15-853

15-853:Algorithms in the Real World

Announcements:
Projects:

Enter your team information in the Google Sheet
by today (Nov. 8)

Share the proposal and related papers in the
shared Google Drive by Monday (Nov. 11)

Project reports due on Dec 3 2:30pm
Project presentations are in class on Dec 3 and 5

Page 1

15-853:Algorithms in the Real World

Announcements:

Project report:

« We will provide a style file with a format next week:
« 5 page, single column
« Appendices (might not read them)
« References (no limit)

« Write carefully so that it is understandable. This carries
weight.

« Same format even for surveys: you need to distill what you
read, compare across papers and bring out the
commonalities and differences, etc.

15-853 Page 2

15-853:Algorithms in the Real World

Announcements:
Projects:
 lan looking for partners:
* Project on coded computation
« <quick description of coded computation>

15-853 Page 3

15-853:Algorithms in the Real World

Announcements:

Homeworks:

There will be one homework assignment next week on
hashing and cryptography module.

No homework assignments after the next one. Focus on

project.

15-853 Page 4

15-853:Algorithms in the Real World

Hashing:
Concentration bounds
Load balancing: balls and bins

mmmm) Hash functions (cont.)

First a quick recap of what we have learnt in
hashing so far.

15-853 Page 5

Recall: Hashing

Concrete running application for this module: dictionary.

Setting:

« A large universe of keys (e.g., set of all strings of certain
length): denoted by U
* The actual dictionary S (subset of U)

* Let|S| =N (typically N << |U])
Operations:

e add(x): add a key x

« query(q): is key g there?

« delete(x): remove the key x

15-853 Page 6

Recall: Hashing

“....with high probability there are not too many collisions
among elements of S”

« We will assume a family of hash functions H.

e Whenitistimeto hash S, we choose arandom
function h eH

15-853 Page 7

Recall: Hashing: Desired properties

Let [M]={0, 1, ..., M-1}
We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding:
1. If x#y €S, P[h(x) = h(y)] is “small”
2. Small range, I.e., small M so that the hash table is small
Small number of bits to store h
4. his easy to compute

oo

15-853 Page 8

Recall: Ideal Hash Function

Perfectly random hash function:
For each xe€S, h(x) =a uniformly random location in [M]

Properties:

* Low collision probability: P[h(x) = h(y)] = 1/M for any x#y

« Even conditioned on hashed values for any other subset A of
S, for any element xeS, h(x) is still uniformly random over [M]

15-853 Page 9

Recall: Universal Hash functions

Captures the basic property of non-collision.
Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] Is
universal if for any x#y € U,

P[h(x) = h(y)] £ 1/M

Note: Must hold for every pair of distinct x and y € U.

15-853 Page 10

Recall: Addressing collisions In hash table

One of the main applications of hash functions is in hash tables
(for dictionary data structures)

Handling collisions:
Closed addressing

Each location maintains some other data structure
One approach: “separate chaining”

Each location in the table stores a linked list with all the
elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of
many collisions.

15-833 Page 11

Recall: Addressing collisions In hash table

Let C(x) be the number of other elements mapped to the value
where X Is mapped to.

E[C(X)] = (N-1)/M

Hence if we use M =N = |S],
lookups take constant time in expectation.

Let C = total number of collisions

E[C] = (1;’) 1/M

15-853 Page 12

Recall: Addressing collisions In hash table

Suppose we choose M >= N2

P[there exists a collision] = %2

— Can easily find a collision free hash table!
= Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.
(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)

15-853 Page 13

Recall: Perfect hashing

Handling collisions via “two-level hashing”
First level hash table has size O(N)

Each location in the hash table performs a collision-free
hashing

Let C(i) = number of elements mapped to location i in the first
level table

For the second level table, use C(i)*2 as the table size at
location 1. (We know that for this size, we can find a collision-
free hash function)

Collision-free and O(N) table space!

15-853 Page 14

Recall: k-wise independent hash functions

In addition to universality, certain independence properties of
hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is
called k-wise-independent if for any k distinct keys

7‘-1,7(7,, v Ky oun o\ a.ny l veluey o, Lo """o(lc

we have L)
ROtg) =« - —
O (hte)ote O ROWD=h A - A C) =) £ =5

Case for k=2 is called “pairwise independent.

15-853 Page 15

Recall Constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):
Let A be a m x u matrix with uniformly random binary entries.
Let b be a m-bit vector with uniformly random binary entries.

h(x):=Ax+Db
where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

15-853 Page 16

Recall Constructions: 2-wise independent

Construction 3 (Using finite fields)
Consider GF(2Y)

Pick two random numbers a, b € GF(2Y). For any x € U, define
h(x) :=ax+Db
where the calculations are done over the field GF(2u).

2-wise independent.

15-853 Page 17

Recall Constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?
Hint: Going to higher degree polynomial instead of linear.

Consider GF(2Y).

Pick k random numbers &. . Q@ , ---
k-1
A(R)= Aot axt -——t O %

%, < (<)

where the calculations are done over the field GF(2u).

Similar proof as before.

15-853 Page 18

Recall: Other approaches to collision handling

Open addressing:
NoO separate structures
All keys stored in a single array

Linear probing:

When inserting x and h(x) is occupied, look for the
smallest index 1 such that (h(x) + 1) mod M is free, and store
h(Xx) there.

When querying for g, look at h(q) and scan linearly until
you find g or an empty space.

Other probe sequences:
Using a step-size

Quadratic probing
15-853 Page 19

Cuckoo hashing

Another open addressing hashing method.
Invented by Pagh and Rodler (2004).

Take a table T of size M = O(N).
Take two hash functions hl, h2: U -> [M] from hash family H.
Let H be a fully-random

(O(log N)-wise independence suffices).

There are different variants of insertion and we will analyze a
particular one.

15-853 Page 20

Cuckoo hashing

Insertion:

When an element x is inserted, if either T[h1(x)] or
T[h2(x)] is empty, put the element x in that location.

If not bump out the element (say y) in either of these
locations and put x in.

When an element gets bumped out, place it in the other
possible location. If that is empty then done. If not, bump the
element in that location and place y there.

If any element relocated more than once then rehash
everything.
Query/delete:
An element x will be either in T[h1(x)] or T[h2(X)].
O(1) operations

15-853 Page 21

Cuckoo hashing

Theorem. The expected time to perform an insert operation is
O(1) if M >= 4N.

Proof sketch.

Assume completely random hash functions (ideal).

For analysis we will use “cuckoo graph” G
« M vertices corresponding to hashtable locations
« Edges correspond to the items to be inserted.
 Forall xin S, e,=(h1(x),h2(x)) will be in the edge set

* Bucket of x, B(x) = set of nodes of G reachable from h1(x) or
h2(x)

« Connected component of G with edge e,

15-853 Page 22

Cuckoo hashing

Proof sketch (cont.):

Q: What is the relationship between the #vertices and #edges in
any of the connected components of G for the requirement of
no collision?

#vertices >= #edges (since #locations >= #items since no
collisions allowed)

Q: If adding an edge violates this property, what does it lead to?
Rehash

E[Insertion time for x] = E[|B(X)]]

Goal: To show E[|B(X)]] <= O(1)

15-853 Page 23

Cuckoo hashing

Proof sketch (cont.):
Goal: To show E[|B(x)|]] <= 0(1)

ceog= = P [& 8w

y&esS
R

< NP[eerw]

Sufficient to show P)j(‘J @ﬁwﬂ S O(';TQ

15-853 Page 24

Cuckoo hashing

Proof sketch (cont.): :
Goal: To show p { 6a %6(1)] 29 (7:/\>

Lemma. For any |, j in [M],
P[there exists a path of length £ between i and j in the cuckoo

graph] < 1 -
~ 021 M

Proof. For £ =1, Pledge | between |]
- P[3‘) st e, enshin G]

2 U
p (G- T a haty))
@ = [Chotg)st QO haly) =))]

/Lkr\ ;,-\,A/uc,‘\“*"‘ =n L

15-853 CExrrufe) Page 25

Cuckoo hashing

Proof sketch (cont.): :
Goal: To show p { 6a %6(1)] 29 (7:/\>

Proof. Using the Lemma,

A —
[[&, G’:BC%)} > = QKM

-~

= 0

™M

This proof for Cuckoo hashing is by Rasmus Pagh and a very nice explanation of this proof can be
found at: http://www.cs.toronto.edu/~wgeorge/csc265/2013/10/17/tutorial-5-cuckoo-hashing.html

A different proof can be found at:

15-853 Page 26

Cuckoo hashing: occupancy rate

One of the key metrics for hash tables is the “occupancy rate”.
Corresponds to the space overhead needed
With M >= 4N we have only 25% occupancy!

Can we do better?

Turns out that you can get close to 50% occupancy, but better
than 50% causes the linear-time bounds to fail.

If one uses d hash functions instead of 2?

With d = 3, experimentally > 90% occupancy with linear-
time bounds.

Put more items in a location (say, 2 to 4 items) in each location?
Experimental conjectures on better occupancy.

15-853 Page 27

Cuckoo hashing

On independence property of the hash functions used:

O(log N)-wise independence suffices.
But these are expensive to compute and store.

6-wise independent hash functions insufficient to get the failure
probability low enough (i.e., 1-1/N) to get whp results (Cohen
and Kane 2009).

Simple tabulation hashing has been shown to give pretty good
performance (Patrascu and Thorup 2012)

15-853 Page 28

Application: Bloom filter

Representing a dictionary with far fewer bits when only need
membership query.

Possible if we:
Allow to make mistakes on membership gueries
No deletions

Data structure: “Bloom filter” [Bloom 1970]
* Only false positives; no false negatives
* may report that a key Is present when it is not

*Very useful for *filtering out”: scenario where most keys will
not belong to the dictionary (|S| << |U]).

« E.g: malicious/blocked websites in web browser

*If the answer is “Yes” then you can use a slow data structure
15-853 Page 29

Bloom filter

Space efficient data structure for approximate membership
gueries.

 Keep an array T of M bits
* Initially all entries are zero.
* khash functions: hy, h,, .., h,: U -> [M]
* Assume completely random hash functions for analysis

Adding a key:
« Toadd akey x € S € U, set bits T[h,(X)], T[h,(X)], ...,
Th(X)]to 1

15-853 Page 30

Bloom filter

Membership query:

* For a query for key x € U: check if all the entries T[hi(x)] are
settol

* |f so, answer Yes else answer No.

Q: Why no false negatives?
If an item X Is present, then corresponding bits will be set.

Q: Why false positives?
Other elements could have set the same bits.

Let’'s analyze the probability of false positives.

15-853 Page 31

Bloom filter

A false positive for a query occurs when all k bits In T
corresponding to a query is set.

Let p = probabillity that a bit in T is not set
kN
p= (| - J—)
™

This about how to simplify this expression.
We will continue from here in the next lecture.

15-853

Page 32

