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15-853:Algorithms in the Real World

Announcements:

Projects:

• Enter your team information in the Google Sheet 

by today (Nov. 8)

• Share the proposal and related papers in the 

shared Google Drive by Monday (Nov. 11)

• Project reports due on Dec 3 2:30pm

• Project presentations are in class on Dec 3 and 5
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15-853:Algorithms in the Real World

Announcements:

Project report:

• We will provide a style file with a format next week:

• 5 page, single column

• Appendices (might not read them)

• References (no limit)

• Write carefully so that it is understandable. This carries 

weight.

• Same format even for surveys: you need to distill what you 

read, compare across papers and bring out the 

commonalities and differences, etc. 
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15-853:Algorithms in the Real World

Announcements:

Projects:

• Ian looking for partners: 

• Project on coded computation

• <quick description of coded computation>
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15-853:Algorithms in the Real World

Announcements:

Homeworks:

There will be one homework assignment next week on 

hashing and cryptography module.

No homework assignments after the next one. Focus on 

project.
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15-853:Algorithms in the Real World

Hashing:

Concentration bounds

Load balancing: balls and bins

Hash functions (cont.)

First a quick recap of what we have learnt in 

hashing so far.



Recall: Hashing

Concrete running application for this module: dictionary.

Setting: 

• A large universe of keys (e.g., set of all strings of certain 

length): denoted by U

• The actual dictionary S (subset of U)

• Let |S| = N (typically N << |U|)

Operations:

• add(x): add  a key x 

• query(q): is key q there?

• delete(x): remove the key x
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Recall: Hashing

“....with high probability there are not too many collisions 

among elements of S”

• We will assume a family of hash functions H. 

• When it is time to hash S, we choose a random 

function h ∈H
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Recall: Hashing: Desired properties

Let [M] = {0, 1, ..., M-1}

We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding: 

1. If x≠y ∈S, P[h(x) = h(y)] is “small”

2. Small range, i.e., small M so that the hash table is small

3. Small number of bits to store h

4. h is easy to compute
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Recall: Ideal Hash Function

Perfectly random hash function:

For each x∈S, h(x) =a uniformly random location in [M]

Properties:

• Low collision probability: P[h(x) = h(y)] = 1/M for any x≠y

• Even conditioned on hashed values for any other subset A of 

S, for any element x∈S, h(x) is still uniformly random over [M]
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Recall: Universal Hash functions 

Captures the basic property of non-collision.

Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] is 

universal if for any x≠y ∈ U,

P[h(x) = h(y)] ≤ 1/M

Note: Must hold for every pair of distinct x and y ∈ U.
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Recall: Addressing collisions in hash table

One of the main applications of hash functions is in hash tables 

(for dictionary data structures)

Handling collisions:

Closed addressing

Each location maintains some other data structure

One approach: “separate chaining”

Each location in the table stores a linked list with all the 

elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of 

many collisions.
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Recall: Addressing collisions in hash table

Let C(x) be the number of other elements mapped to the value 

where x is mapped to.

E[C(x)] = (N-1)/M

Hence if we use M = N = |S|, 

lookups take constant time in expectation.

Let C = total number of collisions

E[C] =
𝑁

2
1/𝑀
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Recall: Addressing collisions in hash table

Suppose we choose M >= N2

P[there exists a collision] = ½

Can easily find a collision free hash table!

Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement. 

(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)
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Recall: Perfect hashing

Handling collisions via “two-level hashing”

First level hash table has size O(N)

Each location in the hash table performs a collision-free 

hashing

Let C(i) = number of elements mapped to location i in the first 

level table

For the second level table, use C(i)^2 as the table size at 

location i. (We know that for this size, we can find a collision-

free hash function)

Collision-free and O(N) table space!
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Recall: k-wise independent hash functions

In addition to universality, certain independence properties of 

hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is 

called k-wise-independent if for any k distinct keys 

we have

Case for k=2 is called “pairwise independent.
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Recall Constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):

Let A be a m x u matrix with uniformly random binary entries.

Let b be a m-bit vector with uniformly random binary entries.

ℎ 𝑥 := 𝐴𝑥 + 𝑏

where the arithmetic is modulo 2.

Claim. This family  of hash functions is 2-wise independent. 

15-853 Page 16



Recall Constructions: 2-wise independent

Construction 3 (Using finite fields)

Consider GF(2u) 

Pick two random numbers a, b ∈ GF(2u). For any x ∈ U, define 

h(x) := ax + b 

where the calculations are done over the field GF(2u). 

2-wise independent.
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Recall Constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?

Hint: Going to higher degree polynomial instead of linear.

Consider GF(2u).

Pick k random numbers 

where the calculations are done over the field GF(2u). 

Similar proof as before.
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Recall: Other approaches to collision handling

Open addressing:

No separate structures

All keys stored in a single array

Linear probing:

When inserting x and h(x) is occupied, look for the 

smallest index i such that (h(x) + 1) mod M is free, and store 

h(x) there. 

When querying for q, look at h(q) and scan linearly until 

you find q or an empty space. 

Other probe sequences:

Using a step-size

Quadratic probing
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Cuckoo hashing

Another open addressing hashing method.

Invented by Pagh and Rodler (2004).

Take a table T of size M = O(N). 

Take two hash functions h1, h2: U -> [M] from hash family H.

Let H be a fully-random 

(O(log N)-wise independence suffices).

There are different variants of insertion and we will analyze a 

particular one.
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Cuckoo hashing

Insertion:

When an element x is inserted, if either T[h1(x)] or 

T[h2(x)] is empty, put the element x in that location. 

If not bump out the element (say y) in either of these 

locations and put x in.

When an element gets bumped out, place it in the other 

possible location. If that is empty then done. If not, bump the 

element in that location and place y there.

If any element relocated more than once then rehash 

everything.

Query/delete:

An element x will be either in T[h1(x)] or T[h2(x)].

O(1) operations
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Cuckoo hashing

Theorem. The expected time to perform an insert operation is 

O(1) if M >= 4N.

Proof sketch.

Assume completely random hash functions (ideal).

For analysis we will use “cuckoo graph” G

• M vertices corresponding to hashtable locations

• Edges correspond to the items to be inserted. 

• For all x in S, ex=(h1(x),h2(x)) will be in the edge set

• Bucket of x, B(x) = set of nodes of G reachable from h1(x) or 

h2(x)

• Connected component of G with edge ex
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Cuckoo hashing

Proof sketch (cont.):

Q: What is the relationship between the #vertices and #edges in 

any of the connected components of G for the requirement of 

no collision?

#vertices >= #edges (since #locations >= #items since no 

collisions allowed)

Q: If adding an edge violates this property, what does it lead to?

Rehash

E[Insertion time for x] = E[|B(x)|] 

Goal: To show E[|B(x)|]  <= O(1)
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Cuckoo hashing

Proof sketch (cont.):

Goal: To show E[|B(x)|]  <= O(1)

E[|B(x)|] = 

Sufficient to show 
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Cuckoo hashing

Proof sketch (cont.):

Goal: To show 

Lemma. For any i, j in [M], 

P[there exists a path of length ℓ between i and j in the cuckoo 

graph] 

Proof. For ℓ = 1, P[edge i between j] 

15-853 Page 25



Cuckoo hashing

Proof sketch (cont.):

Goal: To show

Proof. Using the Lemma,
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• This proof for Cuckoo hashing is by Rasmus Pagh and a very nice explanation of this proof can be 

found at: http://www.cs.toronto.edu/~wgeorge/csc265/2013/10/17/tutorial-5-cuckoo-hashing.html

• A different proof can be found at: 



Cuckoo hashing: occupancy rate

One of the key metrics for hash tables is the “occupancy rate”.

Corresponds to the space overhead needed

With M >= 4N we have only 25% occupancy!

Can we do better?

Turns out that you can get close to 50% occupancy, but better 

than 50% causes the linear-time bounds to fail.

If one uses d hash functions instead of 2? 

With d = 3, experimentally > 90% occupancy with linear-

time bounds. 

Put more items in a location (say, 2 to 4 items) in each location? 

Experimental conjectures on better occupancy.
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Cuckoo hashing

On independence property of the hash functions used:

O(log N)-wise independence suffices.

But these are expensive to compute and store.

6-wise independent hash functions insufficient to get the failure 

probability low enough (i.e., 1-1/N) to get whp results (Cohen 

and Kane 2009). 

Simple tabulation hashing has been shown to give pretty good 

performance (Patrascu and Thorup 2012)
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Application: Bloom filter

Representing a dictionary with far fewer bits when only need 

membership query.

Possible if we:

Allow to make mistakes on membership queries

No deletions

Data structure: “Bloom filter” [Bloom 1970]

• Only false positives; no false negatives

• may report that a key is present when it is not

•Very useful for “filtering out”: scenario where most keys will 

not belong to the dictionary (|S| << |U|).

• E.g: malicious/blocked websites in web browser

•If the answer is “Yes” then you can use a slow data structure
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Bloom filter

Space efficient data structure for approximate membership 

queries.

• Keep an array T of M bits 

• initially all entries are zero. 

• k hash functions: h1, h2, .., hk: U -> [M]

• Assume completely random hash functions for analysis

Adding a key:

• To add a key x ∈ S ⊆ U, set bits T[h1(x)], T[h2(x)], ..., 

T[hk(x)] to 1
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Bloom filter

Membership query:

• For a query for key x ∈ U: check if all the entries T[hi(x)] are 

set to 1

• If so, answer Yes else answer No. 

Q: Why no false negatives?

If an item x is present, then corresponding bits will be set.

Q: Why false positives?

Other elements could have set the same bits.

Let’s analyze the probability of false positives.
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Bloom filter

A false positive for a query occurs when all k bits in T 

corresponding to a query is set.

Let p = probability that a bit in T is not set

p = 

This about how to simplify this expression.

We will continue from here in the next lecture.
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