Announcements:

- HW2 due tomorrow noon.
 - Small correction made in the BWT question.

- Naama’s office hour cancelled. Francisco holding additional office hours instead.
Announcements:

• Plan for the coming week:
 • I am away at ACM SOSP 2019
 • Graph compression guest lecture on Oct 29 by Laxman Dhulipala
 • Cryptography-1 guest lecture on Oct 31 by Francisco Maturana

• There will be a homework on Hashing + Cryptography modules by the end of first week of November
Announcements:

Course project:

• 2-3 people teams
• 3 types of projects
 • Survey of a topic: At least 2 papers per team member (state-of-the-art papers; can include surveys)
 • Read papers (at least 3) + light weight “research-y” stuff (potentially implementation and comparison etc.)
 • Full fledged research: typically based on one paper and addressing a research question
Announcements:

Course project:
• By Friday Nov 8 team and project plan (which papers, what question etc.) should be finalized
• Share through one Google doc per team
• Use the class email list:
 • 15853f19-students@lists.andrew.cmu.edu
 • with subject beginning “project-team-finding” to ping your classmates to form teams
Ideas for project topics

ECC:

- **Coding for distributed storage systems** (at least 2 potential project topics here)
 - Several additional metrics become important such as “reconstruction locality”, “reconstruction bandwidth”
 - Several new classes of codes have been proposed as alternatives to Reed-Solomon codes, e.g.,
 - Local reconstruction codes
 - Regenerating codes
 - Piggyback codes
 - Some employed in Microsoft Azure cloud storage, some in Apache Hadoop Distributed File System, some in Ceph, etc.
Ideas for project topics

ECC (cont.)

• Coding for **latency sensitive streaming communication** (at least 1 potential project topic here)
 • Sequential encoding and decoding
 • Strict latency constraints
 • A new class of codes called “streaming codes”
Ideas for project topics

Compression:

• Quantization in neural networks
• DNA compression
• Latest compression algorithm Zstd developed by Facebook
Ideas for project topics

Hashing:

• Several network applications
 – Used for network monitoring
 – Sketching using hashing
Hashing:

Concentration bounds
Load balancing: balls and bins
Hash functions (cont.)
Recall: Hashing

Concrete running application for this module: dictionary.

Setting:

• A large universe of keys (e.g., set of all strings of certain length): denoted by U
• The actual dictionary S (subset of U)
• Let $|S| = N$ (typically $N << |U|$)

Operations:

• add(x): add a key x
• query(q): is key q there?
• delete(x): remove the key x
Recall: Hashing

“...with high probability there are not too many collisions among elements of S”

On what is this probability calculated over?

Two approaches:

1. Input is random
2. Input is arbitrary, but the hash function is random

Input being random is typically not valid for many applications. So we will use 2.

- We will assume a family of hash functions H.
- When it is time to hash S, we choose a random function $h \in H$
Recall: Hashing: Desired properties

Let $[M] = \{0, 1, \ldots, M-1\}$

We design a hash function $h: U \rightarrow [M]$

1. Small probability of distinct keys colliding:
 1. If $x \neq y \in S$, $P[h(x) = h(y)]$ is “small”
2. Small range, i.e., small M so that the hash table is small
3. Small number of bits to store h
4. h is easy to compute
Recall: Ideal Hash Function

Perfectly random hash function:
For each $x \in S$, $h(x) =$ a uniformly random location in $[M]$

Properties:
- Low collision probability: $P[h(x) = h(y)] = 1/M$ for any $x \neq y$
- Even conditioned on hashed values for any other subset A of S, for any element $x \in S$, $h(x)$ is still uniformly random over $[M]$
Recall: Universal Hash functions

Captures the basic property of non-collision. Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to $[M]$ is universal if for any $x \neq y \in U$,

$$P[h(x) = h(y)] \leq 1/M$$

Note: Must hold for every pair of distinct x and $y \in U$.

Recall: Universal Hash functions

A simple construction of universal hashing:

Assume $|U| = 2^u$ and $|M| = 2^m$

Let A be a $m \times u$ matrix with random binary entries.
For any $x \in U$, view it as a u-bit binary vector, and define

$$h(x) := Ax$$

where the arithmetic is modulo 2.

Theorem. The family of hash functions defined above is universal.
Recall: Addressing collisions in hash table

One of the main applications of hash functions is in hash tables (for dictionary data structures)

Handling collisions:
Closed addressing

Each location maintains some other data structure

One approach: “separate chaining”

Each location in the table stores a linked list with all the elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of many collisions.
Recall: Addressing collisions in hash table

Let us study the number of many collisions:
Let C(x) be the number of other elements mapped to the value where x is mapped to.

Q: What is E[C(x)]?
E[C(x)] = (N-1)/M

Hence if we use M = N = |S|,
lookups take constant time in expectation.

Item deletion is also easy.

Let C = total number of collisions
Q: What is E[C]?
\[\left(\frac{N}{2} \right)^{1/M} \]
Recall: Addressing collisions in hash table

Can we design a collision free hash table?

Suppose we choose $M \geq N^2$

Q: $P[\text{there exists a collision}] = \frac{1}{2}$

\Rightarrow Can easily find a collision free hash table!

\Rightarrow Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.
(Space measured in terms of number of keys)

Can we do better? $O(N)$? (while providing worst-case guarantee?)
Application: Perfect hashing

Handling collisions via “two-level hashing”

- First level hash table has size $O(N)$
- Each location in the hash table performs a collision-free hashing

Let $C(i) = \text{number of elements mapped to location } i \text{ in the first level table}$

Q: For the second level table, what should the table size at location i be?

$C(i)^2$ (We know that for this size, we can find a collision-free hash function)
Application: Perfect hashing

Q: What is the total table space used in the second level?

\[\sum_{i=1}^{m} C(i)^2 \]

We know \(E(C) = \binom{N}{2} \frac{1}{M} \) \(\Rightarrow \) \(E \left[\sum_{i=1}^{m} \binom{C(i)}{2} \right] = \binom{N}{2} \frac{1}{M} \)

\[E \left[\sum_{i=1}^{m} C(i)^2 - \sum_{i=1}^{m} C(i) \right] = O(N) \text{ since } M = O(N) \]

\[\Rightarrow E \left[\sum_{i=1}^{m} C(i)^2 \right] = O(N) \text{ since } E \left[\sum_{i=1}^{m} C(i) \right] = O(N) \]

Q: What is the total table space?

O(N)

Collision-free and O(N) table space!
k-wise independent hash functions

In addition to universality, certain independence properties of hash functions are useful in analysis of algorithms.

Definition. A family \(H \) of hash functions mapping \(U \) to \([M]\) is called \(k \)-wise-independent if for any \(k \) distinct keys \(x_1, x_2, \ldots, x_k \) and any \(k \) distinct values \(a_1, a_2, \ldots, a_k \) we have

\[
P(h(x_1) = a_1 \land h(x_2) = a_2 \land \cdots \land h(x_k) = a_k) \leq \frac{1}{M^k}
\]

Case for \(k=2 \) is called “pairwise independent.”
k-wise independent hash functions

Properties:

Suppose H is a k-wise independent family for \(k \geq 2 \). Then

1. H is also \((k-1)\)-wise independent.
2. For any \(x \in U \) and \(a \in [M] \), \(P[h(x) = a] = 1/M \).
3. H is universal.

Q: Which is stronger: pairwise independent or universal?

Pairwise independent is stronger.

E.g.?

\(h(x) = Ax \) construction since \(P[h(0) = 0] = 1 \)
Some constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):
Let A be a $m \times u$ matrix with uniformly random binary entries.
Let b be a m-bit vector with uniformly random binary entries.

$$h(x): = Ax + b$$

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

Q: How many hash functions are in this family?
$2^{(u+1)m}$

Q: Number of bits to store?
$O(um)$

Can we do with fewer bits?
Construction 2 (Using fewer bits):

Let A be a $m \times u$ matrix.

- Fill the first row and column with uniformly random binary entries.
- Set $A_{i,j} = A_{i-1,j-1}$

Let b be a m-bit vector with uniformly random binary entries.

$$h(x) := Ax + b$$

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

(HW)
Some constructions: 2-wise independent

Construction 3 (Using finite fields)
Consider $\text{GF}(2^u)$

Pick two random numbers $a, b \in \text{GF}(2^u)$. For any $x \in U$, define $h(x) := ax + b$
where the calculations are done over the field $\text{GF}(2^u)$.

Q: What is the domain and range of this mapping?
$[U]$ to $[U]$

Q: Is it 2-wise independent?
Yes (write as a matrix and invert) <board>
Some constructions: 2-wise independent

Construction 3 (Using finite fields)
Consider $\text{GF}(2^u)$.
Pick two random numbers $a, b \in \text{GF}(2^u)$. For any $x \in U$, define $h(x) := ax + b$
where the calculations are done over the field $\text{GF}(2u)$.

Q: What is the domain and range of this mapping?
$[U]$ to $[U]$

Q: Is it 2-wise independent?
Yes

Q: How change the range to $[M]$?
Truncate last $u=m$ bits. Still is 2-wise independent.
Some constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?
Hint: Going to higher degree polynomial instead of linear.

Consider GF(2^u).

Pick k random numbers $a_0, a_1, \ldots, a_{k-1} \in GF(2^u)$

$$h(x) = a_0 + a_1 x + \ldots + a_{k-1} x^{k-1}$$

where the calculations are done over the field GF(2^u).

Similar proof as before.
Other hashing schemes with good properties

Simple Tabulation Hashing:

Consider $U = [k]^u$

Initialize a 2-dimensional $u \times k$ array T with each of the $u \times k$ entries having a random m-bit string.

For the key $x = x_1 x_2 \ldots x_u$, define its hash as

$$h(x) := T[1, x_1] \oplus T[2, x_2] \oplus \ldots \oplus T[u, x_u].$$
Other hashing schemes with good properties

Simple Tabulation Hashing:
Consider $U = [k]^u$. Initialize a 2-dimensional $u \times k$ array T with each of the $u \times k$ entries having a random m-bit string.

For the key $x = x_1 x_2 \ldots x_u$, define its hash as

$$h(x) := T[1, x_1] \oplus T[2, x_2] \oplus \ldots \oplus T[u, x_u].$$

Q: How many random bits?
ukm

Q: Size of the hash family?
2^{ukm}

Theorem. Tabulation hashing is 3-wise independent but not 4-wise independent.
(We will not prove this)
Other approaches to collision handling

Open addressing:

- No separate structures
- All keys stored in a single array

Linear probing:

- When inserting x and $h(x)$ is occupied, look for the smallest index i such that $(h(x) + 1) \mod M$ is free, and store $h(x)$ there.
- When querying for q, look at $h(q)$ and scan linearly until you find q or an empty space.
Other approaches to collision handling

Linear probing (cont.):

- Deletions are not quite as simple any more.
- It is known that linear probing can also be done in expected constant time, but universal hashing does not suffice to prove this bound: 5-wise independent hashing is necessary [PT10] and sufficient [PPR11].

Other probe sequences:

Using a step-size
Quadratic probing

[Mihai Patrascu and Mikkel Thorup, 2010]
[Anna Pagh, Rasmus Pagh, and Milan Ruzic, 2011]