Non-holonomic Constraints
and Lie brackets
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Integrable constraint

Example: A constraint on velocity does not induce a
constraint on position

For a wheeled robot, it can instantaneously move In
some directions (forwards and backwards), but not
others (side to side).

To go to the right, the
robot must first turn, and
then drive forward

The robot can instantly

move forward and back,
but can not move to the
right or left without the

wheels slipping.
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Other examples of systems with non-holonomic constraints

Hopping robots

RI’s bow leg hopper

Untethered space
robots (conservation of
angular momentuem is
the constraint)

AERcam, NASA

Manipulation with a robotic hand

Multi-fingered hand from Nagoya University
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What about holonimc systems?

« A person walking is an example of a holonomic system-
you can instantly step to the right or left, as well as going
forwards or backwards. In other words, your velocity in
the plane is not restricted.

* An Omni-wheel is a holonomic system- it can roll
forwards and sideways.
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How do we represent the constraint mathematically?

We write a constraint equation
For a differential drive, thisis: Yy cos@ —xsind =0

*\What does this equation tell us? The direction we can’t move in

y .. _ o
/,(X' Y)  So if 6=0, then the velocity iny = 0

if 6=90, then the velocity inx =0

*\We can also write the constraint in matrix form, with g the position
X vector and q dot the velocity, we can write a constraint vector w,(q)

X X W, (q) =[-sin& cosd 0]
a=|y| q=|Yy
0 0
X
wi(q)-g=0=[-sin@ cosd 0]|y| <=> —Xsind+ycosd =0
0
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Lie Brackets

d X ] 8g 8g
Lie Bracket: [qg., =22 g, ——%
etg=|b|. q=|y [9:: 9.] 0% g %
C 0 _ _ _
- - - A Lie Bracket takes two n dimensional
(5a oa oal vectors and returns a new n-vector
ax 6y 89 Example:
cosé 0
og _|db b @b gl{sme}gz{o]
og ox oy o060 0 0
OoC oOC oOC 5 0 0 -sing 5 000
so—L=(0 0 cosfd |, =2=|0 0 O
| OX oy 00 ] o L o 0 ] oq L 0 J
LieBracket : [gl,gz]:(%2 g, —%—% d,

0 0 O] |cosd 0 0 -sin@||0
[9,,9,]=|0 O O0}:{sin@|—|0 O cosé |-|0|=0
0 0O 0 00 0 0
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Method for analyzing non-holonomic motion

*Determine your constraints (w’s)

«Convert the constraints into locally allowable motions, (w’s —> g’s)
Must find allowable inputs g, and g, such that (g, L w;) and (g, L w,)

*Apply Lie Bracket to your g’s to determine all possible motions

If after you apply the Lie Bracket you find that you have n linearly independent
columns, then you can control your robot in all n variables.
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Ackerman steering example

«2 constraints (front and rear wheels)
*2 inputs (steering and gas pedal)

* 4 states

»
»

q:

S O w X

sin@

g,=|1

I—tan @
0

O Intuitiontellsus g, =

[ cos@ |

w, =[-sin@d cosé 0 0]
W, =[-sin(@+¢) cos(@+¢) lcosg O]
W, -G =0

o1
0 _ :
ol which means the steering depends only on ¢

1

now we want g, to tell us the direction we would go for a fixed ¢
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Ackerman example cont.

We want four linearly independent g's. Since we already
have two, we need to compute g, and g,

% o 09

g3=[gl,g2]= oq aq

9 9,

We can immeadietly see that % =0 since g, is constant.
q

And because the first three rows of g, are 0, we only need to

find the last coulmn of %

aq
[0 0 0 0 | 0
0
0 00O 0
%: 1 , andthus% g, = 1 =03
oq (0 0 0 5 aq 2
| cos” ¢ | cos” ¢
10 0 O 0 | 0
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Ackerman example cont.

To find g, we do another Lie Bracket:

0 0
g, :[92' 93]:%92 _aiq? 03

Again, there are a lot of zeroes that make things go quickly

o0 [ —sing |
0 0 0 O][X] [0 0 —sin@ O] 0 | cos® ¢
o0, , _[0 00 O||X|_, ag, |00 cos0 O} | | 1
oq 20 0 0 x||x|7 " oq %Zoo o0 o 05’4 | lcos¢
000 0][0] 00 0o of ", 0
L . i 0 i
sin¢ cosd O 0 sm29
| cos? ¢ | cos® ¢
. -1
-1 singd 0 0
sowe have g, = ,and[9;, 9,, 95, 9,1 = | cos ¢
| cos¢
tan ¢ -1
0 — d 0
I | cos” ¢
. 0 ] 0 1 0 0 |
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Are we there yet?
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