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Robot kinematics refers to the geometry 
and movement of robotic mechanisms

Prof Michael Kaess 16-665: Robot Mobility In Air, Land, and Sea. Underwater Robotics Lecture 2 Slide 31. Used with permission.

Presenter
Presentation Notes
What is something you notice about these robots?
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A select history of robotics

https://en.wikipedia.org/wiki/Shakey_the_robot#/media/File:SRI_Shakey_with_callouts.jpg, http://roamerrobot.tumblr.com/post/23079345849/the-history-of-
turtle-robots,  https://www.robotics.org/joseph-engelberger/unimate.cfm, https://en.wikipedia.org/wiki/BigDog, https://www.techexplorist.com/wp-

content/uploads/2016/03/Baxter_Robot-696x470.jpg

Wabot 2, 
1980

Elmer, 
1948

Unimate, 
1959

Baxter, 
2011

Asimo, 
2000

Kuka KR AGILUS, 
2014Big Dog, 

2005

Shakey, 
1966

CyberKnife, 
1991

Presenter
Presentation Notes
What is something you notice about these robots? Increased complexity, increased unknown environments.

https://en.wikipedia.org/wiki/Shakey_the_robot#/media/File:SRI_Shakey_with_callouts.jpg
http://roamerrobot.tumblr.com/post/23079345849/the-history-of-turtle-robots
https://www.robotics.org/joseph-engelberger/unimate.cfm
https://en.wikipedia.org/wiki/BigDog
https://www.techexplorist.com/wp-content/uploads/2016/03/Baxter_Robot-696x470.jpg
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Goals

- Use robotics kinematics terms to explain real world situations.

- Express a point in one coordinate frame in a different 

coordinate frame.

- Represent complex translations and rotations using a 

homogenous transformation matrix.

- Determine the position and orientation of an end effector given 

link and joint information.
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What does degrees of 
freedom mean?
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Degrees of Freedom (DOF): 
the number of independent 

parameters that can fully 
define the configuration
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How many degrees of freedom does 
this have?

https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace

https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace
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1 DOF

https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace

https://www.chamonix.net/english/leisure/sightseeing/mer-de-glace
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How many degrees of freedom does 
this have?

http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html

http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html
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2 DOF

http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html

Presenter
Presentation Notes
How many degrees of freedom do you need to position something on a plane?
Does this mean you can position something everywhere in the plane?
How many degrees of freedom do you need to position and orient something in the plane?


http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html
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How many degrees of freedom does 
this have?

https://pureadvantage.org/news/2016/11/15/underwater-robots/

https://pureadvantage.org/news/2016/11/15/underwater-robots/
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6 DOF

https://pureadvantage.org/news/2016/11/15/underwater-robots/

https://pureadvantage.org/news/2016/11/15/underwater-robots/
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How many degrees of freedom does 
this have?

https://www.shopecobambino.com/maple-landmark-starter-train-set.html

https://www.shopecobambino.com/maple-landmark-starter-train-set.html


Carnegie Mellon

1 DOF

https://www.shopecobambino.com/maple-landmark-starter-train-set.html

Presenter
Presentation Notes
Different from state. State could be x, y, theta, xdot, ydot, thetadot

https://www.shopecobambino.com/maple-landmark-starter-train-set.html
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How many degrees of freedom does 
this have?

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png

Presenter
Presentation Notes
How many degrees of freedom do you need to position and orient something in space?
How many degrees of freedom does a typical human arm have, from the shoulder to just past the wrist? Assume that the (x,y,z) position of the center of the shoulder joint is stationary (e.g., the shoulder can't "hunch" upward), and don't count any degrees of freedom in the hand (pretend the hand is just a rigid body). We want to know the number of degrees of freedom if the movable joints are at the shoulder, the elbow, and the wrist.
http://hades.mech.northwestern.edu/index.php/DOF_of_the_Human_Arm

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png
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7 DOF

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png

Presenter
Presentation Notes
3 for the shoulder, one for the elbow, 3 for the wrist

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png
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Definitions

Reference Frame: Static 
coordinate system from which 
translations and rotations are 
based

Link: Single rigid body

Joint: Connection between links

Constraints: Limitations on 
movement

http://www.value-design-consulting.co.uk/co-ordinate-systems.html
http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html

Presenter
Presentation Notes
Possible exam question: cylidrical

http://www.value-design-consulting.co.uk/co-ordinate-systems.html
http://www.andrew.cmu.edu/user/kbrennan/TeamZ-Lab9.html
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Grübler’s Formula to find degrees of 
freedom

Basic Idea:

DOF of mechanism = Link DOFs – Joint Constraints  
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Grübler’s Formula to find degrees of 
freedom

𝑀𝑀 = 6𝑛𝑛 −�
𝑖𝑖=1

𝑗𝑗

(6 − 𝑓𝑓𝑖𝑖)

M is the degrees of freedom

n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the ith joint
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Grübler’s Formula – Simple Open Chain

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png

𝑀𝑀 = �
𝑖𝑖=1

𝑗𝑗

𝑓𝑓𝑖𝑖

M is the degrees of freedom

n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the ith joint

http://hades.mech.northwestern.edu/index.php/File:Human-arm.png
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Grübler’s Formula – Simple Closed Chain

http://ocw.upm.es/ingenieria-mecanica/mechanical-devices-for-
industry/contenidos/lectura-obligatoria/lesson-1/four-bar-linkages

𝑀𝑀 = �
𝑖𝑖=1

𝑗𝑗

𝑓𝑓𝑖𝑖 − 𝑑𝑑

M is the degrees of freedom

n is the number of moving links

j is the number of joints

f_i is the degrees of freedom of the ith joint

d is the dimension, 3 for planar, 6 for spatial

http://ocw.upm.es/ingenieria-mecanica/mechanical-devices-for-industry/contenidos/lectura-obligatoria/lesson-1/four-bar-linkages
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Types of Joints – Lower Pairs

Spherical Joint
3 DOF ( Variables - 1, 2, 3)

Revolute Joint
1 DOF ( Variable - )

Prismatic Joint
1 DOF (linear) (Variables - d) 

Presenter
Presentation Notes
Planar contact
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Types of Joints – Higher Pairs

Gears
1 DOF ( Variable - )

Cam and Follower
1 DOF (linear) (Variables - d) 

https://nptel.ac.in/courses/112103174/module4/lec3/1.html

Presenter
Presentation Notes
Line or point contact

https://nptel.ac.in/courses/112103174/module4/lec3/1.html
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Grübler’s Formula to find degrees of 
freedom
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We are interested in two kinematics topics

Forward Kinematics 
(angles to position)

What you are given:  
The length of each link
The angle of each joint

What you can find: 
The position of any point

(i.e. it’s  (x, y, z) coordinates)

Inverse Kinematics 
(position to angles)

What you are given:
The length of each link

The position of some point on the robot

What you can find:
The angles of each joint needed to 

obtain that position
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Forward Kinematics 
(angles to position)

l2
l1

Given l1, l2, t1, t2 Find x, y, tf

l2
l1

t1

x,y 
tf
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Inverse Kinematics 
(angles to position)

l1 t1

t2

l2l2
l1

x,y 
tf

Given l1, l2, x, y, tf Find t1, t2
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Quick Math Review

Vector:
A geometric object with magnitude and direction
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Quick Math Review

Vector:
A geometric object with magnitude and direction

Examples of vector quantities:
Velocity, displacement, acceleration, force
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Quick Math Review

Vector Magnitude:
Just the vector quantity without direction

Examples:
Magnitude of velocity is speed, magnitude of 
displacement is distance, etc.
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Quick Math Review

Unit Vector:
Vector with magnitude of 1

Used to indicate direction
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Quick Math Review

Vector:
A geometric object with magnitude and direction

Can be written in matrix form as a column vector

y

x
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Quick Math Review

Vector Addition

- Sum each component of the vector

Yields a new vector
Commutative

y

x
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Quick Math Review

Yields a scalar
Commutative

y

x
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Quick Math Review

Yields a vector perpendicular to both original vectors 
Not commutative

https://en.wikipedia.org/wiki/Cross_product

https://en.wikipedia.org/wiki/Cross_product
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Quick Math Review

Matrix Addition

- Sum matching elements

( ) ( )
( ) ( )






++
++

=







+








hdgc
fbea

hg
fe

dc
ba

Matrices must be of same size
Yields a new matrix of the same size
Commutative
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Quick Math Review

Matrix Multiplication

- Multiply rows and columns and sum products

Matrices must have the same inner dimension
Yields a new matrix of the same size
Not commutative

( ) ( )
( ) ( )






++
++

=







∗







dhcfdgce
bhafbgae

hg
fe

dc
ba
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We can use vectors to succinctly represent a point with 
respect to a certain reference frame

X

Y
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We will use superscripts to indicate our reference frame

N

O

L

M
X

Y

Presenter
Presentation Notes
Same vector in different frames
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Basic Transformations
Representing a point in a different frame:

Translation along the x-axis

N

O

X

Y
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Basic Transformations
Representing a point in a different frame:

Translation along the x-axis

N

O

X

Y
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Basic Transformations
Representing a point in a different frame:

Translation along the x-axis

Px = distance between the XY and NO coordinate planes

Notation:

N

O

X

Y

Px
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Writing         in terms of 
XYV NOV

N

O

X

Y

Px



Carnegie Mellon

Writing         in terms of 
XYV NOV

N

O

X

Y

PX
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X

N

O

Y

Basic Transformations
Representing a point in a different frame:

Translation along the x- and y-axes
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X

N

O

Y

Basic Transformations
Representing a point in a different frame:

Translation along the x- and y-axes
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








•
•

=












−
=












=








=

oV
nV

θ)cos(90V
cosθV

sinθV
cosθV

V
V

V NO

NO

NO

NO

NO

NO

O

N
NO

NOV

o
n Unit vector along the N-Axis 

Unit vector along the N-Axis 

Magnitude of the VNO vector 

Using Basis Vectors
Basis vectors are unit vectors that point along a coordinate axis

N

O

n

o 
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X

Y



V

VX

VY

 = Angle of rotation between the XY and NO coordinate axis

Basic Transformations
Representing a point in a different frame:
Rotation about z-axis (out of the board)
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X

Y



V

VX

VY



(Substituting for VNO using the N and O components of the vector)
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X

Y



V

VX

VY



(Substituting for VNO using the N and O components of the vector)
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X

Y



V

VX

VY

Basic Transformations
Representing a point in a different frame:
Rotation about z-axis (out of the board)
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X1

Y1


VXY

X0

Y0

VNO

P
















 −
+








=








= O

N

y

x
Y

X
XY

V
V

cosθsinθ
sinθcosθ

P
P

V
V

V

(VN,VO)

Translation along P followed by rotation by θ

Compound Transformations
Representing a point in a different frame:

Translation along the x- and y-axes and rotation
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X1

Y1


VXY

X0

Y0

VNO

P
















 −
+








=








= O

N

y

x
Y

X
XY

V
V

cosθsinθ
sinθcosθ

P
P

V
V

V

(VN,VO)

(Note :  Px, Py are relative to the original coordinate frame. Translation followed by 
rotation is different than rotation followed by translation.) 

Translation along P followed by rotation by θ

Compound Transformations
Representing a point in a different frame:

Translation along the x- and y-axes and rotation
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Relative versus absolute translation

Relative:
- Can be composed to create 

homogenous transformation 
matrix.

- Translations are with respect to 
a frame fixed to the robot or 
point.

Absolute:
- Translations are with respect to a 
fixed world frame.

X1


X0

Y0

P

X1


X0

Y0

P
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














 −
+








=








= O

N

y

x
Y

X
XY

V
V

cosθsinθ
sinθcosθ

P
P

V
V

V

The Homogeneous Matrix can represent both 
translation and rotation































 −
+
















=

















=
1

V
V

100
0cosθsinθ
0sinθcosθ

P
P

1
V
V

O

N

y

x
Y

X

0































 −
=

















=
1

V
V

100
Pcosθsinθ
Psinθcosθ

1
V
V

O

N

y

x
Y

X

What we found by doing a 
translation and a rotation

Padding with 0’s and 1’s

Simplifying into a matrix form















 −
=

100
Pcosθsinθ
Psinθcosθ

H y

x Homogenous Matrix for a Translation in XY 
plane, followed by a  Rotation around the 

z-axis
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Rotation Matrices in 3D















 −
=

100
0cosθsinθ
0sinθcosθ

Rz

















−
=

cosθ0sinθ
010

sinθ0cosθ
Ry
















−=
cosθsinθ0
sinθcosθ0
001

R x

Rotation around the Z-Axis

Rotation around the Y-Axis

Rotation around the X-Axis
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

















=

1000
0aon
0aon
0aon

H
zzz

yyy

xxx

Homogeneous Matrices in 3D
H is a 4x4 matrix that can describe a translation, rotation, or both in one matrix

Translation without rotation


















=

1000
P100
P010
P001

H
z

y

x

P

Y

X

Z

Y

X

Z

O

N

A

O
N

A
Rotation without translation

Could be rotation around 
z-axis, x-axis, y-axis or a 

combination of the three.
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



















=

1

A

O

N

XY

V
V
V

HV







































=

1

A

O

N

zzzz

yyyy

xxxx

XY

V
V
V

1000
Paon
Paon
Paon

V

Homogeneous Continued….

The (n,o,a) position of a point relative to the 
current coordinate frame you are in.

The rotation and translation part can be combined into a single homogeneous 
matrix IF and ONLY IF both are relative to the same coordinate frame.

x
A

x
O

x
N

x
X PVaVoVnV +++=
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Finding the Homogeneous Matrix

P

















A

O

N

W
W
W

















A

O

N

W
W
W

















K

J

I

W
W
W

Point relative to the
N-O-A frame

Point relative to the
I-J-K frame
































+
















=

















A

O

N

kkk

jjj

iii

k

j

i

K

J

I

W
W
W

aon
aon
aon

P
P
P

W
W
W







































=





















1
W
W
W

1000
Paon
Paon
Paon

1
W
W
W

A

O

N

kkkk

jjjj

iiii

K

J

I
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Y

X

Z

T
P

















A

O

N

W
W
W
































+
















=

















k

J

I

zzz

yyy

xxx

z

y

x

Z

Y

X

W
W
W

kji
kji
kji

T
T
T

W
W
W







































=





















1
W
W
W

1000
Tkji
Tkji
Tkji

1
W
W
W

K

J

I

zzzz

yyyy

xxxx

Z

Y

X

Substituting for
















K

J

I

W
W
W

























































=





















1
W
W
W

1000
Paon
Paon
Paon

1000
Tkji
Tkji
Tkji

1
W
W
W

A

O

N

kkkk

jjjj

iiii

zzzz

yyyy

xxxx

Z

Y

X

Finding the Homogeneous Matrix
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



















=





















1
W
W
W

H

1
W
W
W

A

O

N

Z

Y

X





































=

1000
Paon
Paon
Paon

1000
Tkji
Tkji
Tkji

H
kkkk

jjjj

iiii

zzzz

yyyy

xxxx

Product of the two 
matrices

Notice that H can also be written as:









































































=

1000
0aon
0aon
0aon

1000
P100
P010
P001

1000
0kji
0kji
0kji

1000
T100
T010
T001

H
kkk

jjj

iii

k

j

i

zzz

yyy

xxx

z

y

x

H =  (Translation relative to the XYZ frame) * (Rotation relative to the XYZ frame)  
* (Translation relative to the IJK frame) * (Rotation relative to the IJK frame)

The Homogeneous Matrix is a concatenation of 
numerous translations and rotations
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One more variation on finding the homogeneous 
transformation matrix

Y

X

Z

T
P

















A

O

N

W
W
W

H = (Rotate so that the X-axis is aligned with T)

* ( Translate along the new t-axis by || T || (magnitude of T))

* ( Rotate so that the  t-axis is aligned with P)

* ( Translate along the p-axis by || P || (magnitude of P))

* ( Rotate so that the p-axis is aligned with the O-axis)  

Presenter
Presentation Notes
This method might seem a bit confusing, but it’s actually an easier way to solve our problem given the information we have. Here is an example… 
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Three-Dimensional Illustration

• Rotate X
• Translate X
• Rotate Z
• Translate Z
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Rotation about X
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Translation about X
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Rotation about Z

1
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Translation in Z
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Example Problem 1

Set up:

- You have an RR robotic arm 
with base at the origin.
- The first link moves th1 with 
respect to the x-axis. The 
second link moves th2 with 
respect to the first link.

Question:

- What is the position and orientation of the end effector of 
the robotic arm? 
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Geometric Approach

Presenter
Presentation Notes
Notice that the angles are measured relative to the direction of the previous link. (The first link is the exception. The angle is measured relative to it’s initial position.) For robots with more links and whose arm extends into 3 dimensions the geometry gets much more tedious. 
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Algebraic Approach

X0

Y0

X2

Y2
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Algebraic Approach

X0

Y0

X2

Y2
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Algebraic Approach

X0

Y0

X2

Y2
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Example Problem 2

Set up:

- You are have a three-link arm 
with base at the origin. 

- Each link has lengths l1, l2, l3, 
respectively. Each joint has 
angles θ1, θ2, θ3,  respectively.

Question:

- What is the Homogeneous matrix to get the position of the 
yellow dot in the X0Y0 frame.

X2

X3Y2

Y3

U1

U2

U3

1

2 3

X0

Y0
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X2

X3Y2

Y3

U1

U2

U3

1

2 3

H = Rz(U1 ) * Tx1(l1) * Rz(U2 ) * Tx2(l2) * Rz(U3 )

i.e.  Rotating by 1 will put you in the X1Y1 frame.
Translate in the along the X1 axis by l1.
Rotating by 2 will put you in the X2Y2 frame.
and so on until you are in the X3Y3 frame.

The position of the yellow dot relative to the X3Y3 frame is
(l1, 0).  Multiplying H by that position vector will give you the 
coordinates of the yellow point relative the the X0Y0 frame. 

X0

Y0

Algebraic Approach
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Slight variation on the last solution:
Make the yellow dot the origin of a new coordinate X4Y4 frame 

X2

X3Y2

Y3

U1

U2

U3

1

2 3

X0

Y0

X4

Y4

H = Rz(U1 ) * Tx1(l1) * Rz(U2 ) * Tx2(l2) * Rz(U3 ) * Tx3(l3)

This takes you from the X0Y0 frame to the X4Y4 frame.

The position of the yellow dot relative to the X4Y4 frame 
is (0,0).  



















=



















1
0
0
0

H

1
Z
Y
X

Notice that multiplying by the (0,0,0,1) vector will  
equal the last column of the H matrix.
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Next Class: Inverse Kinematics

Forward Kinematics 
(angles to position)

What you are given:  
The length of each link
The angle of each joint

What you can find: 
The position of any point

(i.e. it’s  (x, y, z) coordinates)

Inverse Kinematics 
(position to angles)

What you are given:
The length of each link

The position of some point on the robot

What you can find:
The angles of each joint needed to 

obtain that position

Presenter
Presentation Notes
Next Time: IK
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