

An Introduction to Robot Kinematics

Howie Choset
Hannah Lyness

Robot kinematics refers to the geometry and movement of robotic mechanisms

Engineering/mechanics

Other (e.g. robotics)

Statics

Statics (equilibrium and relation to forces)

Dynamics

Kinetics (motion and relation to forces)
Kinematics (motion without forces)

Dynamics

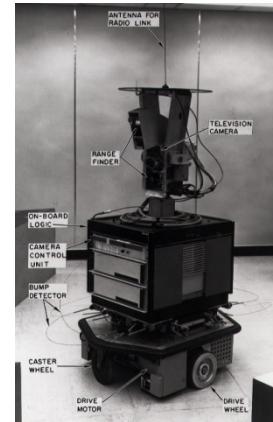
Kinematics

Classical mechanics

A select history of robotics

Elmer,
1948

Unimate,
1959



Shakey,
1966



Wabot 2,
1980

CyberKnife,
1991

Asimo,
2000

Big Dog,
2005

Baxter,
2011

Kuka KR AGILUS,
2014

Goals

- Use robotics kinematics terms to explain real world situations.
- Express a point in one coordinate frame in a different coordinate frame.
- Represent complex translations and rotations using a homogenous transformation matrix.
- Determine the position and orientation of an end effector given link and joint information.

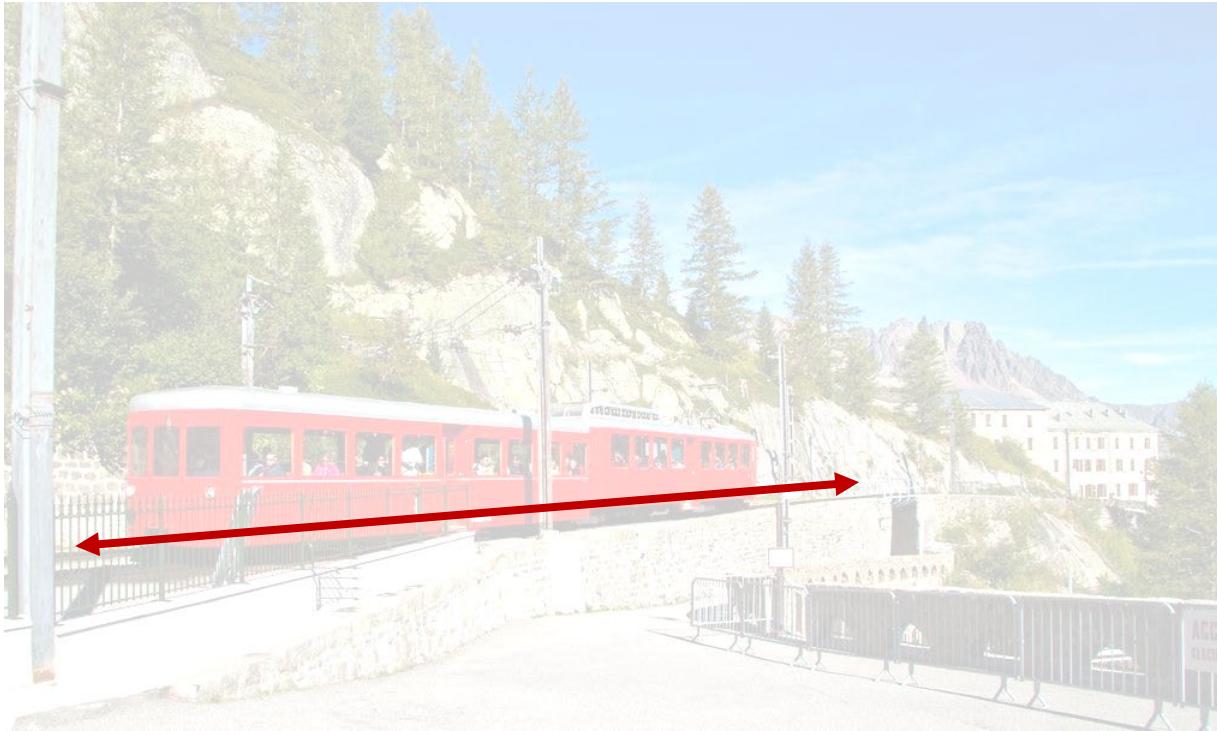
What does degrees of freedom mean?

Degrees of Freedom (DOF):
the number of independent
parameters that can fully
define the configuration

How many degrees of freedom does this have?

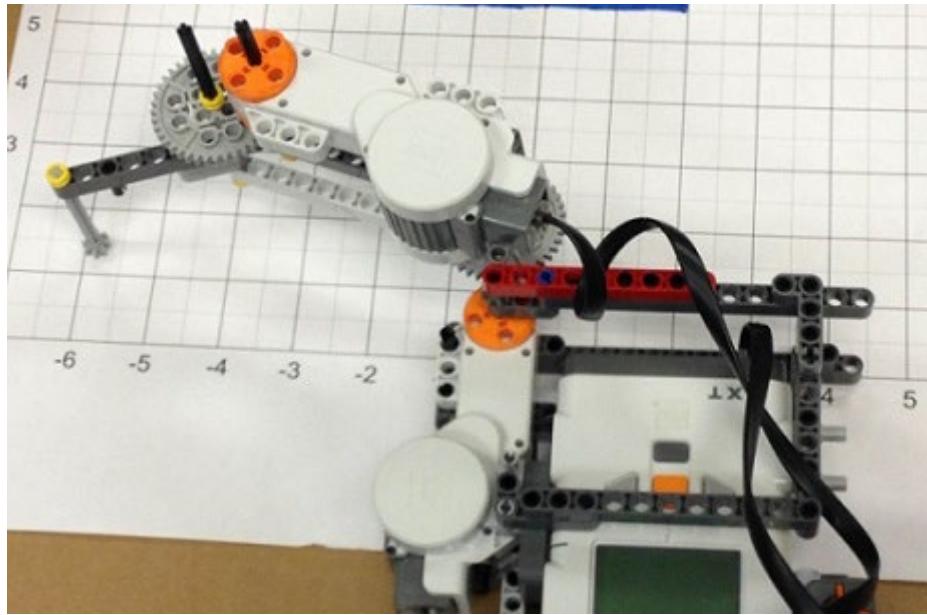
<https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace>

1 DOF



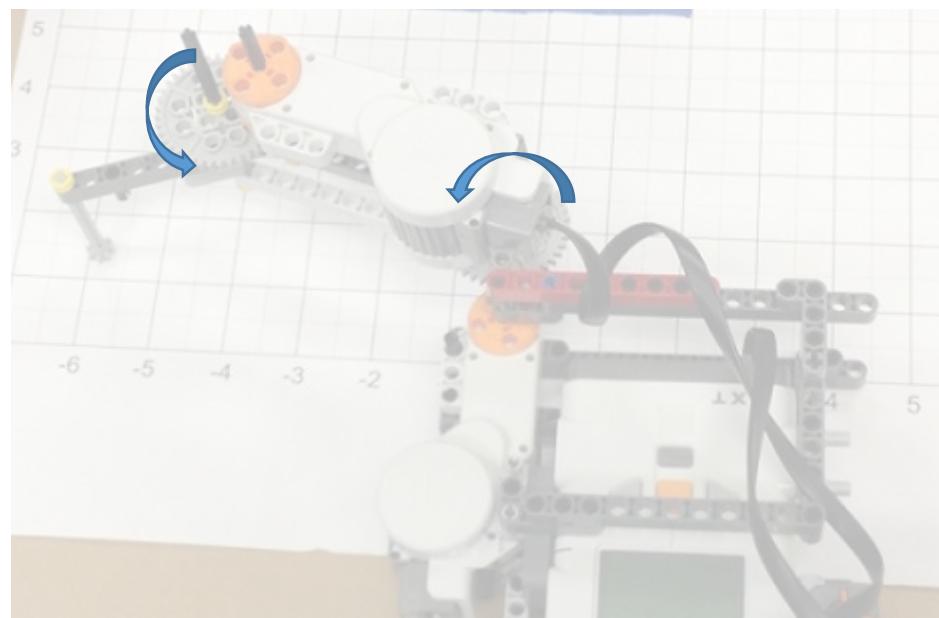
<https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace>

How many degrees of freedom does this have?



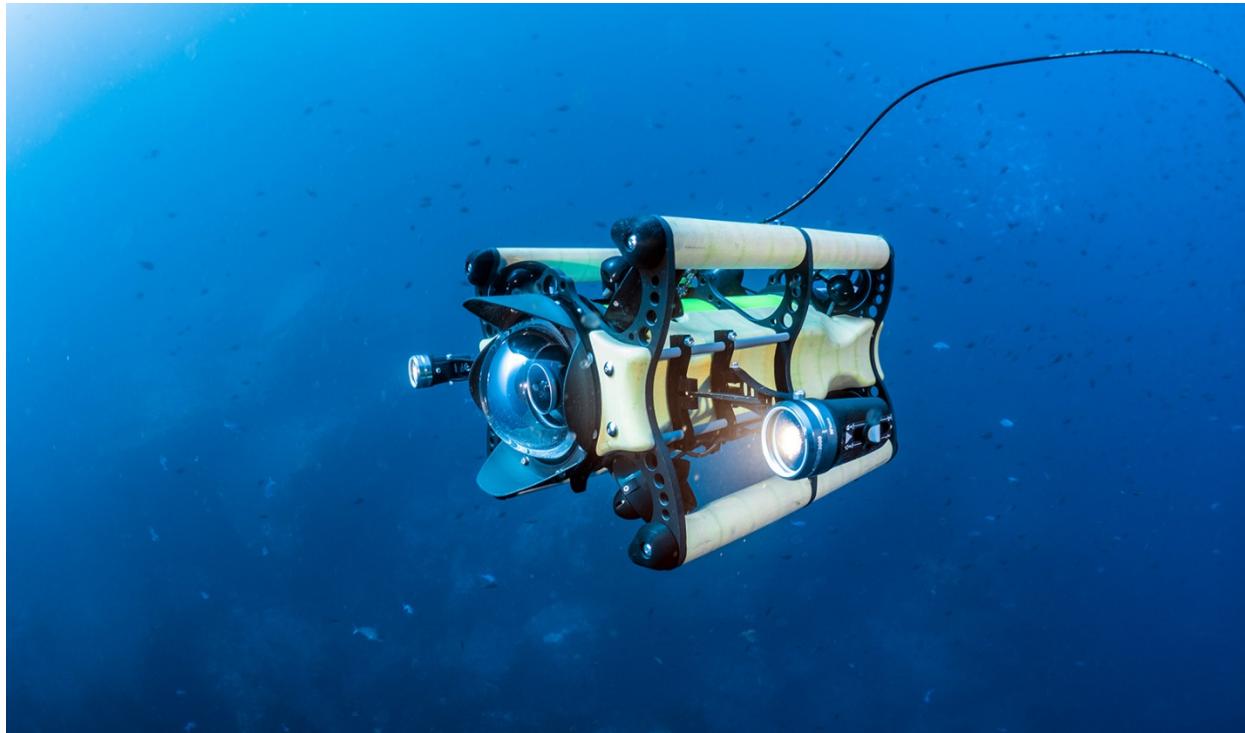
<http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html>

2 DOF



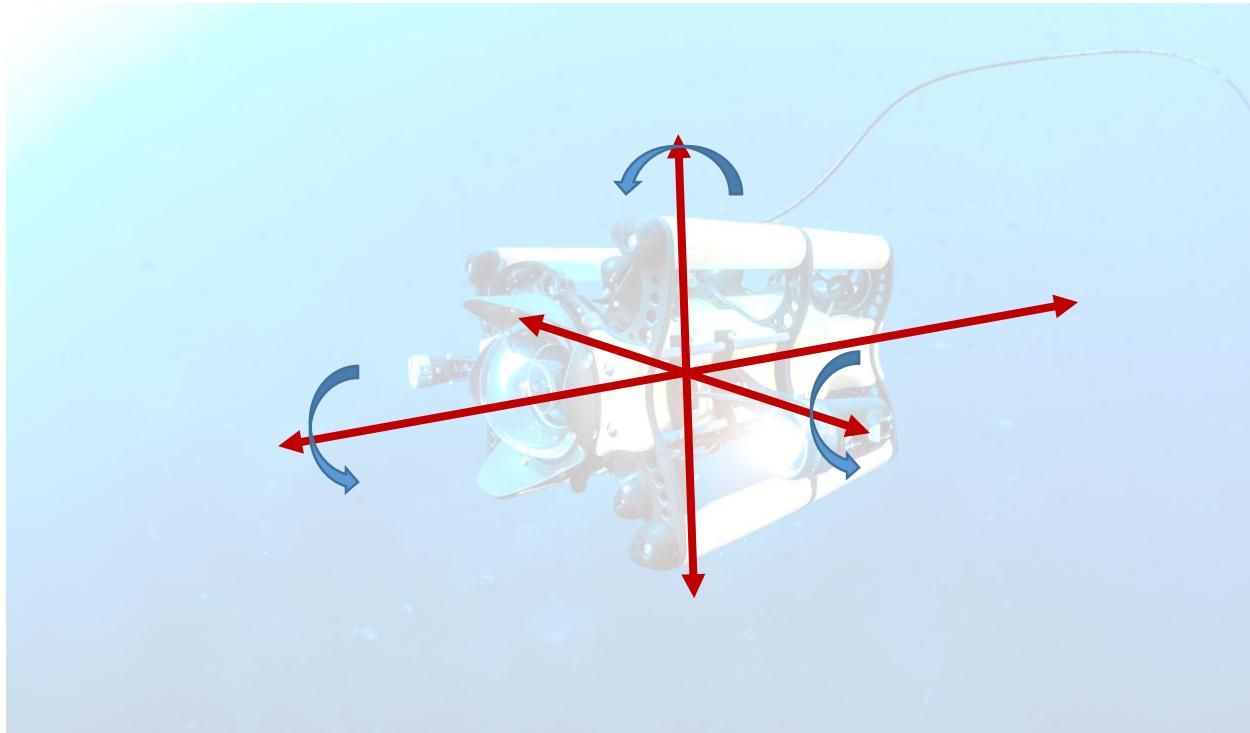
<http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html>

How many degrees of freedom does this have?



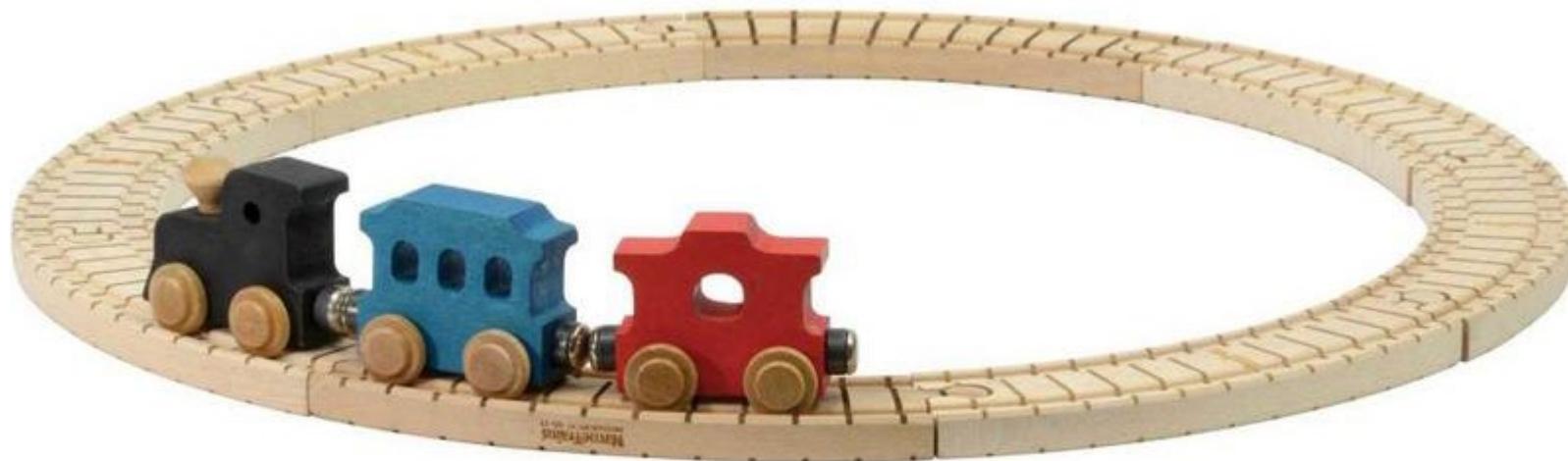
<https://pureadvantage.org/news/2016/11/15/underwater-robots/>

6 DOF



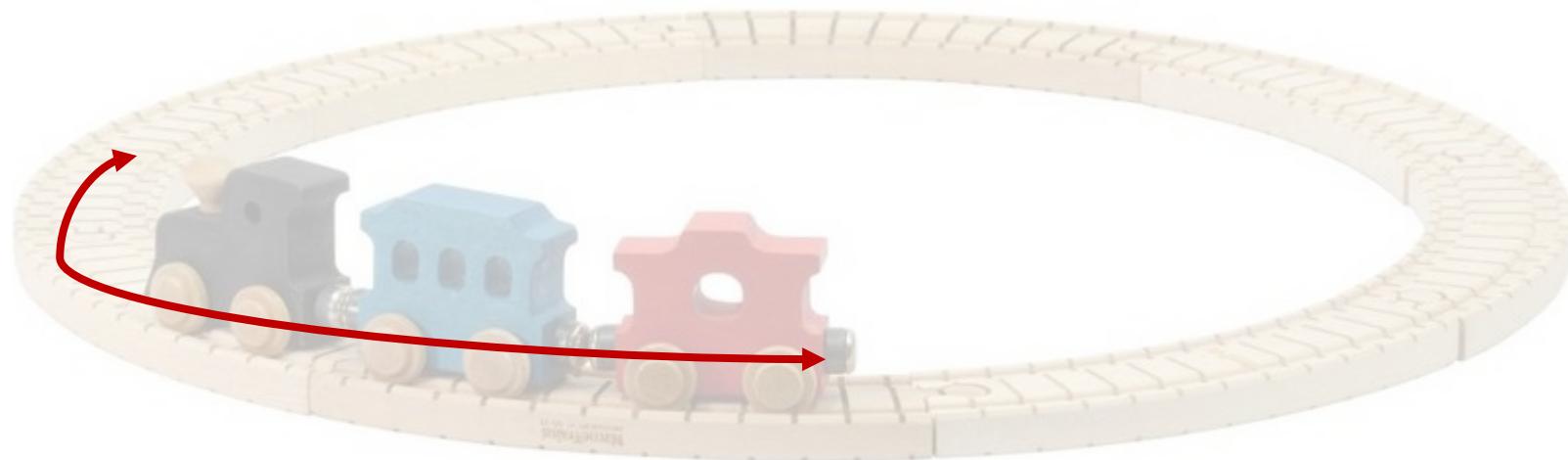
<https://pureadvantage.org/news/2016/11/15/underwater-robots/>

How many degrees of freedom does this have?



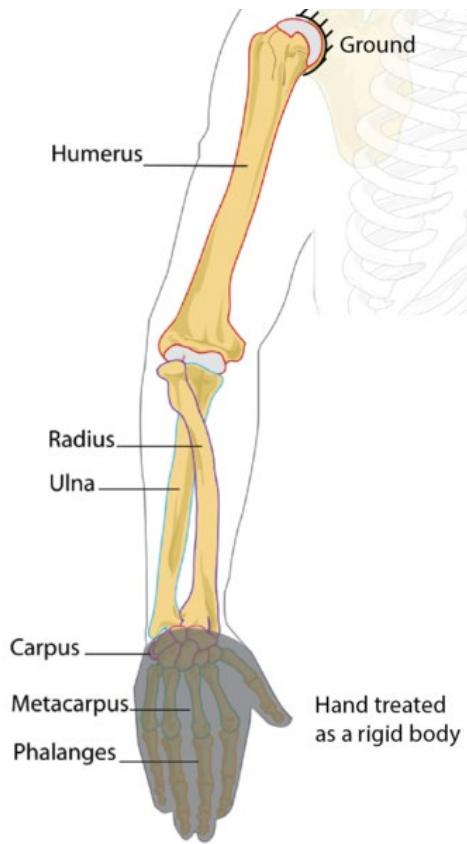
<https://www.shopecobambino.com/maple-landmark-starter-train-set.html>

1 DOF



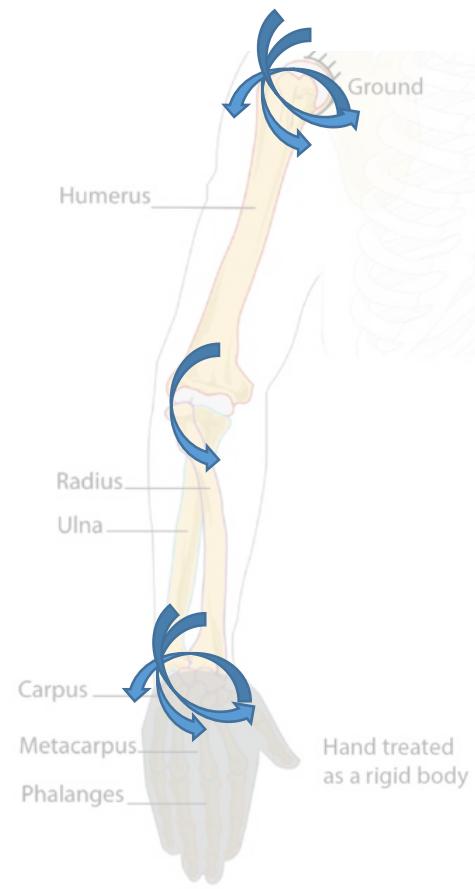
<https://www.shopecobambino.com/maple-landmark-starter-train-set.html>

How many degrees of freedom does this have?



<http://hades.mech.northwestern.edu/index.php/File:Human-arm.png>

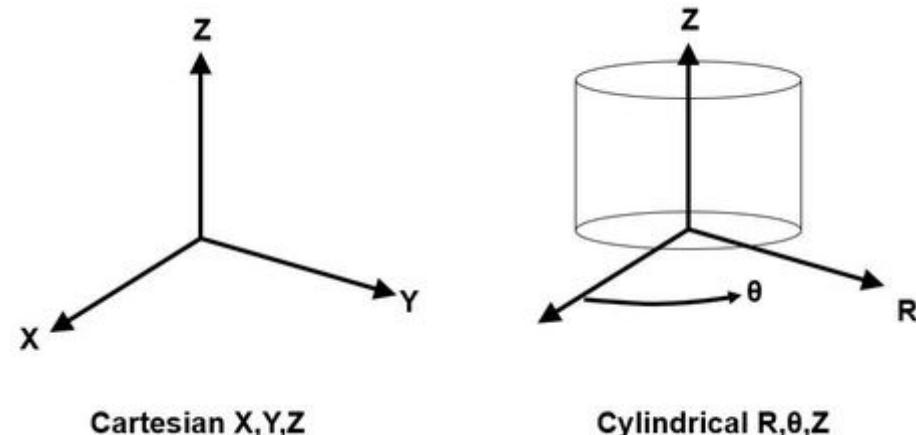
7 DOF



<http://hades.mech.northwestern.edu/index.php/File:Human-arm.png>

Definitions

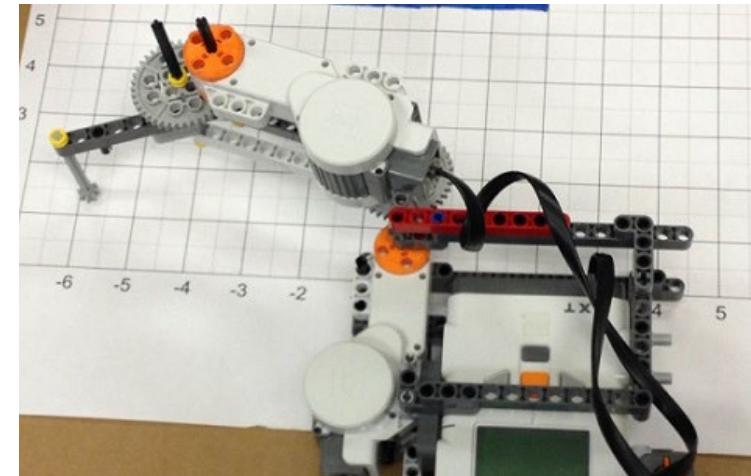
Reference Frame: Static coordinate system from which translations and rotations are based



Link: Single rigid body

Joint: Connection between links

Constraints: Limitations on movement



Grübler's Formula to find degrees of freedom

Basic Idea:

DOF of mechanism = Link DOFs – Joint Constraints

Grübler's Formula to find degrees of freedom

$$M = 6n - \sum_{i=1}^j (6 - f_i)$$

M is the degrees of freedom

n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the i th joint

Grübler's Formula – Simple Open Chain

$$M = \sum_{i=1}^j f_i$$

M is the degrees of freedom

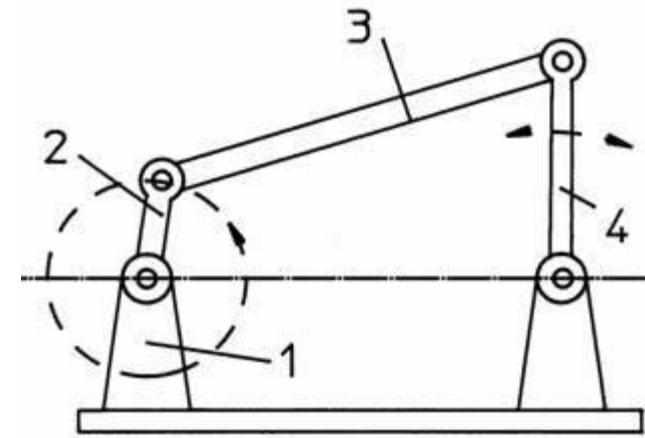
n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the i th joint

Grübler's Formula – Simple Closed Chain

$$M = \sum_{i=1}^j f_i - d$$



M is the degrees of freedom

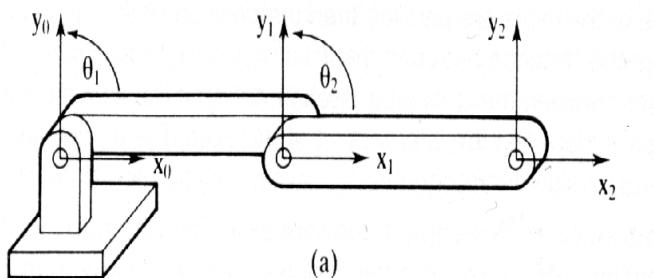
n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the i th joint

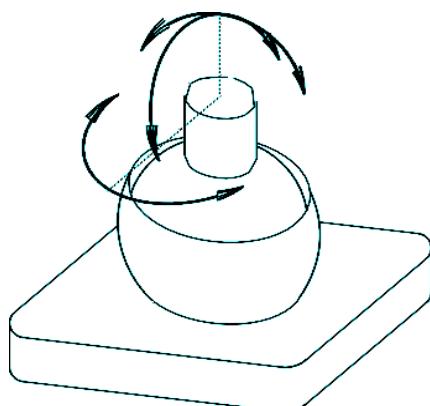
d is the dimension, 3 for planar, 6 for spatial

Types of Joints – Lower Pairs

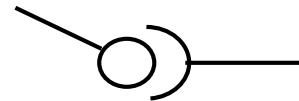


Revolute Joint

1 DOF (Variable - Θ)



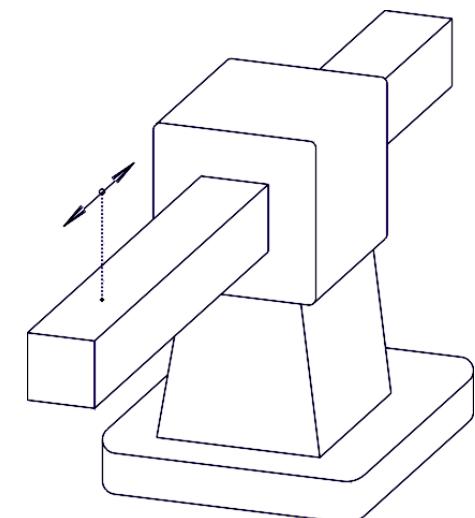
Spherical Joint



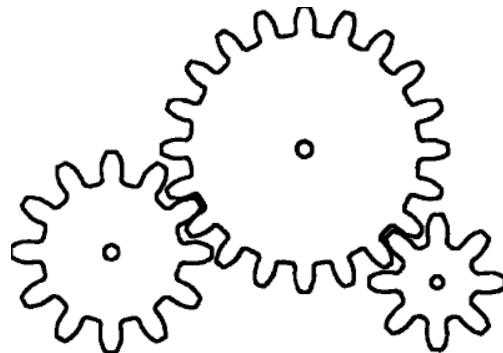
3 DOF (Variables - $\Theta_1, \Theta_2, \Theta_3$)

Prismatic Joint

1 DOF (linear) (Variables - d)

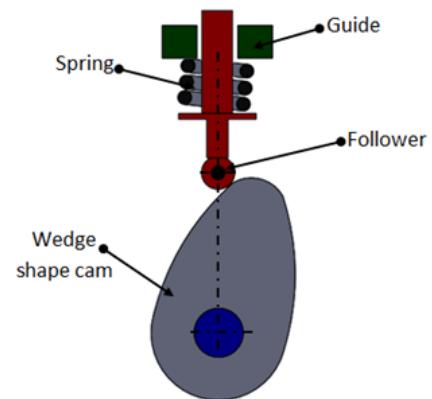


Types of Joints – Higher Pairs



Gears
1 DOF (Variable - Θ)

Cam and Follower
1 DOF (linear) (Variables - d)



Grübler's Formula to find degrees of freedom

$$M = 3n - 2l - h$$

M is degrees of freedom

n is the number of moving links

j is the number of joints

l is the number of lower pairs

h is the number of higher pairs

f_i is the degrees of freedom of the i^{th} joint

We are interested in **two** kinematics topics

Forward Kinematics (angles to position)

What you are given:
The length of each link
The angle of each joint

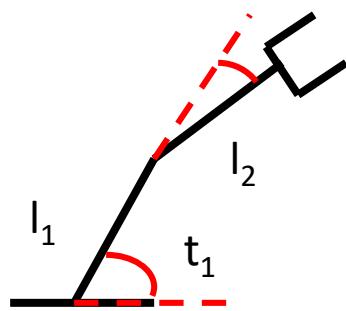
What you can find:
The position of any point
(i.e. it's (x, y, z) coordinates)

Inverse Kinematics (position to angles)

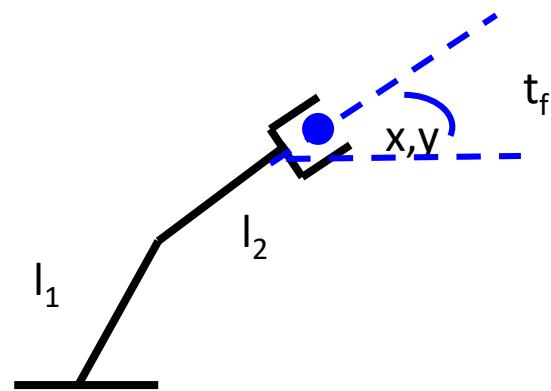
What you are given:
The length of each link
The position of some point on the robot

What you can find:
The angles of each joint needed to
obtain that position

Forward Kinematics (angles to position)

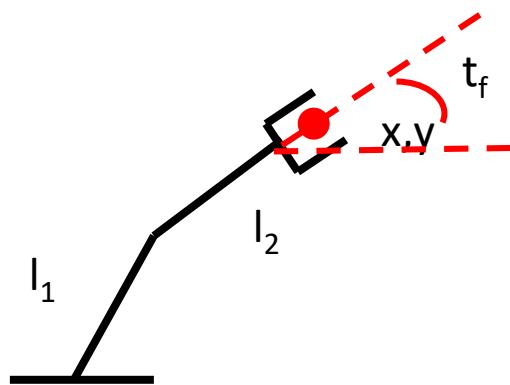


Given l_1, l_2, t_1, t_2

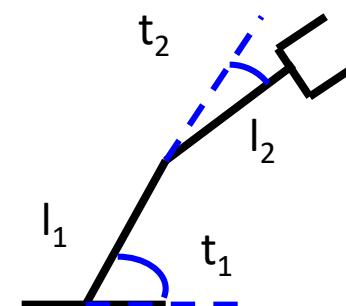


Find x, y, t_f

Inverse Kinematics (angles to position)



Given l_1, l_2, x, y, t_f



Find t_1, t_2

Quick Math Review

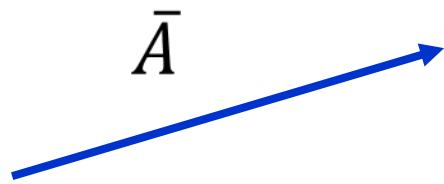
Vector:

A geometric object with magnitude and direction

Quick Math Review

Vector:

A geometric object with magnitude and direction



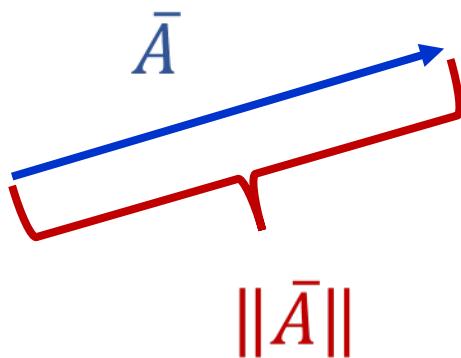
Examples of vector quantities:

Velocity, displacement, acceleration, force

Quick Math Review

Vector Magnitude:

Just the vector quantity without direction



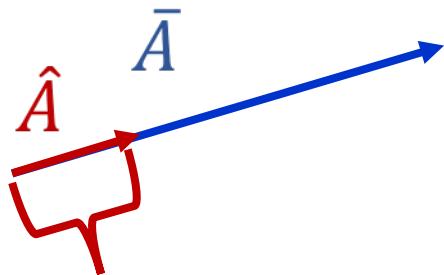
Examples:

Magnitude of velocity is speed, magnitude of displacement is distance, etc.

Quick Math Review

Unit Vector:

Vector with magnitude of 1



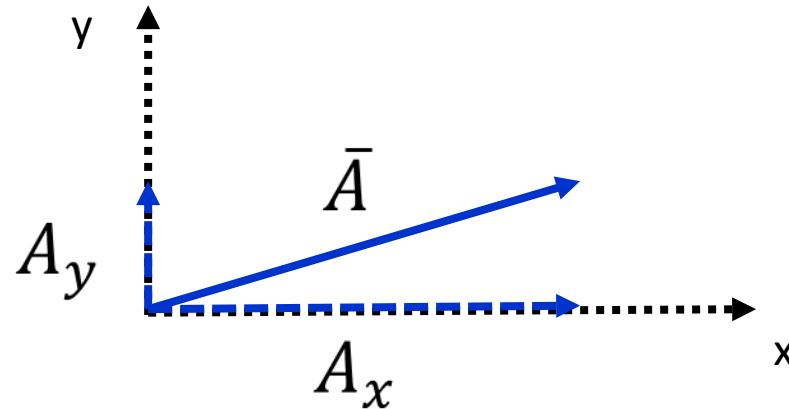
$$\|\hat{A}\| = 1$$

Used to indicate direction

Quick Math Review

Vector:

A geometric object with magnitude and direction



Can be written in matrix form as a column vector

$$\bar{A} = \begin{bmatrix} A_x \\ A_y \end{bmatrix}$$

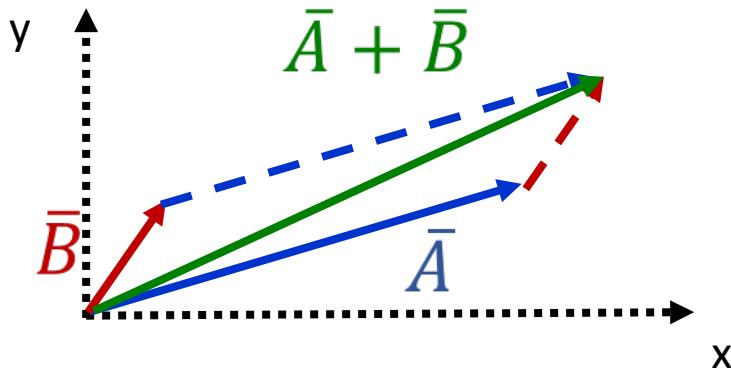
Quick Math Review

Vector Addition

- Sum each component of the vector

$$\bar{A} + \bar{B} = (A_1 + B_1, A_2 + B_2, \dots, A_n + B_n)$$

$$\bar{A} + \bar{B} = \begin{bmatrix} A_x + B_x \\ A_y + B_y \end{bmatrix}$$



Yields a new vector

Commutative

Quick Math Review

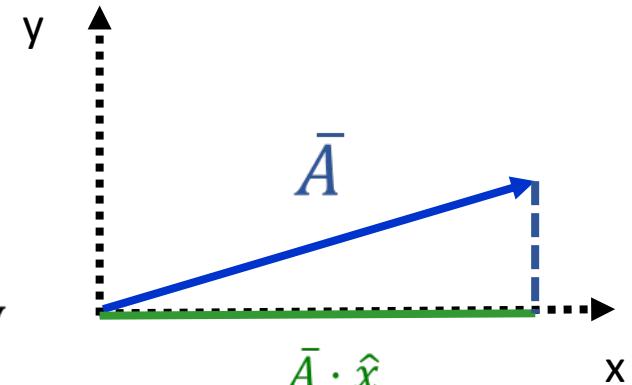
Dot Product

- Geometric Representation:

$$\bar{A} \cdot \bar{B} = \|A\| \|B\| \cos(\theta)$$

- Matrix Representation

$$\bar{A} \cdot \bar{B} = \begin{bmatrix} A_x \\ A_y \end{bmatrix} \cdot \begin{bmatrix} B_x \\ B_y \end{bmatrix} = A_x B_x + A_y B_y$$



$$\begin{aligned}\bar{A} \cdot \hat{x} &= \|A\| * 1 * \cos(\theta) \\ &= A_x * 1 + A_y * 0\end{aligned}$$

Yields a scalar
Commutative

Quick Math Review

Cross Product

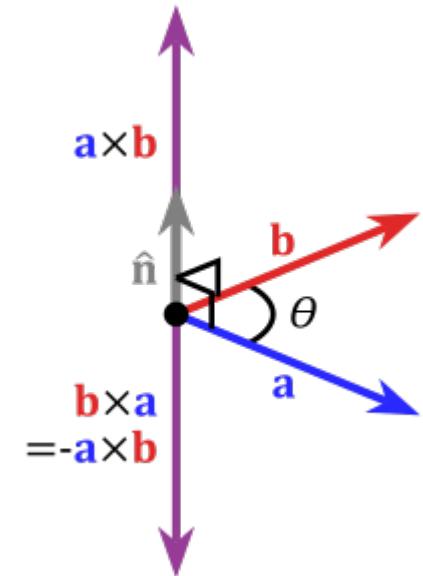
- Geometric Representation:

$$\bar{A} \times \bar{B} = \|A\| \|B\| \sin(\theta) \hat{n}$$

where \hat{n} is perpendicular to both \bar{A} and \bar{B}

- Matrix Representation

$$\bar{A} \times \bar{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$$



Yields a vector perpendicular to both original vectors
Not commutative

Quick Math Review

Matrix Addition

- Sum matching elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} (a+e) & (b+f) \\ (c+g) & (d+h) \end{bmatrix}$$

Matrices must be of same size

Yields a new matrix of the same size

Commutative

Quick Math Review

Matrix Multiplication

- Multiply rows and columns and sum products

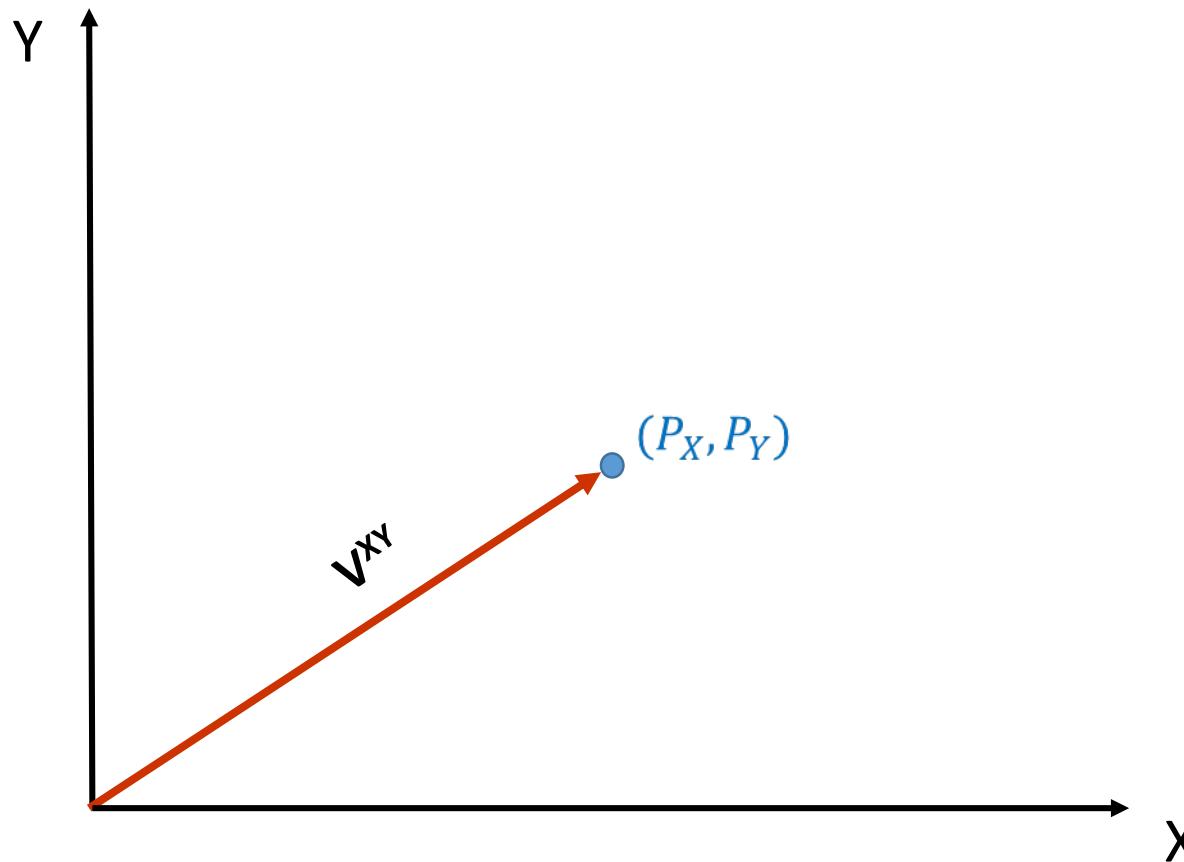
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} (ae + bg) & (af + bh) \\ (ce + dg) & (cf + dh) \end{bmatrix}$$

Matrices must have the same inner dimension

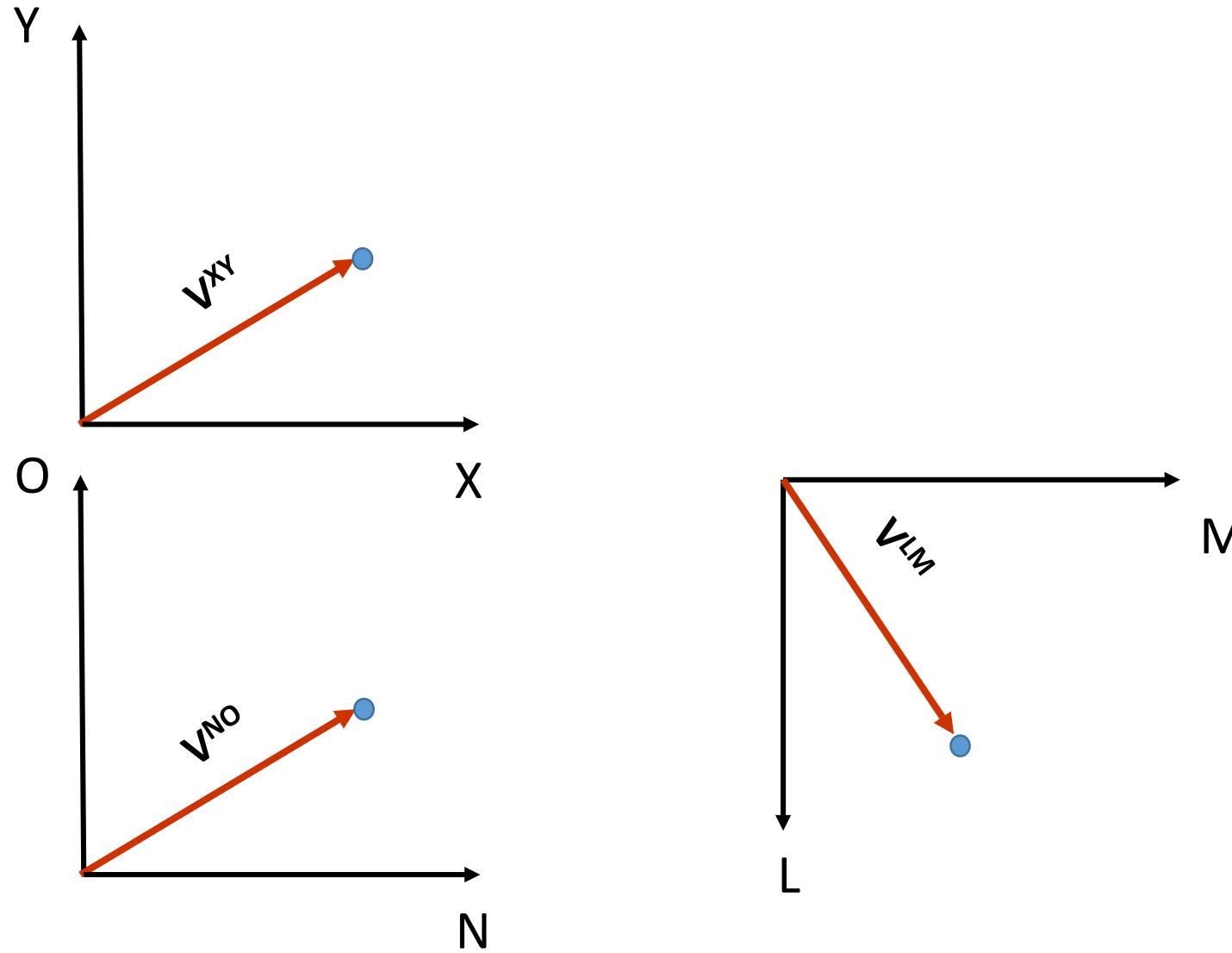
Yields a new matrix of the same size

Not commutative

We can use vectors to succinctly represent a point with respect to a certain reference frame



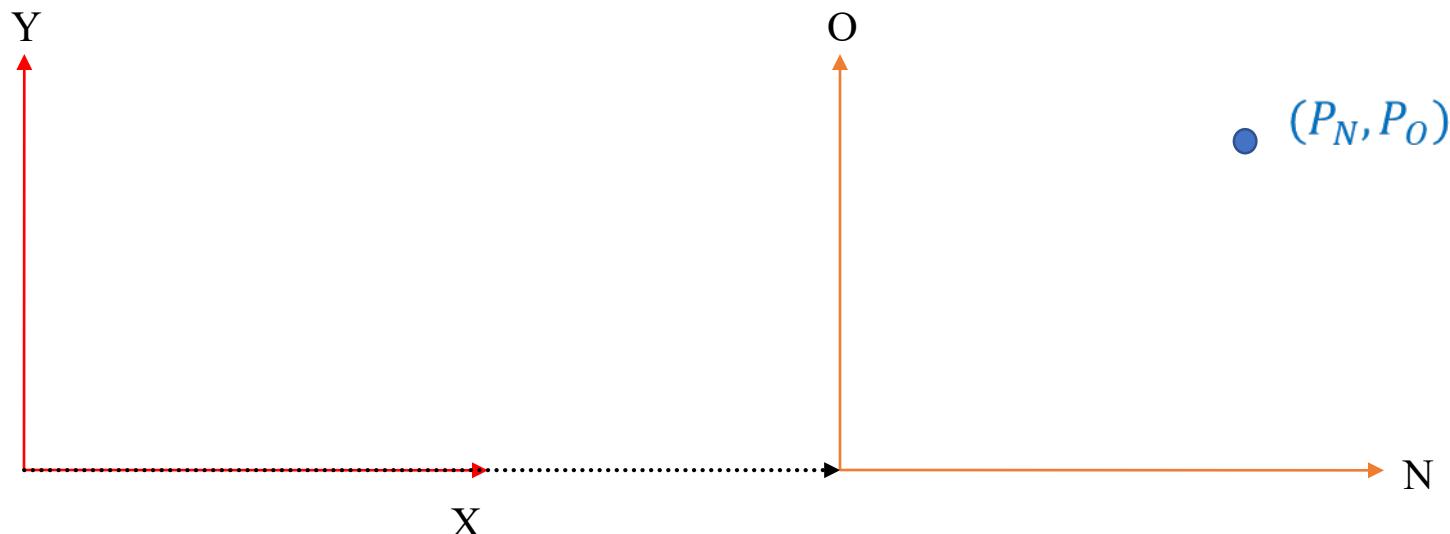
We will use superscripts to indicate our reference frame



Basic Transformations

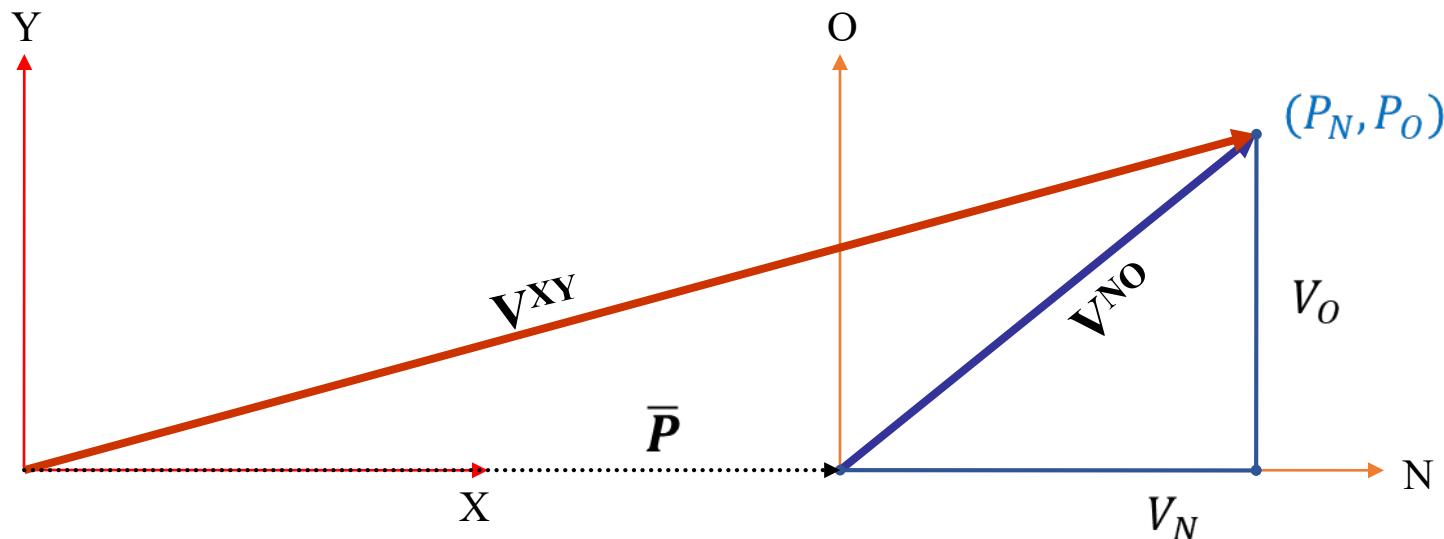
Representing a point in a different frame:

Translation along the x-axis



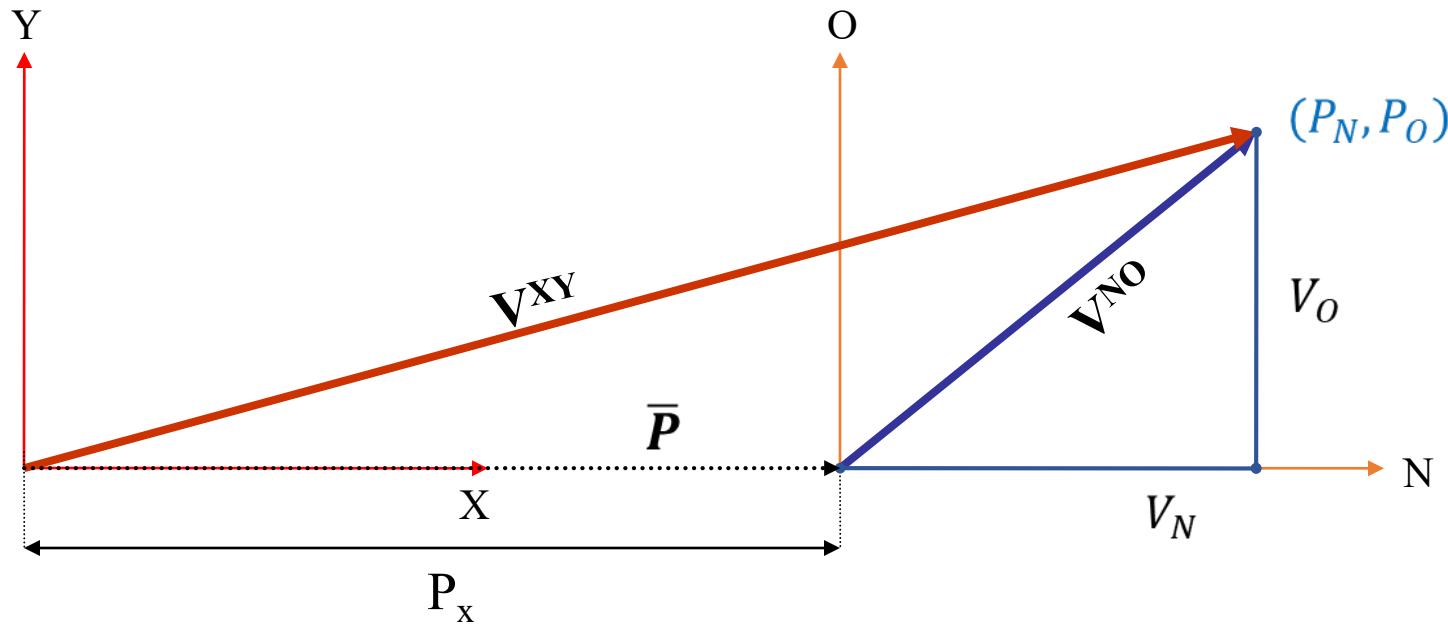
Basic Transformations

Representing a point in a different frame:
Translation along the x-axis



Basic Transformations

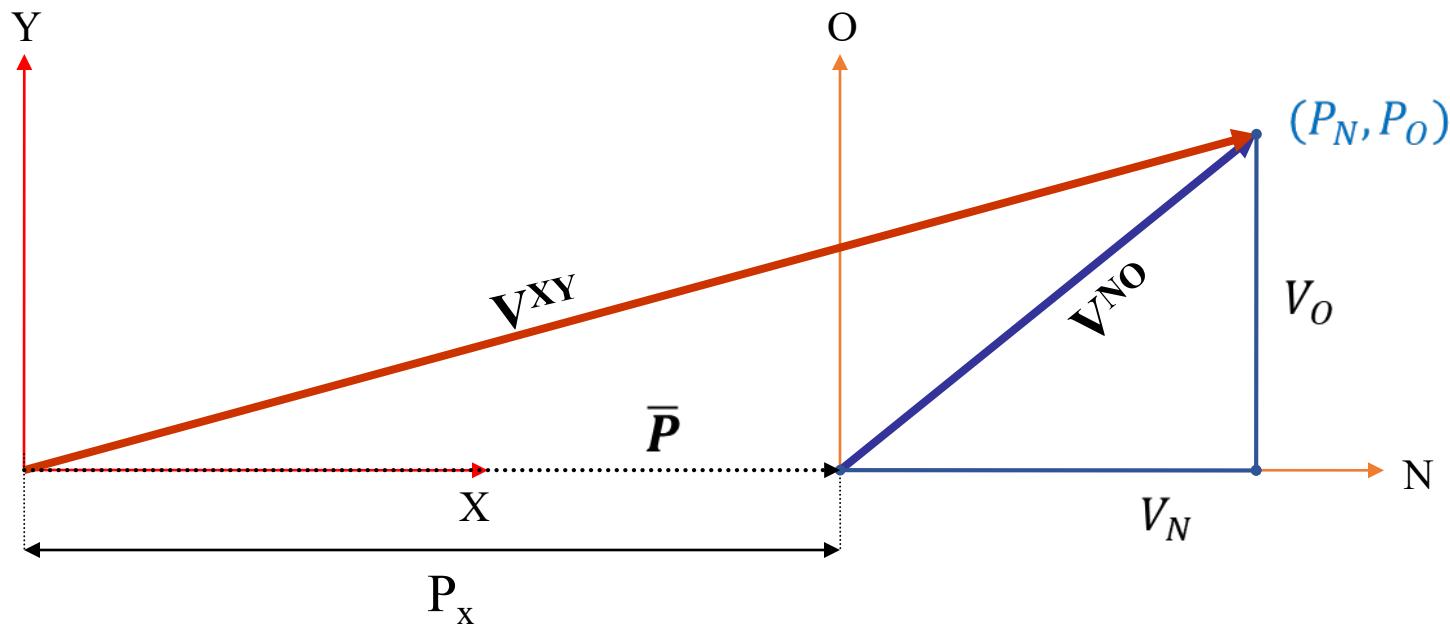
Representing a point in a different frame:
Translation along the x-axis



P_x = distance between the XY and NO coordinate planes

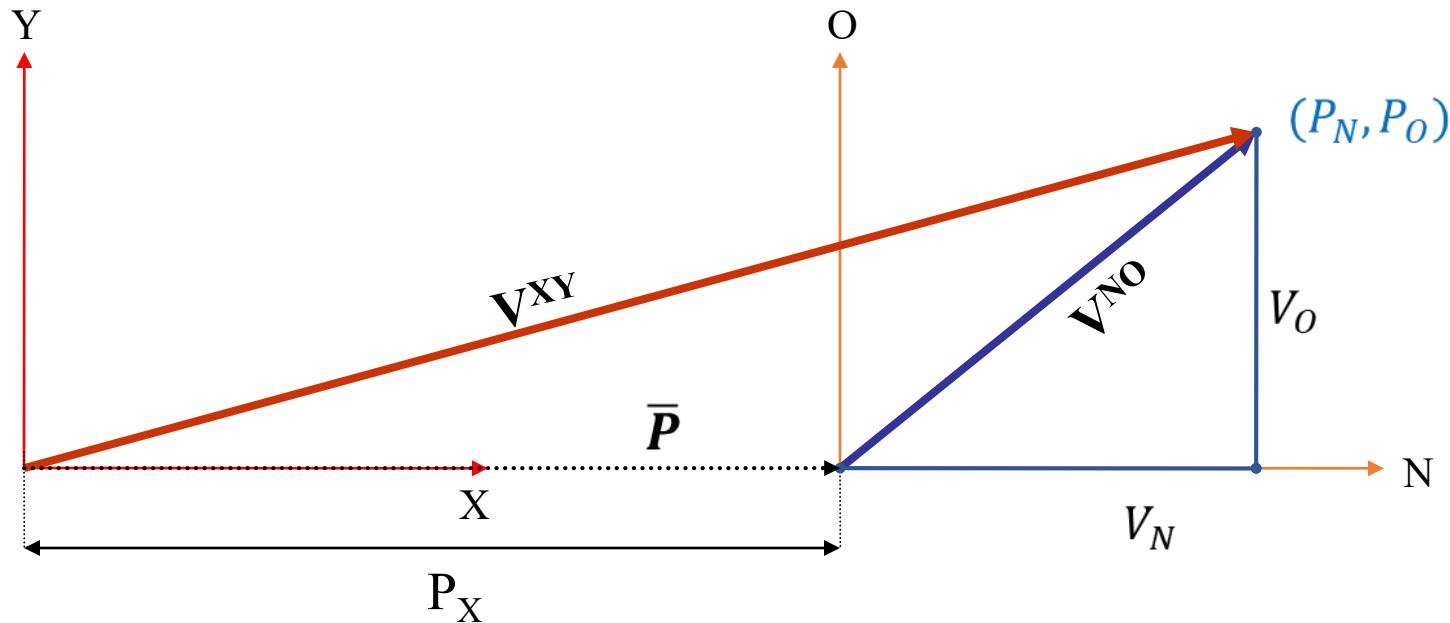
Notation: $\bar{V}^{XY} = \begin{bmatrix} V_X \\ V_Y \end{bmatrix}$ $\bar{V}^{NO} = \begin{bmatrix} V_N \\ V_O \end{bmatrix}$ $\bar{P} = \begin{bmatrix} P_X \\ 0 \end{bmatrix}$

Writing \bar{V}^{XY} in terms of \bar{V}^{NO}



$$\bar{V}^{XY} = \bar{P} + \bar{V}^{NO} = \begin{bmatrix} P_X + V_N \\ V_O \end{bmatrix}$$

Writing \bar{V}^{XY} in terms of \bar{V}^{NO}

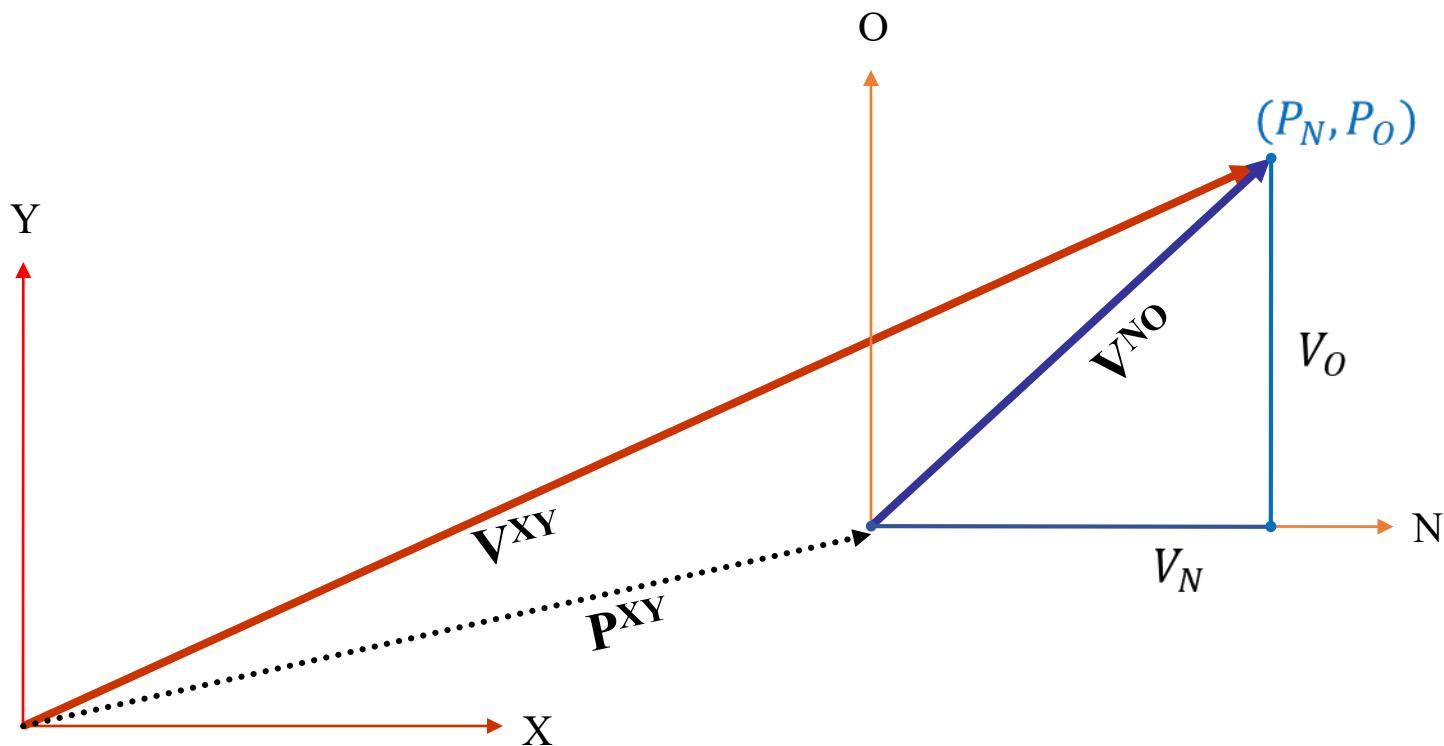


$$\bar{V}^{XY} = \bar{P} + \bar{V}^{NO} = \begin{bmatrix} P_X + V_N \\ V_O \end{bmatrix} \quad \begin{aligned} V_X^{XY} &= P_X + V_N \\ V_Y^{XY} &= V_O \end{aligned}$$

Basic Transformations

Representing a point in a different frame:

Translation along the x- and y-axes

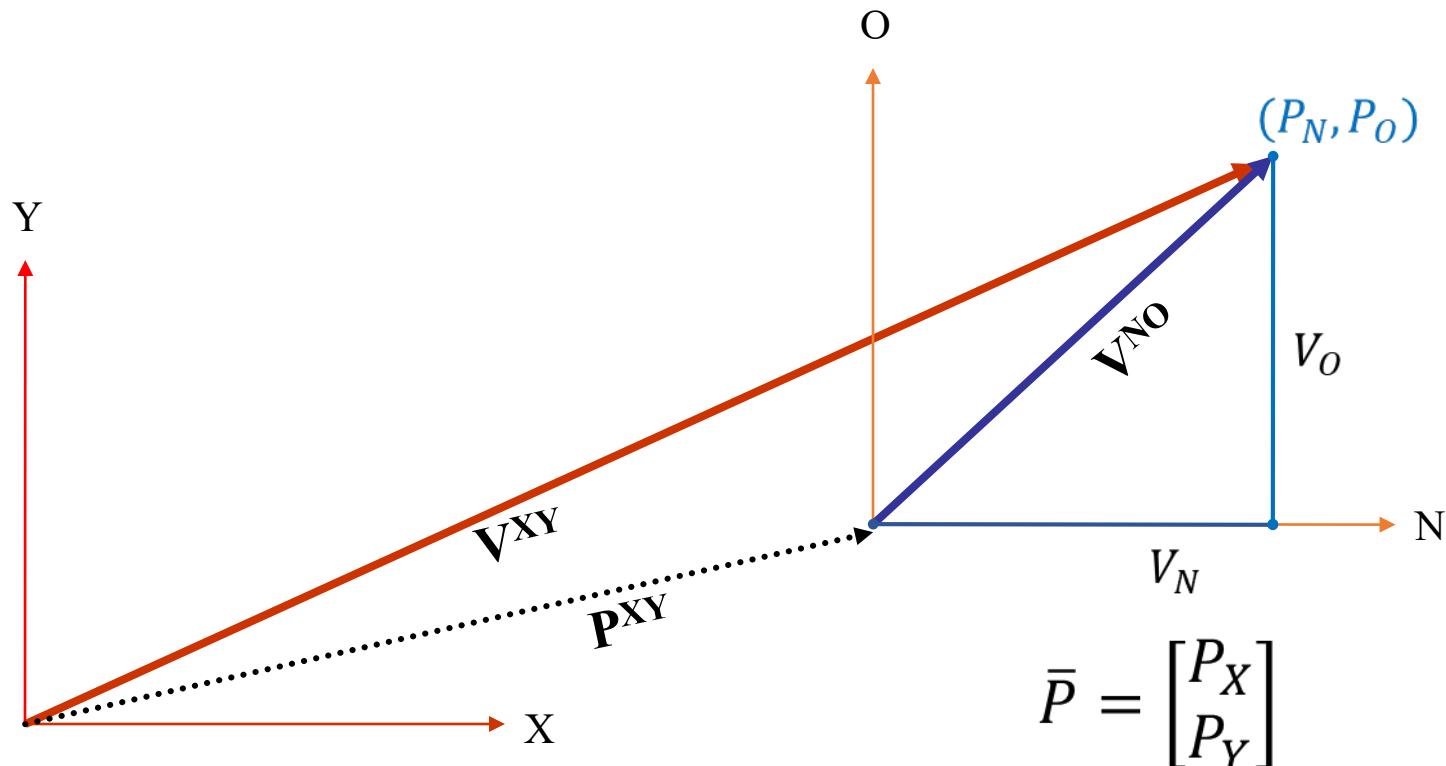


$$\bar{V}^{XY} =$$

Basic Transformations

Representing a point in a different frame:

Translation along the x- and y-axes



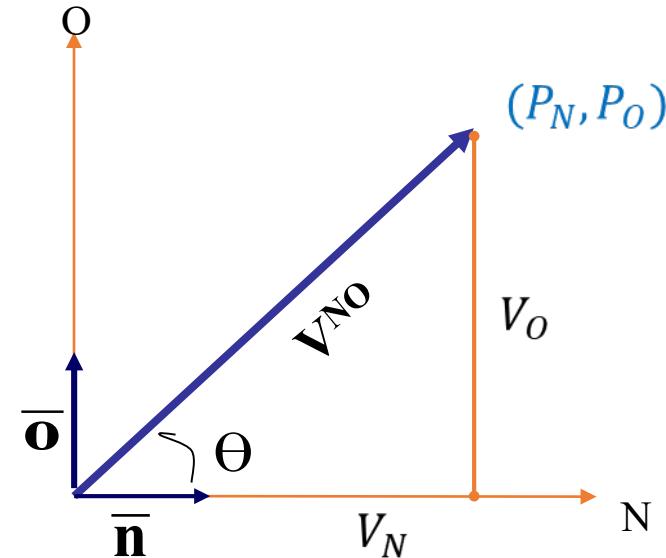
$$\bar{V}^{XY} = \bar{P} + \bar{V}^{NO} = \begin{bmatrix} P_X + V_N \\ P_Y + V_O \end{bmatrix}$$

$$V_X^{XY} = P_X + V_N$$

Using Basis Vectors

Basis vectors are unit vectors that point along a coordinate axis

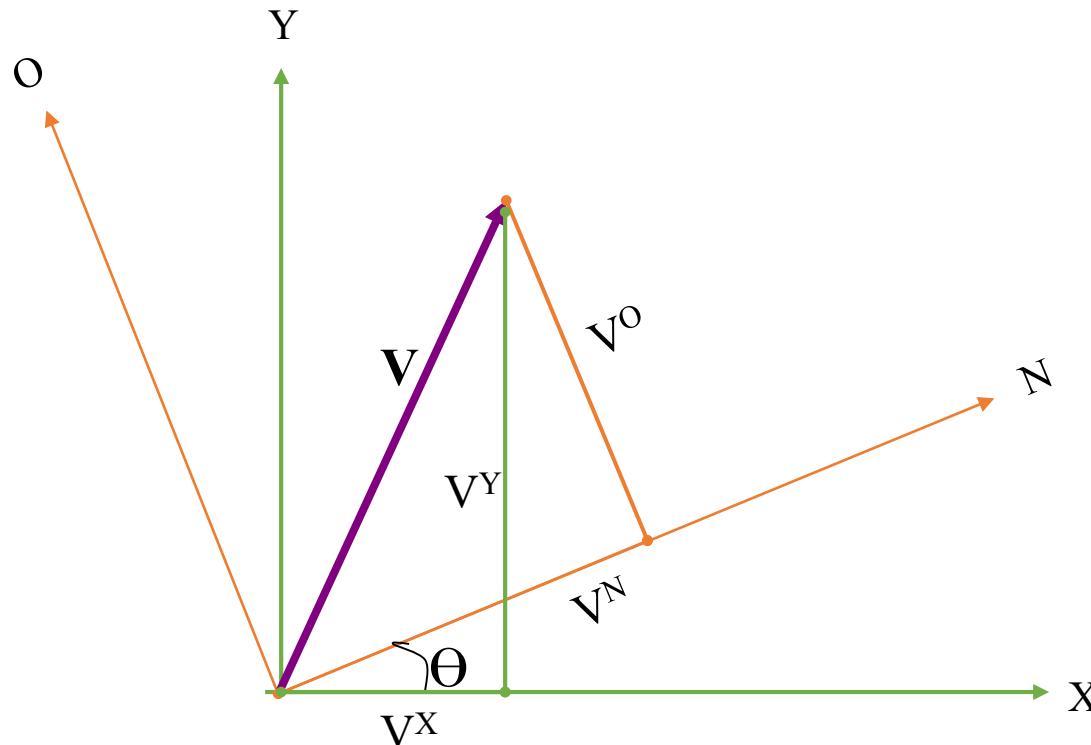
- \bar{n} Unit vector along the N-Axis
- \bar{o} Unit vector along the O-Axis
- $\|V^{NO}\|$ Magnitude of the V^{NO} vector



$$\bar{V}^{NO} = \begin{bmatrix} V^N \\ V^O \end{bmatrix} = \begin{bmatrix} \|V^{NO}\| \cos \theta \\ \|V^{NO}\| \sin \theta \end{bmatrix} = \begin{bmatrix} \|V^{NO}\| \cos \theta \\ \|V^{NO}\| \cos(90 - \theta) \end{bmatrix} = \begin{bmatrix} \bar{V}^{NO} \cdot \bar{n} \\ \bar{V}^{NO} \cdot \bar{o} \end{bmatrix}$$

Basic Transformations

Representing a point in a different frame:
Rotation about z-axis (out of the board)



Θ = Angle of rotation between the XY and NO coordinate axis

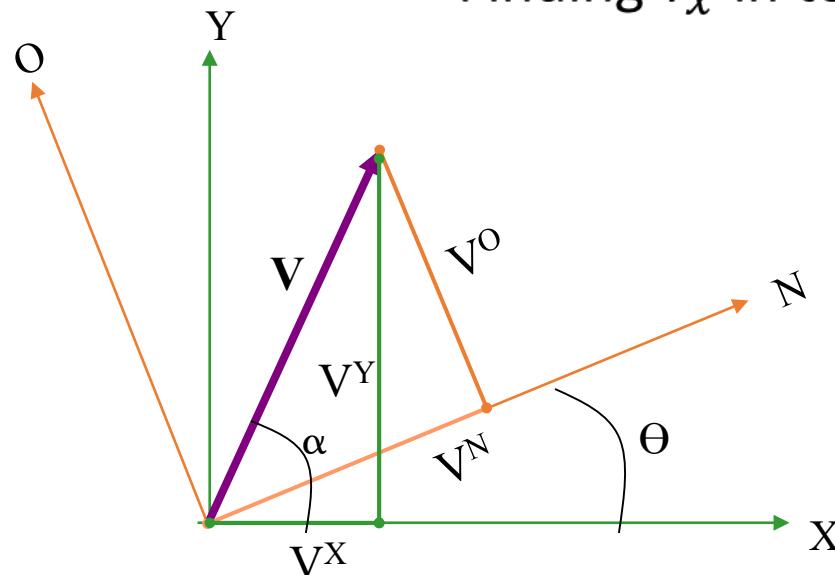
$$\bar{V}^{XY} = \begin{bmatrix} V_X \\ V_y \end{bmatrix}$$

$$\bar{V}^{NO} = \begin{bmatrix} V_N \\ V_O \end{bmatrix}$$

Basic Transformations

Rotation about z-axis (out of the board)

Finding V_x in terms of V_N and V_O



\bar{V} can be considered with respect to the XY coordinates or NO coordinates

$$\|\bar{V}^{XY}\| = \|\bar{V}^{NO}\|$$

$$V_x = \|\bar{V}^{XY}\| \cos(\alpha) = \|\bar{V}^{NO}\| \cos(\alpha) = \bar{V}^{NO} \cdot \hat{X}$$

$$= (V_N \hat{N} + V_O \hat{O}) \cdot \hat{X} \quad (\text{Substituting for } V^{NO} \text{ using the N and O components of the vector})$$

$$= V_N (\hat{N} \cdot \hat{X}) + V_O (\hat{O} \cdot \hat{X})$$

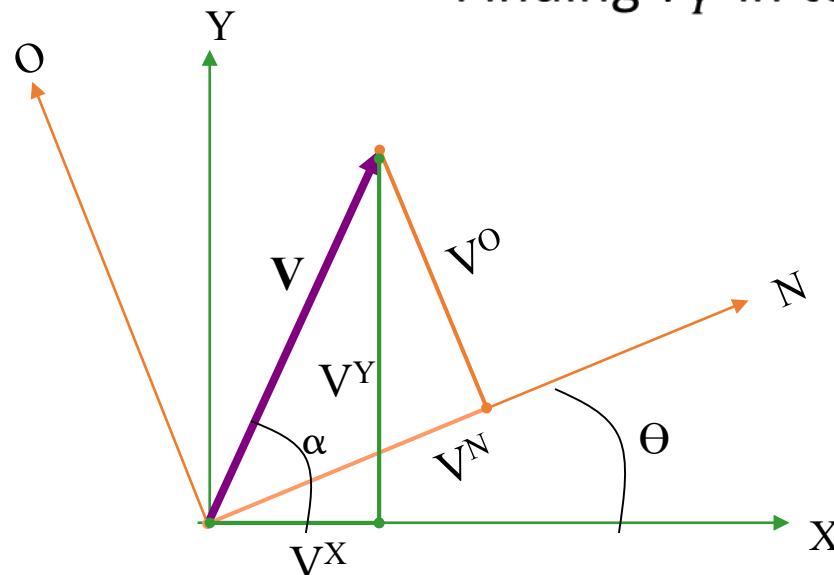
$$= V_N (1 * 1 * \cos(\theta)) + V_O (1 * 1 * \cos(90 + \theta))$$

$$= V_N (\cos(\theta)) - V_O (\sin(\theta))$$

Basic Transformations

Rotation about z-axis (out of the board)

Finding V_Y in terms of V_N and V_O



\bar{V} can be considered with respect to the XY coordinates or NO coordinates

$$\|\bar{V}^{XY}\| = \|\bar{V}^{NO}\|$$

$$V_Y = \|\bar{V}^{XY}\| \sin(\alpha) = \|\bar{V}^{NO}\| \sin(\alpha) = \|\bar{V}^{NO}\| \cos(90 - \alpha) = \bar{V}^{NO} \cdot \hat{Y}$$

$$= (V_N \hat{N} + V_O \hat{O}) \cdot \hat{Y} \quad (\text{Substituting for } V^{NO} \text{ using the N and O components of the vector})$$

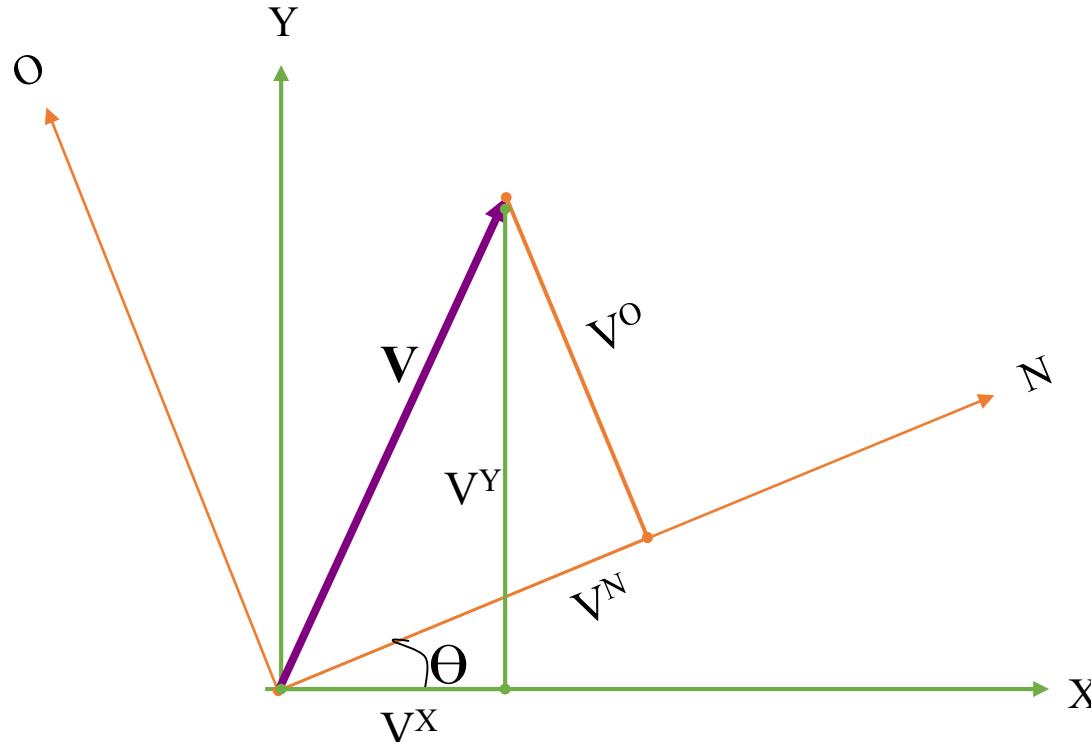
$$= V_N (\hat{N} \cdot \hat{Y}) + V_O (\hat{O} \cdot \hat{Y})$$

$$= V_N (1 * 1 * \cos(90 - \theta)) + V_O (1 * 1 * \cos(\theta))$$

$$= V_N (\sin(\theta)) + V_O (\cos(\theta))$$

Basic Transformations

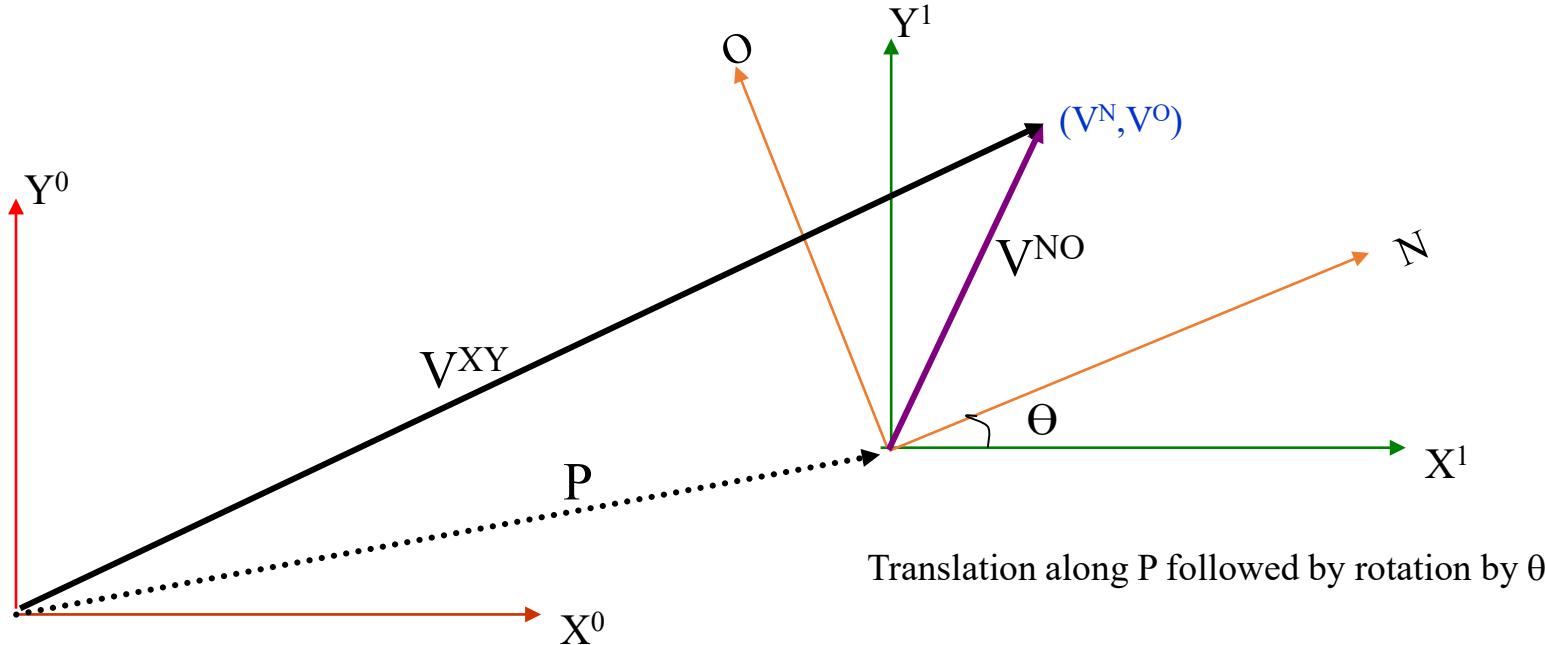
Representing a point in a different frame:
Rotation about z-axis (out of the board)



$$\begin{aligned}\bar{V}^{XY} &= \begin{bmatrix} V_X \\ V_y \end{bmatrix} = \begin{bmatrix} V_N(\cos(\theta)) - V_O(\sin(\theta)) \\ V_N(\sin(\theta)) + V_O(\cos(\theta)) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} V_N \\ V_O \end{bmatrix}\end{aligned}$$

Compound Transformations

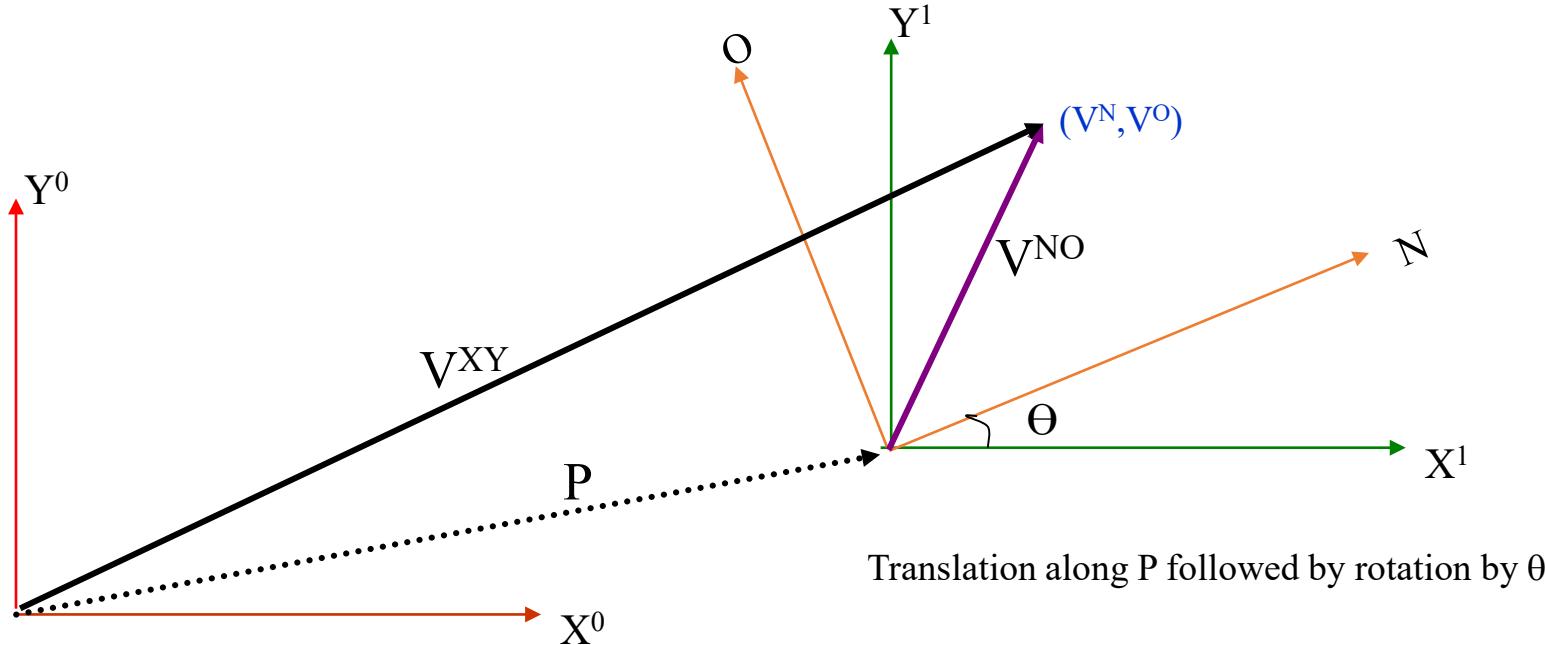
Representing a point in a different frame:
Translation along the x- and y-axes and rotation



$$\mathbf{V}^{XY} = \begin{bmatrix} \mathbf{V}^X \\ \mathbf{V}^Y \end{bmatrix} = \begin{bmatrix} \mathbf{P}_x \\ \mathbf{P}_y \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \end{bmatrix}$$

Compound Transformations

Representing a point in a different frame:
Translation along the x- and y-axes and rotation



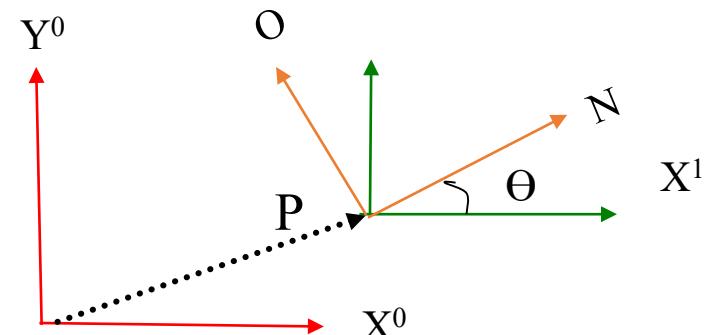
$$\mathbf{V}^{XY} = \begin{bmatrix} \mathbf{V}^X \\ \mathbf{V}^Y \end{bmatrix} = \begin{bmatrix} \mathbf{P}_x \\ \mathbf{P}_y \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \end{bmatrix}$$

(Note : P_x, P_y are relative to the original coordinate frame. Translation followed by rotation is different than rotation followed by translation.)

Relative versus absolute translation

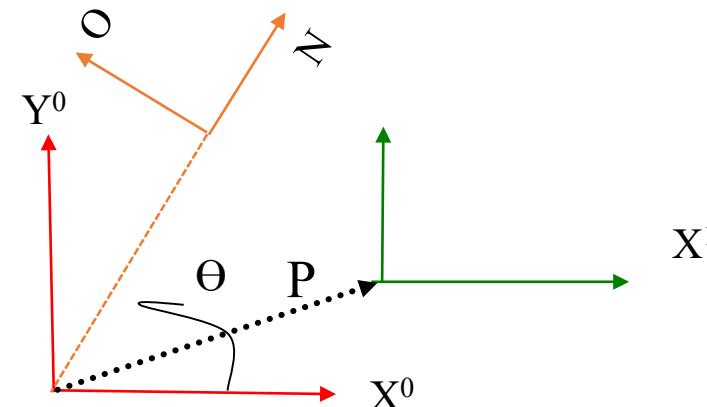
Relative:

- Can be composed to create homogenous transformation matrix.
- Translations are with respect to a frame fixed to the robot or point.



Absolute:

- Translations are with respect to a fixed world frame.



The Homogeneous Matrix can represent both translation and rotation

$$\mathbf{V}^{XY} = \begin{bmatrix} \mathbf{V}^X \\ \mathbf{V}^Y \end{bmatrix} = \begin{bmatrix} \mathbf{P}_x \\ \mathbf{P}_y \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \end{bmatrix}$$

What we found by doing a translation and a rotation

$$= \begin{bmatrix} \mathbf{V}^X \\ \mathbf{V}^Y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{P}_x \\ \mathbf{P}_y \\ 0 \end{bmatrix} + \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \\ 1 \end{bmatrix}$$

Padding with 0's and 1's

$$= \begin{bmatrix} \mathbf{V}^X \\ \mathbf{V}^Y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & \mathbf{P}_x \\ \sin\theta & \cos\theta & \mathbf{P}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \\ 1 \end{bmatrix}$$

Simplifying into a matrix form

$$\mathbf{H} = \begin{bmatrix} \cos\theta & -\sin\theta & \mathbf{P}_x \\ \sin\theta & \cos\theta & \mathbf{P}_y \\ 0 & 0 & 1 \end{bmatrix}$$

Homogenous Matrix for a Translation in XY plane, followed by a Rotation around the z-axis

Rotation Matrices in 3D

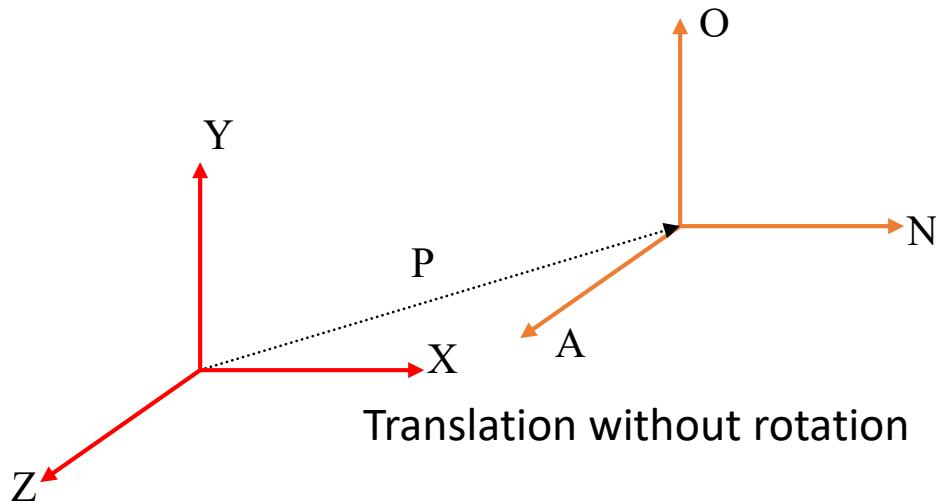
$$\mathbf{R}_z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \xleftarrow{\text{Rotation around the Z-Axis}}$$

$$\mathbf{R}_y = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \xleftarrow{\text{Rotation around the Y-Axis}}$$

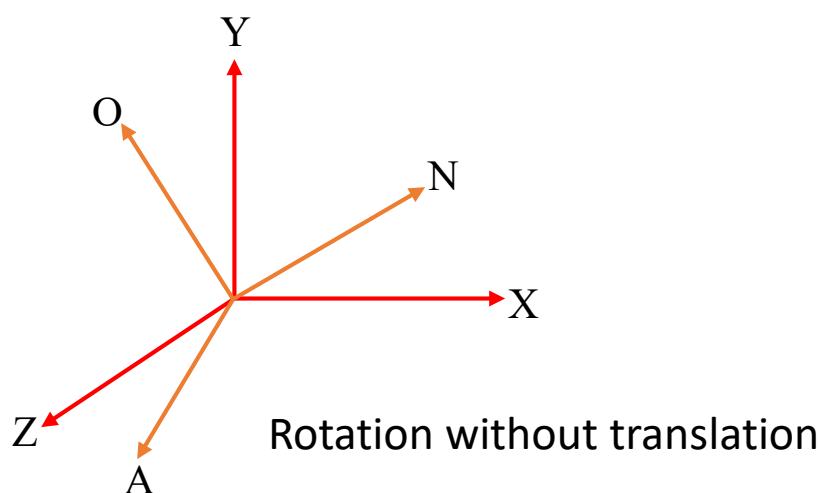
$$\mathbf{R}_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \xleftarrow{\text{Rotation around the X-Axis}}$$

Homogeneous Matrices in 3D

H is a 4×4 matrix that can describe a translation, rotation, or both in one matrix



$$H = \begin{bmatrix} 1 & 0 & 0 & P_x \\ 0 & 1 & 0 & P_y \\ 0 & 0 & 1 & P_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



$$H = \begin{bmatrix} n_x & o_x & a_x & 0 \\ n_y & o_y & a_y & 0 \\ n_z & o_z & a_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Could be rotation around
z-axis, x-axis, y-axis or a
combination of the three.

Homogeneous Continued....

$$\mathbf{V}^{XY} = \mathbf{H} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \\ \mathbf{V}^A \\ 1 \end{bmatrix}$$

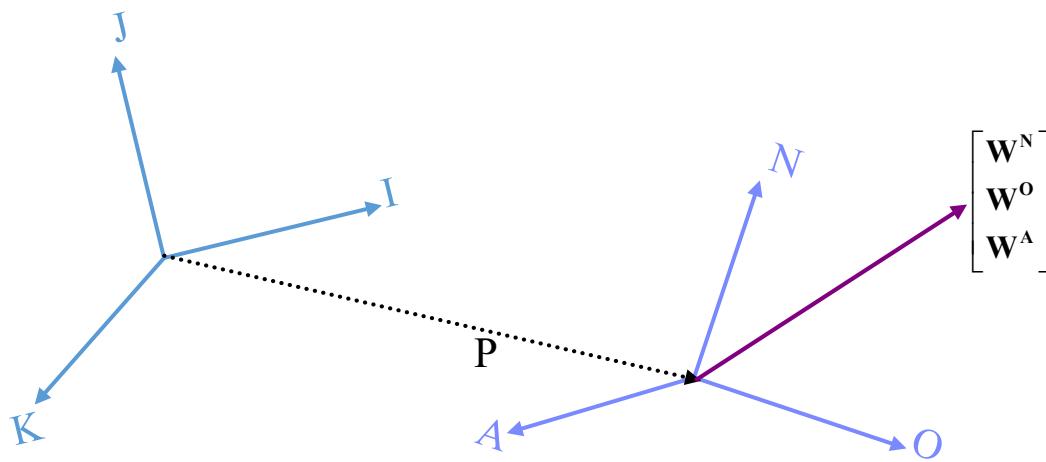
The (n,o,a) position of a point relative to the current coordinate frame you are in.

$$\mathbf{V}^{XY} = \begin{bmatrix} \mathbf{n}_x & \mathbf{o}_x & \mathbf{a}_x & \mathbf{P}_x \\ \mathbf{n}_y & \mathbf{o}_y & \mathbf{a}_y & \mathbf{P}_y \\ \mathbf{n}_z & \mathbf{o}_z & \mathbf{a}_z & \mathbf{P}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{V}^N \\ \mathbf{V}^O \\ \mathbf{V}^A \\ 1 \end{bmatrix}$$

$$\mathbf{V}^X = \mathbf{n}_x \mathbf{V}^N + \mathbf{o}_x \mathbf{V}^O + \mathbf{a}_x \mathbf{V}^A + \mathbf{P}_x$$

The rotation and translation part can be combined into a single homogeneous matrix IF and ONLY IF both are relative to the same coordinate frame.

Finding the Homogeneous Matrix



$$\begin{bmatrix} \mathbf{w}^I \\ \mathbf{w}^J \\ \mathbf{w}^K \end{bmatrix}$$

Point relative to the
I-J-K frame

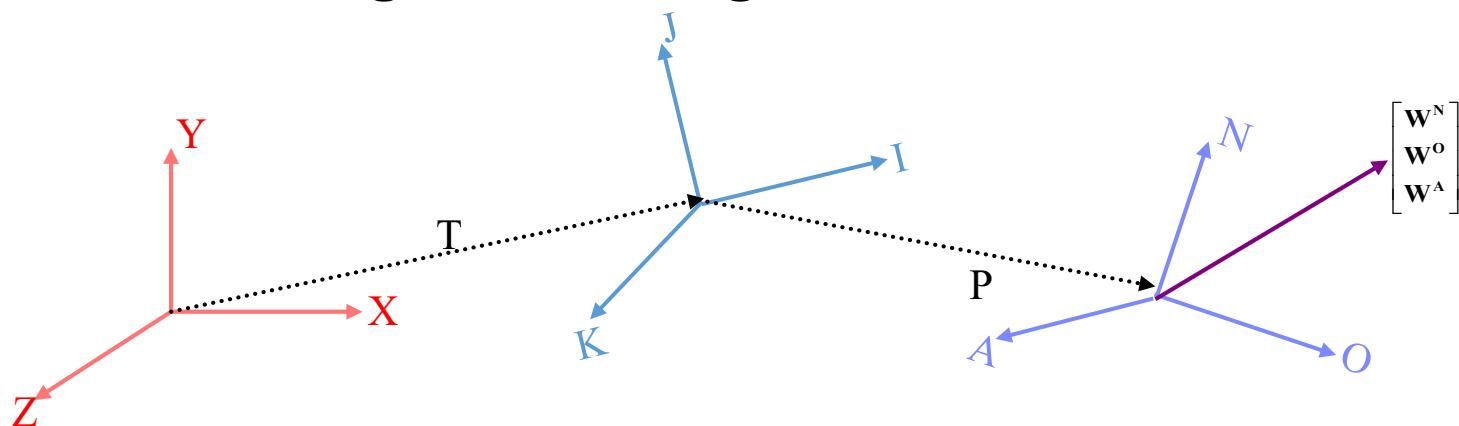
$$\begin{bmatrix} \mathbf{w}^N \\ \mathbf{w}^O \\ \mathbf{w}^A \end{bmatrix}$$

Point relative to the
N-O-A frame

$$\begin{bmatrix} \mathbf{w}^I \\ \mathbf{w}^J \\ \mathbf{w}^K \end{bmatrix} = \begin{bmatrix} \mathbf{p}_i \\ \mathbf{p}_j \\ \mathbf{p}_k \end{bmatrix} + \begin{bmatrix} \mathbf{n}_i & \mathbf{o}_i & \mathbf{a}_i \\ \mathbf{n}_j & \mathbf{o}_j & \mathbf{a}_j \\ \mathbf{n}_k & \mathbf{o}_k & \mathbf{a}_k \end{bmatrix} \begin{bmatrix} \mathbf{w}^N \\ \mathbf{w}^O \\ \mathbf{w}^A \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{w}^I \\ \mathbf{w}^J \\ \mathbf{w}^K \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{n}_i & \mathbf{o}_i & \mathbf{a}_i & \mathbf{p}_i \\ \mathbf{n}_j & \mathbf{o}_j & \mathbf{a}_j & \mathbf{p}_j \\ \mathbf{n}_k & \mathbf{o}_k & \mathbf{a}_k & \mathbf{p}_k \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w}^N \\ \mathbf{w}^O \\ \mathbf{w}^A \\ 1 \end{bmatrix}$$

Finding the Homogeneous Matrix



$$\begin{bmatrix} \mathbf{W}^X \\ \mathbf{W}^Y \\ \mathbf{W}^Z \end{bmatrix} = \begin{bmatrix} \mathbf{T}_x \\ \mathbf{T}_y \\ \mathbf{T}_z \end{bmatrix} + \begin{bmatrix} \mathbf{i}_x & \mathbf{j}_x & \mathbf{k}_x \\ \mathbf{i}_y & \mathbf{j}_y & \mathbf{k}_y \\ \mathbf{i}_z & \mathbf{j}_z & \mathbf{k}_z \end{bmatrix} \begin{bmatrix} \mathbf{W}^I \\ \mathbf{W}^J \\ \mathbf{W}^K \end{bmatrix} \quad \longrightarrow \quad
 \begin{bmatrix} \mathbf{W}^X \\ \mathbf{W}^Y \\ \mathbf{W}^Z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{i}_x & \mathbf{j}_x & \mathbf{k}_x & \mathbf{T}_x \\ \mathbf{i}_y & \mathbf{j}_y & \mathbf{k}_y & \mathbf{T}_y \\ \mathbf{i}_z & \mathbf{j}_z & \mathbf{k}_z & \mathbf{T}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{W}^I \\ \mathbf{W}^J \\ \mathbf{W}^K \\ 1 \end{bmatrix}$$

Substituting for $\begin{bmatrix} \mathbf{W}^I \\ \mathbf{W}^J \\ \mathbf{W}^K \end{bmatrix}$

$$\begin{bmatrix} \mathbf{W}^X \\ \mathbf{W}^Y \\ \mathbf{W}^Z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{i}_x & \mathbf{j}_x & \mathbf{k}_x & \mathbf{T}_x \\ \mathbf{i}_y & \mathbf{j}_y & \mathbf{k}_y & \mathbf{T}_y \\ \mathbf{i}_z & \mathbf{j}_z & \mathbf{k}_z & \mathbf{T}_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{n}_i & \mathbf{o}_i & \mathbf{a}_i & \mathbf{P}_i \\ \mathbf{n}_j & \mathbf{o}_j & \mathbf{a}_j & \mathbf{P}_j \\ \mathbf{n}_k & \mathbf{o}_k & \mathbf{a}_k & \mathbf{P}_k \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{W}^N \\ \mathbf{W}^O \\ \mathbf{W}^A \\ 1 \end{bmatrix}$$

The Homogeneous Matrix is a concatenation of numerous translations and rotations

$$\begin{bmatrix} \mathbf{W}^X \\ \mathbf{W}^Y \\ \mathbf{W}^Z \\ 1 \end{bmatrix} = \mathbf{H} \begin{bmatrix} \mathbf{W}^N \\ \mathbf{W}^O \\ \mathbf{W}^A \\ 1 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{i}_x & \mathbf{j}_x & \mathbf{k}_x & T_x \\ \mathbf{i}_y & \mathbf{j}_y & \mathbf{k}_y & T_y \\ \mathbf{i}_z & \mathbf{j}_z & \mathbf{k}_z & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{n}_i & \mathbf{o}_i & \mathbf{a}_i & P_i \\ \mathbf{n}_j & \mathbf{o}_j & \mathbf{a}_j & P_j \\ \mathbf{n}_k & \mathbf{o}_k & \mathbf{a}_k & P_k \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

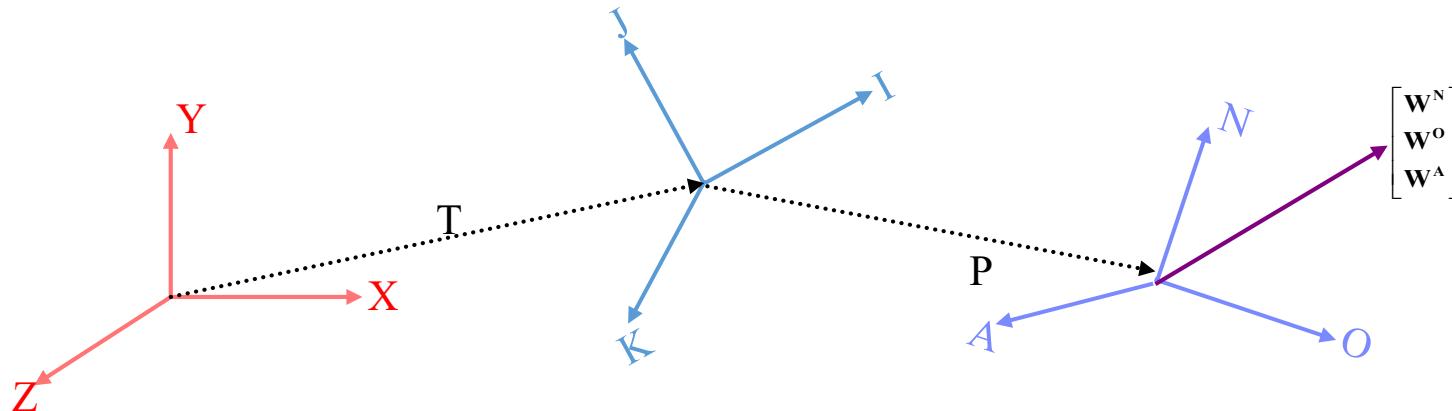
Product of the two matrices

Notice that \mathbf{H} can also be written as:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{i}_x & \mathbf{j}_x & \mathbf{k}_x & 0 \\ \mathbf{i}_y & \mathbf{j}_y & \mathbf{k}_y & 0 \\ \mathbf{i}_z & \mathbf{j}_z & \mathbf{k}_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & P_i \\ 0 & 1 & 0 & P_j \\ 0 & 0 & 1 & P_k \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{n}_i & \mathbf{o}_i & \mathbf{a}_i & 0 \\ \mathbf{n}_j & \mathbf{o}_j & \mathbf{a}_j & 0 \\ \mathbf{n}_k & \mathbf{o}_k & \mathbf{a}_k & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{H} = (\text{Translation relative to the XYZ frame}) * (\text{Rotation relative to the XYZ frame}) * (\text{Translation relative to the IJK frame}) * (\text{Rotation relative to the IJK frame})$$

One more variation on finding the homogeneous transformation matrix



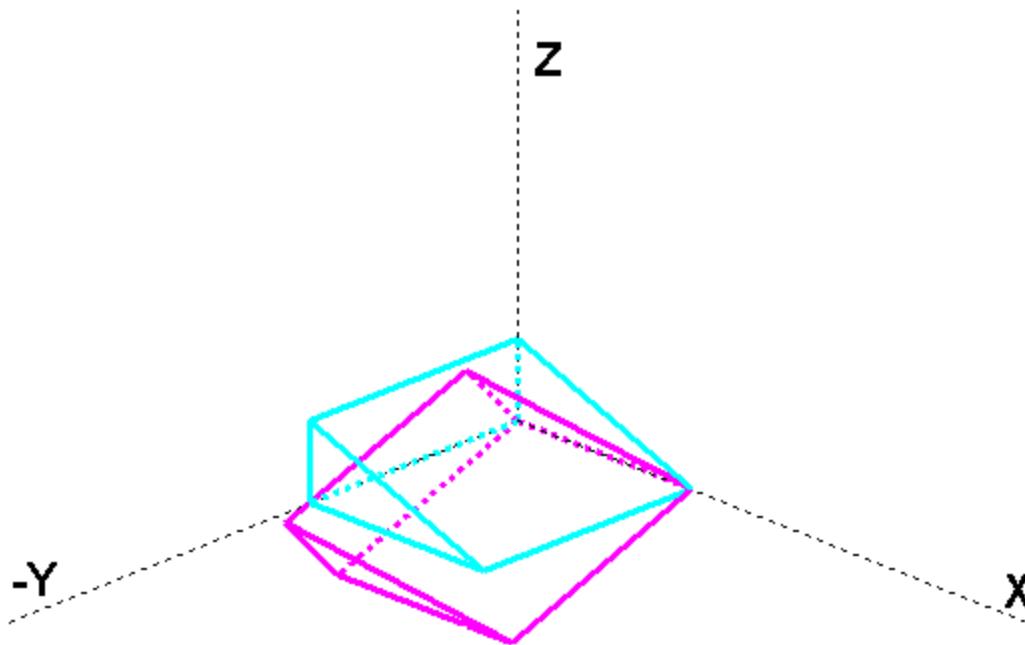
$H =$ (Rotate so that the X-axis is aligned with T)

- * (Translate along the new t-axis by $\| T \|$ (magnitude of T))
- * (Rotate so that the t-axis is aligned with P)
- * (Translate along the p-axis by $\| P \|$ (magnitude of P))
- * (Rotate so that the p-axis is aligned with the O-axis)

Three-Dimensional Illustration

- Rotate X
- Translate X
- Rotate Z
- Translate Z

Rotation about X



Rotation about X - axis by θ =

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

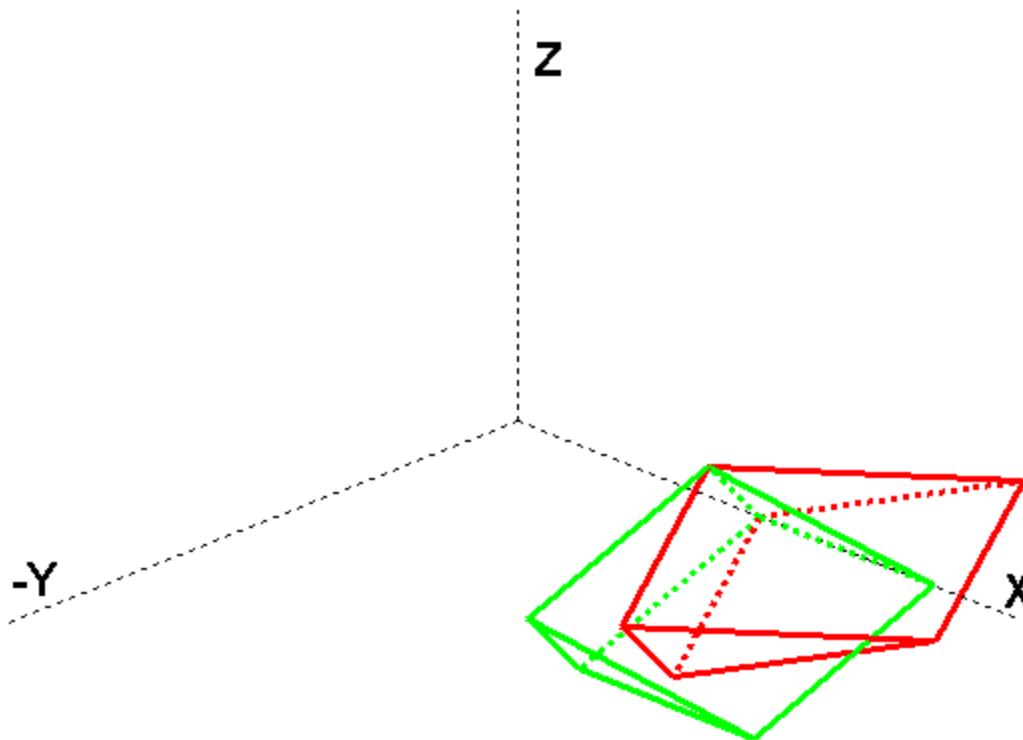
Translation about X



Translation along X - axis =

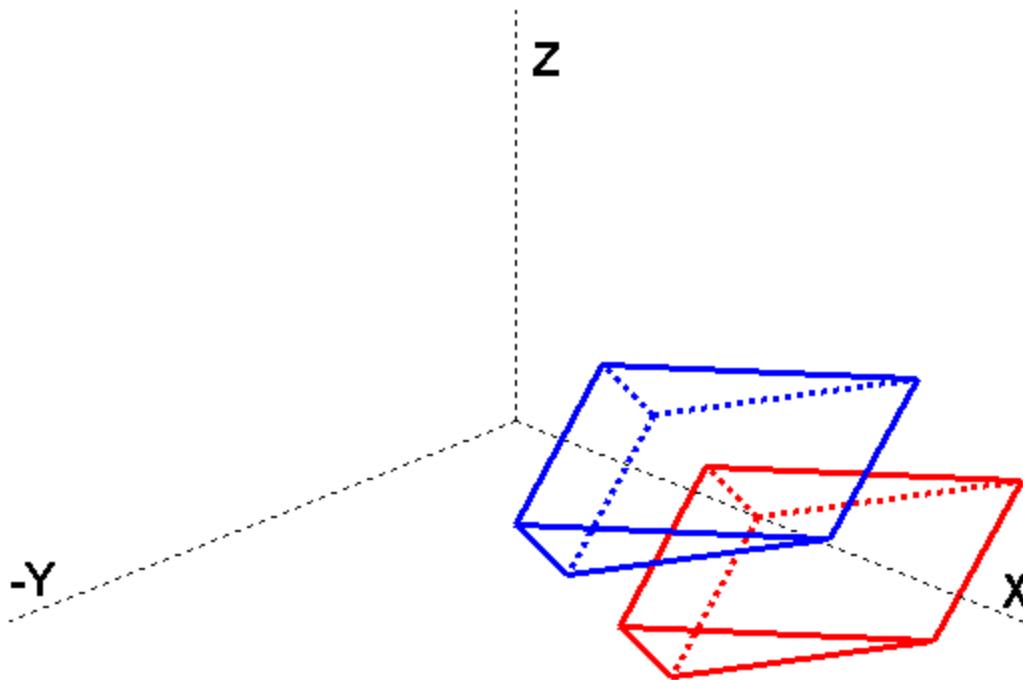
$$\begin{pmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation about Z



$$\text{Rotation about local Z - axis} = \begin{pmatrix} \cos[\theta] & -\sin[\theta] & 0 & 0 \\ \sin[\theta] & \cos[\theta] & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Translation in Z



Translation along local Z - axis =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & p^z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example Problem 1



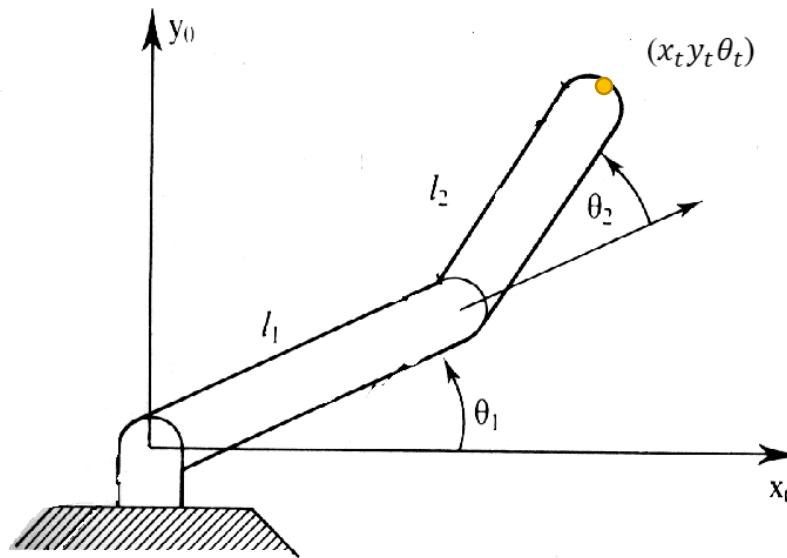
Question:

- What is the position and orientation of the end effector of the robotic arm?

Set up:

- You have an RR robotic arm with base at the origin.
- The first link moves θ_1 with respect to the x-axis. The second link moves θ_2 with respect to the first link.

Geometric Approach

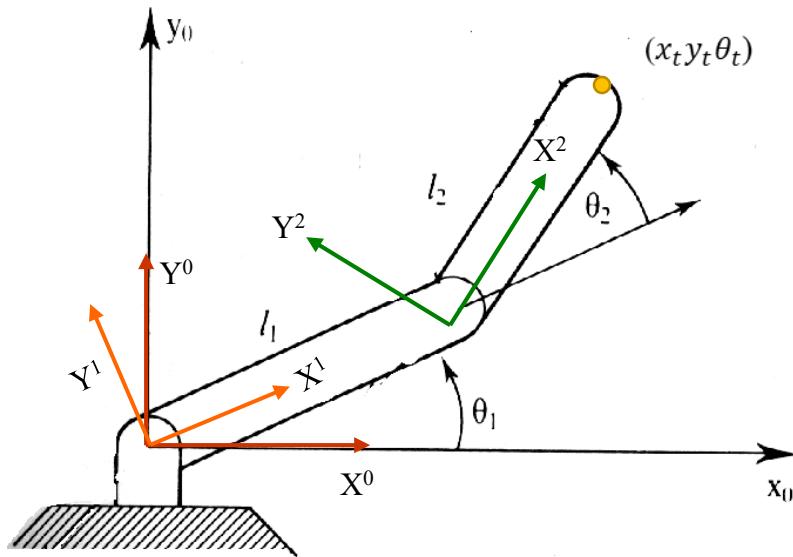


$$\theta_t = \theta_1 + \theta_2$$

$$x_t = l1 * \cos(\theta_1) + l2 * \cos(\theta_1 + \theta_2)$$

$$y_t = l1 * \sin(\theta_1) + l2 * \sin(\theta_1 + \theta_2)$$

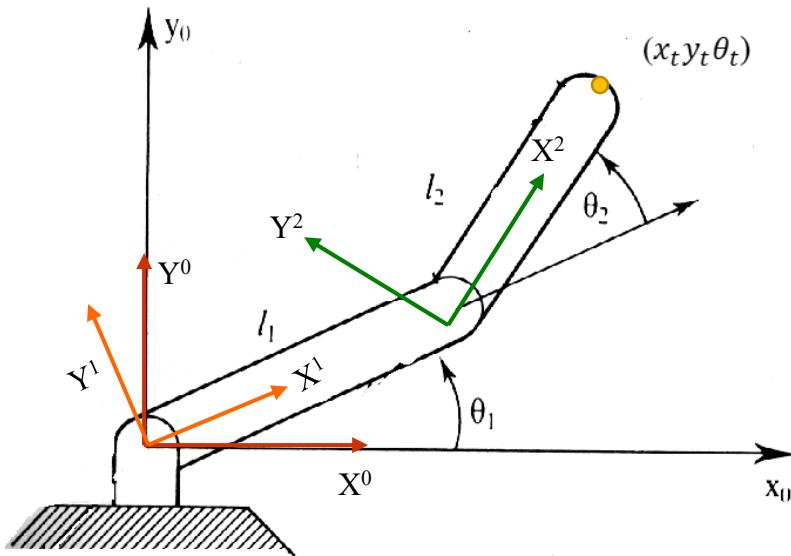
Algebraic Approach



- In the X^0Y^0 frame, the X^1Y^1 frame is at orientation $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$.

$$\bar{V}^{X^0Y^0} = \begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix} \bar{V}^{X^1Y^1}$$

Algebraic Approach

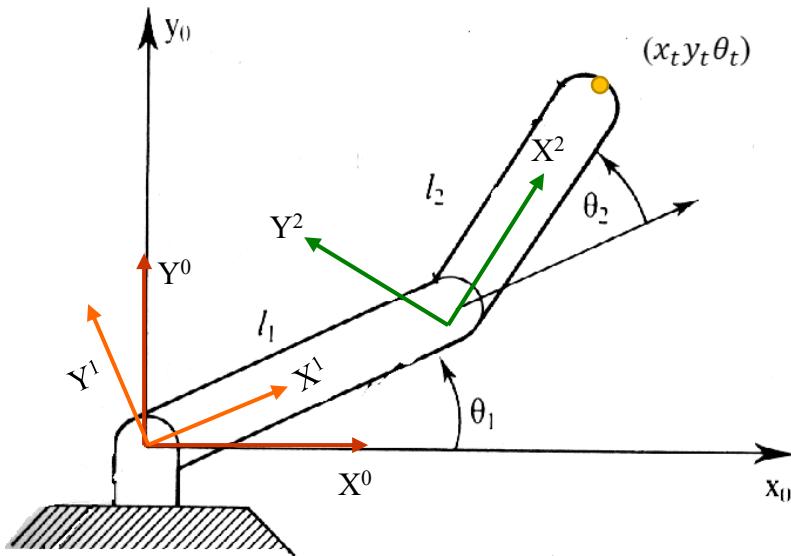


- In the $X0Y0$ frame, the $X1X1$ frame is at orientation $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$.

- In the $X1Y1$ frame, the $X2X2$ frame is at position $\begin{bmatrix} l_1 \\ 0 \end{bmatrix}$ and orientation $\begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix}$.

$$\bar{V}^{X0Y0} = \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \left(\begin{bmatrix} l_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \bar{V}^{X2Y2} \right)$$

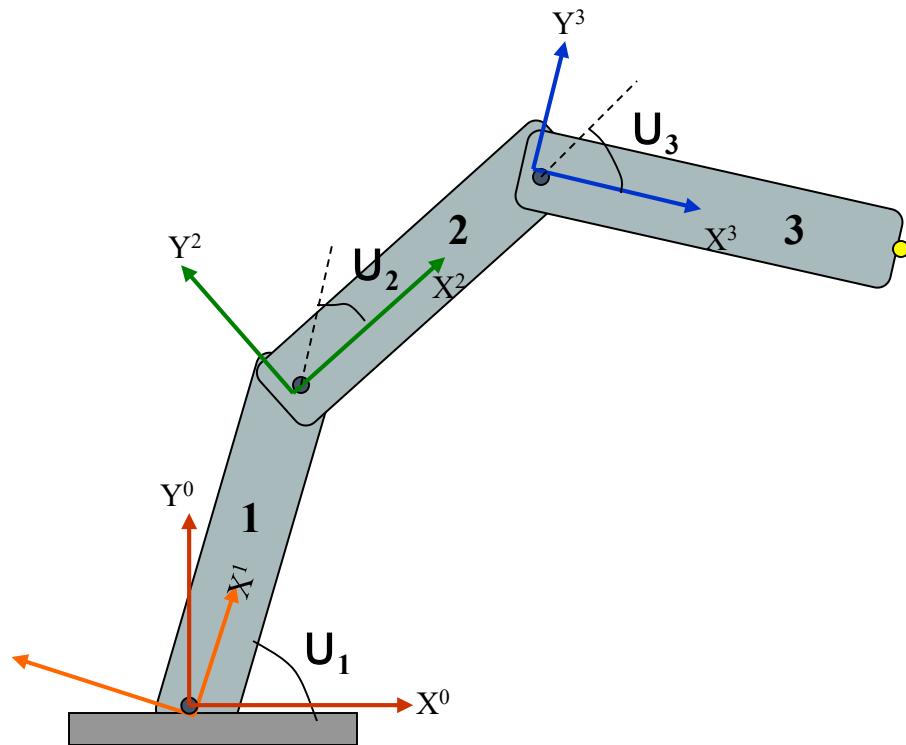
Algebraic Approach



- In the **X0Y0** frame, the **X1X1** frame is at orientation $\begin{bmatrix} \cos(\theta_1) & -\sin(\theta_1) \\ \sin(\theta_1) & \cos(\theta_1) \end{bmatrix}$.
- In the **X1Y1** frame, the **X2X2** frame is at position $\begin{bmatrix} l_1 \\ 0 \end{bmatrix}$ and orientation $\begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix}$.
- In the **X2Y2** frame, the **end effector** is at position $\begin{bmatrix} l_2 \\ 0 \end{bmatrix}$.

$$\bar{V}^{X0Y0} = \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \left(\begin{bmatrix} l_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \cos(\theta_2) & -\sin(\theta_2) \\ \sin(\theta_2) & \cos(\theta_2) \end{bmatrix} \left(\begin{bmatrix} l_2 \\ 0 \end{bmatrix} + \begin{bmatrix} x_t \\ y_t \end{bmatrix} \right) \right)$$

Example Problem 2



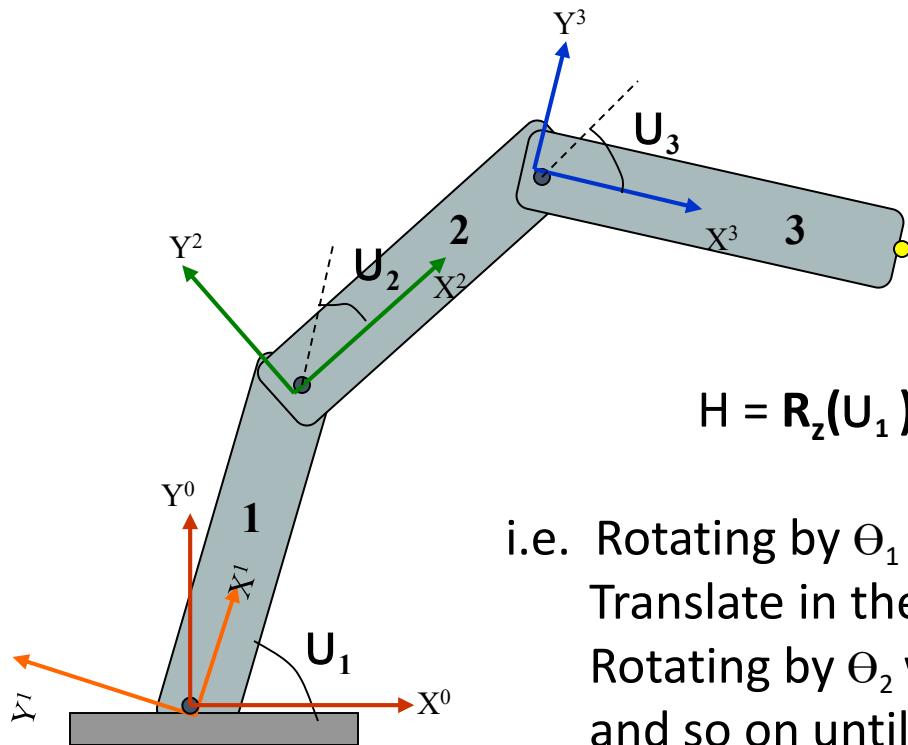
Set up:

- You are have a three-link arm with base at the origin.
- Each link has lengths l_1, l_2, l_3 , respectively. Each joint has angles $\theta_1, \theta_2, \theta_3$, respectively.

Question:

- What is the Homogeneous matrix to get the position of the yellow dot in the X^0Y^0 frame.

Algebraic Approach



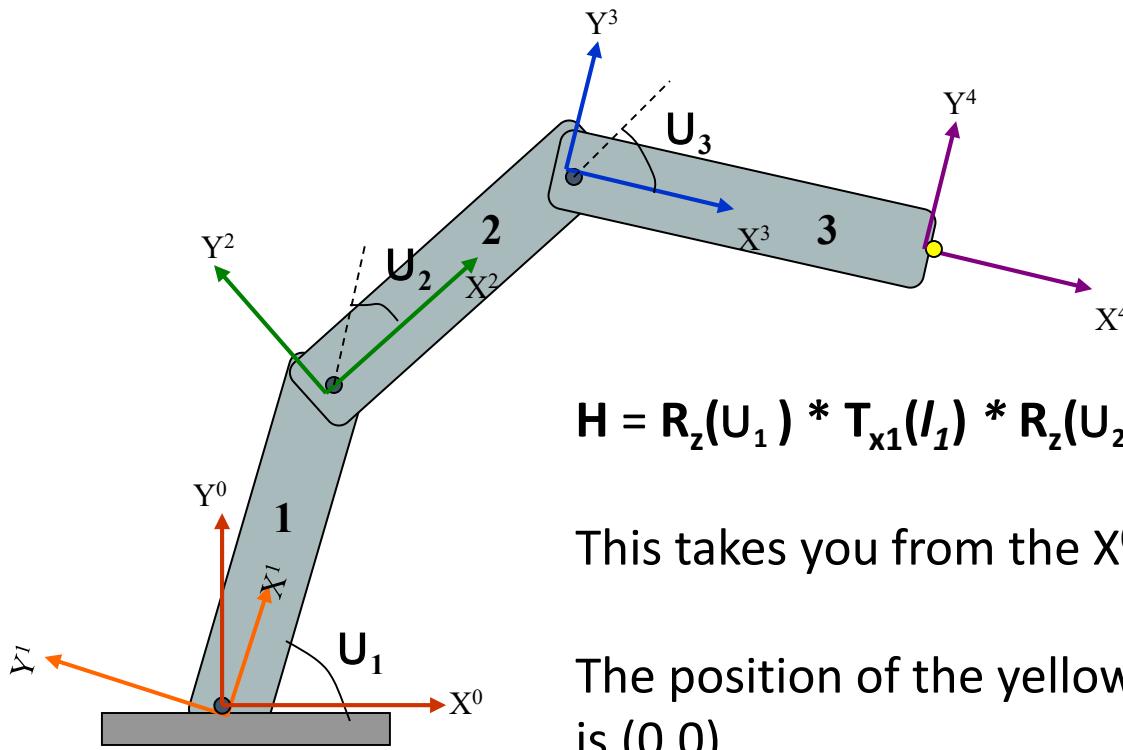
$$H = R_z(U_1) * T_{x1}(l_1) * R_z(U_2) * T_{x2}(l_2) * R_z(U_3)$$

i.e. Rotating by Θ_1 will put you in the X^1Y^1 frame.
 Translate in the along the X^1 axis by l_1 .
 Rotating by Θ_2 will put you in the X^2Y^2 frame.
 and so on until you are in the X^3Y^3 frame.

The position of the yellow dot relative to the X^3Y^3 frame is $(l_1, 0)$. Multiplying H by that position vector will give you the coordinates of the yellow point relative to the X^0Y^0 frame.

Slight variation on the last solution:

Make the yellow dot the origin of a new coordinate X^4Y^4 frame



$$H = R_z(U_1) * T_{x1}(l_1) * R_z(U_2) * T_{x2}(l_2) * R_z(U_3) * T_{x3}(l_3)$$

This takes you from the X^0Y^0 frame to the X^4Y^4 frame.

The position of the yellow dot relative to the X^4Y^4 frame is (0,0).

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ \mathbf{1} \end{bmatrix} = H \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

Notice that multiplying by the (0,0,0,1) vector will equal the last column of the H matrix.

Next Class: Inverse Kinematics

Forward Kinematics (angles to position)

What you are given:
The length of each link
The angle of each joint

What you can find:
The position of any point
(i.e. it's (x, y, z) coordinates)

Inverse Kinematics (position to angles)

What you are given:
The length of each link
The position of some point on the robot

What you can find:
The angles of each joint needed to
obtain that position