visibility Graph in Action (Part 2)

• Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 3)

• Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph in Action (Part 4)

• Second, draw lines of sight from every vertex of every obstacle
like before. Remember lines along edges are also lines of sight.

start

goal

The Visibility Graph (Done)

• Repeat until you’re done.

start

goal

Visibility Graph Overview

• Start with a map of the world, draw lines of sight from the
start and goal to every “corner” of the world and vertex of
the obstacles, not cutting through any obstacles.

• Draw lines of sight from every vertex of every obstacle
like above. Lines along edges of obstacles are lines of
sight too, since they don’t pass through the obstacles.

• If the map was in Configuration space, each line
potentially represents part of a path from the start to the
goal.

Exact Cell vs. Approximate Cell

• Cell: simple region

Adjacency Graph
– Node correspond to a cell
– Edge connects nodes of adjacent cells

• Two cells are adjacent if they share a common boundary

c11
c1

c2

c4

c3
c6

c5 c8

c7

c
10

c9
c12

c13

c14

c15

c1 c10

c2

c3

c4 c5

c6

c7

c8

c9

c11

c12

c13

c14

c15

Set Notation

Examples

Definition

Cell Decompositions: Trapezoidal Decomposition

• A way to divide the world into smaller regions
• Assume a polygonal world

Cell Decompositions: Trapezoidal Decomposition

• Simply draw a vertical line from each vertex until you hit an obstacle. This
reduces the world to a union of trapezoid-shaped cells

Applications: Coverage
• By reducing the world to cells, we’ve essentially abstracted the world to a

graph.

Find a path
• By reducing the world to cells, we’ve essentially abstracted the world to a

graph.

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Find a path
• With an adjacency graph, a path from start to goal can be found by simple

traversal

start goal

Connect Midpoints of Traps

Applications: Coverage

• First, a distinction between sensor and
detector must be made

• Sensor: Senses obstacles
• Detector: What actually does the coverage
• We’ll be observing the simple case of

having an omniscient sensor and having the
detector’s footprint equal to the robot’s
footprint

Cell Decompositions: Trapezoidal Decomposition

• How is this useful? Well, trapezoids can easily be covered with simple back-and-forth
sweeping motions. If we cover all the trapezoids, we can effectively cover the entire
“reachable” world.

Applications: Coverage
• Simply visit all the nodes, performing a sweeping motion in each, and you’re

done.

Boustrophedon Decomposition

Conclusion: Complete Overview
• The Basics

– Motion Planning Statement
– The World and Robot
– Configuration Space
– Metrics

• Path Planning Algorithms
– Start-Goal Methods

• Lumelsky Bug Algorithms
• Potential Charge Functions
• The Wavefront Planner

– Map-Based Approaches
• Generalized Voronoi Graphs
• Visibility Graphs

– Cellular Decompositions => Coverage
• Done with Motion Planning!

