
15-853 Page 1

15-853:Algorithms in the Real World

Announcements:

• HW2 due tomorrow noon.

• Small correction made in the BWT question.

• Naama’s office hour cancelled. Francisco holding

additional office hours instead.

15-853 Page 2

15-853:Algorithms in the Real World

Announcements:

• Plan for the coming week:

• I am away at ACM SOSP 2019

• Graph compression guest lecture on Oct 29 by

Laxman Dhulipala

• Cryptography-1 guest lecture on Oct 31 by

Francisco Maturana

• There will be a homework on Hashing +

Cryptography modules by the end of first week of

November

15-853 Page 3

15-853:Algorithms in the Real World

Announcements:

Course project:

• 2-3 people teams

• 3 types of projects

• Survey of a topic: At least 2 papers per team

member (state-of-the-art papers; can include

surveys)

• Read papers (at least 3) + light weight

“research-y” stuff (potentially implementation

and comparison etc.)

• Full fledged research: typically based on one

paper and addressing a research question

15-853 Page 4

15-853:Algorithms in the Real World

Announcements:

Course project:

• By Friday Nov 8 team and project plan (which

papers, what question etc.) should be finalized

• Share through one Google doc per team

• Use the class email list:

• 15853f19-students@lists.andrew.cmu.edu

• with subject beginning “project-team-finding” to

ping your classmates to form teams

mailto:15853f19-students@lists.andrew.cmu.edu

Ideas for project topics

ECC:

• Coding for distributed storage systems (at least 2

potential project topics here)

• Several additional metrics become important such as

“reconstruction locality”, “reconstruction bandwidth”

• Several new classes of codes have been proposed as

alternatives to Reed-Solomon codes, e.g.,

• Local reconstruction codes

• Regenerating codes

• Piggyback codes

• Some employed in Microsoft Azure cloud storage, some

in Apache Hadoop Distributed File System, some in

Ceph, etc.

15-853 Page 5

Ideas for project topics

ECC (cont.)

• Coding for latency sensitive streaming communication (at

least 1 potential project topic here)

• Sequential encoding and decoding

• Strict latency constraints

• A new class of codes called “streaming codes”

15-853 Page 6

Ideas for project topics

Compression:

• Quantization in neural networks

• DNA compression

• Latest compression algorithm Zstd developed by Facebook

15-853 Page 7

Ideas for project topics

Hashing:

• Several network applications

− Used for network monitoring

− Sketching using hashing

15-853 Page 8

15-853 Page 9

15-853:Algorithms in the Real World

Hashing:

Concentration bounds

Load balancing: balls and bins

Hash functions (cont.)

Recall: Hashing

Concrete running application for this module: dictionary.

Setting:

• A large universe of keys (e.g., set of all strings of certain

length): denoted by U

• The actual dictionary S (subset of U)

• Let |S| = N (typically N << |U|)

Operations:

• add(x): add a key x

• query(q): is key q there?

• delete(x): remove the key x

15-853 Page 10

Recall: Hashing

“....with high probability there are not too many collisions

among elements of S”

On what is this probability calculated over?

Two approaches:

1. Input is random

2. Input is arbitrary, but the hash function is random

Input being random is typically not valid for many applications.

So we will use 2.

• We will assume a family of hash functions H.

• When it is time to hash S, we choose a random

function h ∈H

15-853 Page 11

Recall: Hashing: Desired properties

Let [M] = {0, 1, ..., M-1}

We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding:

1. If x≠y ∈S, P[h(x) = h(y)] is “small”

2. Small range, i.e., small M so that the hash table is small

3. Small number of bits to store h

4. h is easy to compute

15-853 Page 12

Recall: Ideal Hash Function

Perfectly random hash function:

For each x∈S, h(x) =a uniformly random location in [M]

Properties:

• Low collision probability: P[h(x) = h(y)] = 1/M for any x≠y

• Even conditioned on hashed values for any other subset A of

S, for any element x∈S, h(x) is still uniformly random over [M]

15-853 Page 13

Recall: Universal Hash functions

Captures the basic property of non-collision.

Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] is

universal if for any x≠y ∈ U,

P[h(x) = h(y)] ≤ 1/M

Note: Must hold for every pair of distinct x and y ∈ U.

15-853 Page 14

Recall: Universal Hash functions

A simple construction of universal hashing:

Assume |U| = 2u and |M| = 2𝑚

Let A be a m x u matrix with random binary entries.

For any x ∈U, view it as a u-bit binary vector, and define

ℎ 𝑥 := 𝐴𝑥

where the arithmetic is modulo 2.

Theorem. The family of hash functions defined above is

universal.

15-853 Page 15

Recall: Addressing collisions in hash table

One of the main applications of hash functions is in hash tables

(for dictionary data structures)

Handling collisions:

Closed addressing

Each location maintains some other data structure

One approach: “separate chaining”

Each location in the table stores a linked list with all the

elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of

many collisions.
15-853 Page 16

Recall: Addressing collisions in hash table

Let us study the number of many collisions:

Let C(x) be the number of other elements mapped to the value

where x is mapped to.

Q: What is E[C(x)] ?

E[C(x)] = (N-1)/M

Hence if we use M = N = |S|,

lookups take constant time in expectation.

Item deletion is also easy.

Let C = total number of collisions

Q: What is E[C] ?
𝑁

2
1/𝑀

15-853 Page 17

Recall: Addressing collisions in hash table

Can we design a collision free hash table?

Suppose we choose M >= N2

Q: P[there exists a collision] = ?

½

Can easily find a collision free hash table!

Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.

(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)
15-853 Page 18

Application: Perfect hashing

Handling collisions via “two-level hashing”

First level hash table has size O(N)

Each location in the hash table performs a collision-free

hashing

Let C(i) = number of elements mapped to location i in the first

level table

Q: For the second level table, what should the table size at

location i?

C(i)^2 (We know that for this size, we can find a collision-free

hash function)

15-853 Page 19

Application: Perfect hashing

Q: What is the total table space used in the second level?

Q: What is the total table space?

O(N)

Collision-free and O(N) table space!

15-853 Page 20

k-wise independent hash functions

In addition to universality, certain independence properties of

hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is

called k-wise-independent if for any k distinct keys

we have

Case for k=2 is called “pairwise independent.

15-853 Page 21

k-wise independent hash functions

Properties:

Suppose H is a k-wise independent family for k>=2. Then

1. H is also (k-1)-wise indepdent.

2. For any x∈U and a ∈ [M] P[h(x) = a] = 1/M.

3. H is universal.

Q: Which is stronger: pairwise independent or universal?

Pairwise independent is stronger.

E.g.?

h(x) = Ax construction since P[h(0) = 0] = 1

15-853 Page 22

Some constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):

Let A be a m x u matrix with uniformly random binary entries.

Let b be a m-bit vector with uniformly random binary entries.

ℎ 𝑥 := 𝐴𝑥 + 𝑏

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

Q: How many hash functions are in this family?

2(u+1)m

Q: Number of bits to store?

O(um)

Can we do with fewer bits?

15-853 Page 23

Some constructions: 2-wise independent

Construction 2 (Using fewer bits):

Let A be a m x u matrix.

• Fill the first row and column with uniformly random binary

entries.

• Set Ai,j = Ai-1,j-1

Let b be a m-bit vector with uniformly random binary entries.

ℎ 𝑥 := 𝐴𝑥 + 𝑏

where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

(HW)

15-853 Page 24

Some constructions: 2-wise independent

Construction 3 (Using finite fields)

Consider GF(2u)

Pick two random numbers a, b ∈ GF(2u). For any x ∈ U, define

h(x) := ax + b

where the calculations are done over the field GF(2u).

Q: What is the domain and range of this mapping?

[U] to [U]

Q: Is it 2-wise independent?

Yes (write as a matrix and invert) <board>

15-853 Page 25

Some constructions: 2-wise independent

Construction 3 (Using finite fields)

Consider GF(2u).

Pick two random numbers a, b ∈ GF(2u). For any x ∈ U, define

h(x) := ax + b

where the calculations are done over the field GF(2u).

Q: What is the domain and range of this mapping?

[U] to [U]

Q: Is it 2-wise independent?

Yes

Q: How change the range to [M]?

Truncate last u=m bits. Still is 2-wise independent.

15-853 Page 26

Some constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?

Hint: Going to higher degree polynomial instead of linear.

Consider GF(2u).

Pick k random numbers

where the calculations are done over the field GF(2u).

Similar proof as before.

15-853 Page 27

Other hashing schemes with good properties

Simple Tabulation Hashing:

Consider U = [k]u

Initialize a 2-dimensional u x k array T with each of the u*k

entries having a random m-bit string.

For the key x = x1x2 . . . xu, define its hash as

h(x) := T [1, x1] ⊕ T [2, x2] ⊕ . . . ⊕ T [u, xu].

15-853 Page 28

Other hashing schemes with good properties

Simple Tabulation Hashing:

Consider U = [k]u. Initialize a 2-dimensional u x k array T with

each of the u*k entries having a random m-bit string.

For the key x = x1x2 . . . xu, define its hash as

h(x) := T [1, x1] ⊕ T [2, x2] ⊕ . . . ⊕ T [u, xu].

Q: How many random bits?

ukm

Q: Size of the hash family?

2ukm

Theorem. Tabulation hashing is 3-wise independent but not 4-

wise independent.
(We will not prove this)

15-853 Page 29

Other approaches to collision handling

Open addressing:

No separate structures

All keys stored in a single array

Linear probing:

When inserting x and h(x) is occupied, look for the

smallest index i such that (h(x) + 1) mod M is free, and store

h(x) there.

When querying for q, look at h(q) and scan linearly until

you find q or an empty space.

15-853 Page 30

Other approaches to collision handling

Linear probing (cont.):

• Deletions are not quite as simple any more.

• It is known that linear probing can also be done in

expected constant time, but universal hashing does not

suffice to prove this bound: 5-wise independent hashing is

necessary [PT10]and sufficient [PPR11].

Other probe sequences:

Using a step-size

Quadratic probing

[Mihai Patrascu and Mikkel Thorup, 2010]

[Anna Pagh, Rasmus Pagh, and Milan Ruzic, 2011]

15-853 Page 31

