
15-853 Page 1

15-853:Algorithms in the Real World

Announcements:

Projects:

• Enter your team information in the Google Sheet

by today (Nov. 8)

• Share the proposal and related papers in the

shared Google Drive by Monday (Nov. 11)

• Project reports due on Dec 3 2:30pm

• Project presentations are in class on Dec 3 and 5

15-853 Page 2

15-853:Algorithms in the Real World

Announcements:

Project report:

• We will provide a style file with a format next week:

• 5 page, single column

• Appendices (might not read them)

• References (no limit)

• Write carefully so that it is understandable. This carries

weight.

• Same format even for surveys: you need to distill what you

read, compare across papers and bring out the

commonalities and differences, etc.

15-853 Page 3

15-853:Algorithms in the Real World

Announcements:

Projects:

• Ian looking for partners:

• Project on coded computation

• <quick description of coded computation>

15-853 Page 4

15-853:Algorithms in the Real World

Announcements:

Homeworks:

There will be one homework assignment next week on

hashing and cryptography module.

No homework assignments after the next one. Focus on

project.

15-853 Page 5

15-853:Algorithms in the Real World

Hashing:

Concentration bounds

Load balancing: balls and bins

Hash functions (cont.)

First a quick recap of what we have learnt in

hashing so far.

Recall: Hashing

Concrete running application for this module: dictionary.

Setting:

• A large universe of keys (e.g., set of all strings of certain

length): denoted by U

• The actual dictionary S (subset of U)

• Let |S| = N (typically N << |U|)

Operations:

• add(x): add a key x

• query(q): is key q there?

• delete(x): remove the key x

15-853 Page 6

Recall: Hashing

“....with high probability there are not too many collisions

among elements of S”

• We will assume a family of hash functions H.

• When it is time to hash S, we choose a random

function h ∈H

15-853 Page 7

Recall: Hashing: Desired properties

Let [M] = {0, 1, ..., M-1}

We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding:

1. If x≠y ∈S, P[h(x) = h(y)] is “small”

2. Small range, i.e., small M so that the hash table is small

3. Small number of bits to store h

4. h is easy to compute

15-853 Page 8

Recall: Ideal Hash Function

Perfectly random hash function:

For each x∈S, h(x) =a uniformly random location in [M]

Properties:

• Low collision probability: P[h(x) = h(y)] = 1/M for any x≠y

• Even conditioned on hashed values for any other subset A of

S, for any element x∈S, h(x) is still uniformly random over [M]

15-853 Page 9

Recall: Universal Hash functions

Captures the basic property of non-collision.

Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] is

universal if for any x≠y ∈ U,

P[h(x) = h(y)] ≤ 1/M

Note: Must hold for every pair of distinct x and y ∈ U.

15-853 Page 10

Recall: Addressing collisions in hash table

One of the main applications of hash functions is in hash tables

(for dictionary data structures)

Handling collisions:

Closed addressing

Each location maintains some other data structure

One approach: “separate chaining”

Each location in the table stores a linked list with all the

elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of

many collisions.
15-853 Page 11

Recall: Addressing collisions in hash table

Let C(x) be the number of other elements mapped to the value

where x is mapped to.

E[C(x)] = (N-1)/M

Hence if we use M = N = |S|,

lookups take constant time in expectation.

Let C = total number of collisions

E[C] =
𝑁

2
1/𝑀

15-853 Page 12

Recall: Addressing collisions in hash table

Suppose we choose M >= N2

P[there exists a collision] = ½

Can easily find a collision free hash table!

Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.

(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)

15-853 Page 13

Recall: Perfect hashing

Handling collisions via “two-level hashing”

First level hash table has size O(N)

Each location in the hash table performs a collision-free

hashing

Let C(i) = number of elements mapped to location i in the first

level table

For the second level table, use C(i)^2 as the table size at

location i. (We know that for this size, we can find a collision-

free hash function)

Collision-free and O(N) table space!

15-853 Page 14

Recall: k-wise independent hash functions

In addition to universality, certain independence properties of

hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is

called k-wise-independent if for any k distinct keys

we have

Case for k=2 is called “pairwise independent.

15-853 Page 15

Recall Constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):

Let A be a m x u matrix with uniformly random binary entries.

Let b be a m-bit vector with uniformly random binary entries.

ℎ 𝑥 := 𝐴𝑥 + 𝑏

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

15-853 Page 16

Recall Constructions: 2-wise independent

Construction 3 (Using finite fields)

Consider GF(2u)

Pick two random numbers a, b ∈ GF(2u). For any x ∈ U, define

h(x) := ax + b

where the calculations are done over the field GF(2u).

2-wise independent.

15-853 Page 17

Recall Constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?

Hint: Going to higher degree polynomial instead of linear.

Consider GF(2u).

Pick k random numbers

where the calculations are done over the field GF(2u).

Similar proof as before.

15-853 Page 18

Recall: Other approaches to collision handling

Open addressing:

No separate structures

All keys stored in a single array

Linear probing:

When inserting x and h(x) is occupied, look for the

smallest index i such that (h(x) + 1) mod M is free, and store

h(x) there.

When querying for q, look at h(q) and scan linearly until

you find q or an empty space.

Other probe sequences:

Using a step-size

Quadratic probing
15-853 Page 19

Cuckoo hashing

Another open addressing hashing method.

Invented by Pagh and Rodler (2004).

Take a table T of size M = O(N).

Take two hash functions h1, h2: U -> [M] from hash family H.

Let H be a fully-random

(O(log N)-wise independence suffices).

There are different variants of insertion and we will analyze a

particular one.

15-853 Page 20

Cuckoo hashing

Insertion:

When an element x is inserted, if either T[h1(x)] or

T[h2(x)] is empty, put the element x in that location.

If not bump out the element (say y) in either of these

locations and put x in.

When an element gets bumped out, place it in the other

possible location. If that is empty then done. If not, bump the

element in that location and place y there.

If any element relocated more than once then rehash

everything.

Query/delete:

An element x will be either in T[h1(x)] or T[h2(x)].

O(1) operations

15-853 Page 21

Cuckoo hashing

Theorem. The expected time to perform an insert operation is

O(1) if M >= 4N.

Proof sketch.

Assume completely random hash functions (ideal).

For analysis we will use “cuckoo graph” G

• M vertices corresponding to hashtable locations

• Edges correspond to the items to be inserted.

• For all x in S, ex=(h1(x),h2(x)) will be in the edge set

• Bucket of x, B(x) = set of nodes of G reachable from h1(x) or

h2(x)

• Connected component of G with edge ex

15-853 Page 22

Cuckoo hashing

Proof sketch (cont.):

Q: What is the relationship between the #vertices and #edges in

any of the connected components of G for the requirement of

no collision?

#vertices >= #edges (since #locations >= #items since no

collisions allowed)

Q: If adding an edge violates this property, what does it lead to?

Rehash

E[Insertion time for x] = E[|B(x)|]

Goal: To show E[|B(x)|] <= O(1)
15-853 Page 23

Cuckoo hashing

Proof sketch (cont.):

Goal: To show E[|B(x)|] <= O(1)

E[|B(x)|] =

Sufficient to show

15-853 Page 24

Cuckoo hashing

Proof sketch (cont.):

Goal: To show

Lemma. For any i, j in [M],

P[there exists a path of length ℓ between i and j in the cuckoo

graph]

Proof. For ℓ = 1, P[edge i between j]

15-853 Page 25

Cuckoo hashing

Proof sketch (cont.):

Goal: To show

Proof. Using the Lemma,

15-853 Page 26

• This proof for Cuckoo hashing is by Rasmus Pagh and a very nice explanation of this proof can be

found at: http://www.cs.toronto.edu/~wgeorge/csc265/2013/10/17/tutorial-5-cuckoo-hashing.html

• A different proof can be found at:

Cuckoo hashing: occupancy rate

One of the key metrics for hash tables is the “occupancy rate”.

Corresponds to the space overhead needed

With M >= 4N we have only 25% occupancy!

Can we do better?

Turns out that you can get close to 50% occupancy, but better

than 50% causes the linear-time bounds to fail.

If one uses d hash functions instead of 2?

With d = 3, experimentally > 90% occupancy with linear-

time bounds.

Put more items in a location (say, 2 to 4 items) in each location?

Experimental conjectures on better occupancy.

15-853 Page 27

Cuckoo hashing

On independence property of the hash functions used:

O(log N)-wise independence suffices.

But these are expensive to compute and store.

6-wise independent hash functions insufficient to get the failure

probability low enough (i.e., 1-1/N) to get whp results (Cohen

and Kane 2009).

Simple tabulation hashing has been shown to give pretty good

performance (Patrascu and Thorup 2012)

15-853 Page 28

Application: Bloom filter

Representing a dictionary with far fewer bits when only need

membership query.

Possible if we:

Allow to make mistakes on membership queries

No deletions

Data structure: “Bloom filter” [Bloom 1970]

• Only false positives; no false negatives

• may report that a key is present when it is not

•Very useful for “filtering out”: scenario where most keys will

not belong to the dictionary (|S| << |U|).

• E.g: malicious/blocked websites in web browser

•If the answer is “Yes” then you can use a slow data structure
15-853 Page 29

Bloom filter

Space efficient data structure for approximate membership

queries.

• Keep an array T of M bits

• initially all entries are zero.

• k hash functions: h1, h2, .., hk: U -> [M]

• Assume completely random hash functions for analysis

Adding a key:

• To add a key x ∈ S ⊆ U, set bits T[h1(x)], T[h2(x)], ...,

T[hk(x)] to 1

15-853 Page 30

Bloom filter

Membership query:

• For a query for key x ∈ U: check if all the entries T[hi(x)] are

set to 1

• If so, answer Yes else answer No.

Q: Why no false negatives?

If an item x is present, then corresponding bits will be set.

Q: Why false positives?

Other elements could have set the same bits.

Let’s analyze the probability of false positives.

15-853 Page 31

Bloom filter

A false positive for a query occurs when all k bits in T

corresponding to a query is set.

Let p = probability that a bit in T is not set

p =

This about how to simplify this expression.

We will continue from here in the next lecture.

15-853 Page 32

