15-853:Algorithms in the Real World

Announcements:

« HW2 due tomorrow noon.
« Small correction made in the BWT question.

« Naama’s office hour cancelled. Francisco holding
additional office hours instead.

15-853 Page 1

15-853:Algorithms in the Real World

Announcements:
« Plan for the coming week:
| am away at ACM SOSP 2019

« Graph compression guest lecture on Oct 29 by
Laxman Dhulipala

* Cryptography-1 guest lecture on Oct 31 by
Francisco Maturana

« There will be a homework on Hashing +
Cryptography modules by the end of first week of
November

15-853 Page 2

15-853:Algorithms in the Real World

Announcements:
Course project:

« 2-3 people teams
« 3 types of projects

e Survey of a topic: At least 2 papers per team
member (state-of-the-art papers; can include
surveys)

 Read papers (at least 3) + light weight
“research-y” stuff (potentially implementation
and comparison etc.)

« Full fledged research: typically based on one
paper and addressing a research question

15-853 Page 3

15-853:Algorithms in the Real World

Announcements:

Course project:

« By Friday Nov 8 team and project plan (which
papers, what question etc.) should be finalized

« Share through one Google doc per team
 Use the class emall list:
 15853f19-students@lists.andrew.cmu.edu

» with subject beginning “project-team-finding” to
ping your classmates to form teams

15-853

Page 4

mailto:15853f19-students@lists.andrew.cmu.edu

|deas for project topics

ECC:

 Coding for distributed storage systems (at least 2
potential project topics here)

« Several additional metrics become important such as

7 14

“reconstruction locality”, “reconstruction bandwidth”

« Several new classes of codes have been proposed as
alternatives to Reed-Solomon codes, e.g.,
* Local reconstruction codes
 Regenerating codes
 Piggyback codes

« Some employed in Microsoft Azure cloud storage, some
In Apache Hadoop Distributed File System, some in
Ceph, etc.

15-853 Page 5

|deas for project topics

ECC (cont.)

« Coding for latency sensitive streaming communication (at
least 1 potential project topic here)

« Sequential encoding and decoding
« Strict latency constraints
* A new class of codes called “streaming codes”

15-853 Page 6

|deas for project topics

Compression:
* Quantization in neural networks

 DNA compression
« Latest compression algorithm Zstd developed by Facebook

15-853 Page 7

|deas for project topics

Hashing:
« Several network applications

- Used for network monitoring
- Sketching using hashing

15-853 Page 8

15-853:Algorithms in the Real World

Hashing:
Concentration bounds
Load balancing: balls and bins

mmmm) Hash functions (cont.)

15-853 Page 9

Recall: Hashing

Concrete running application for this module: dictionary.

Setting:

« A large universe of keys (e.g., set of all strings of certain
length): denoted by U
* The actual dictionary S (subset of U)

* Let|S| =N (typically N << |U])
Operations:

e add(x): add a key x

« query(q): is key g there?

« delete(x): remove the key x

15-853 Page 10

Recall: Hashing

“....with high probability there are not too many collisions
among elements of S”

On what is this probability calculated over?

Two approaches:

1. Inputis random

2. Input is arbitrary, but the hash function is random

Input being random is typically not valid for many applications.
So we will use 2.
« We will assume a family of hash functions H.

e Whenitistimeto hash S, we choose arandom
function h eH

15-853 Page 11

Recall: Hashing: Desired properties

Let [M]={0, 1, ..., M-1}
We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding:
1. If x#y €S, P[h(x) = h(y)] is “small”
2. Small range, I.e., small M so that the hash table is small
Small number of bits to store h
4. his easy to compute

oo

15-853 Page 12

Recall: Ideal Hash Function

Perfectly random hash function:
For each xe€S, h(x) =a uniformly random location in [M]

Properties:

* Low collision probability: P[h(x) = h(y)] = 1/M for any x#y

« Even conditioned on hashed values for any other subset A of
S, for any element xeS, h(x) is still uniformly random over [M]

15-853 Page 13

Recall: Universal Hash functions

Captures the basic property of non-collision.
Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] Is
universal if for any x#y € U,

P[h(x) = h(y)] £ 1/M

Note: Must hold for every pair of distinct x and y € U.

15-853 Page 14

Recall: Universal Hash functions

A simple construction of universal hashing:

Assume |U| =2Yand |[M| = 2™
Let A be a m x u matrix with random binary entries.
For any x €U, view it as a u-bit binary vector, and define

h(x): = Ax
where the arithmetic iIs modulo 2.

Theorem. The family of hash functions defined above is
universal.

15-853

Page 15

Recall: Addressing collisions In hash table

One of the main applications of hash functions is in hash tables
(for dictionary data structures)

Handling collisions:
Closed addressing

Each location maintains some other data structure
One approach: “separate chaining”

Each location in the table stores a linked list with all the
elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of
many collisions.

15-853 Page 16

Recall: Addressing collisions In hash table

et us study the number of many collisions:

Let C(x) be the number of other elements mapped to the value
where X Is mapped to.

Q: What is E[C(X)] ?
E[C(X)] = (N-1)/M

Hence if we use M =N = |S],
lookups take constant time in expectation.

Item deletion is also easy.

Let C = total number of collisions
Q: Whatis E[C] ?

() /M

15-853 Page 17

Recall: Addressing collisions In hash table

Can we design a collision free hash table?
Suppose we choose M >= N2

Q: P[there exists a collision] = ?
7

— Can easily find a collision free hash table!
= Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.
(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)
15-853 Page 18

Application: Perfect hashing

Handling collisions via “two-level hashing”
First level hash table has size O(N)

Each location in the hash table performs a collision-free
hashing

Let C(i) = number of elements mapped to location i in the first
level table

Q: For the second level table, what should the table size at
location 17

C()*2 (We know that for this size, we can find a collision-free
hash function)

15-853 Page 19

Application: Perfect hashing

Q: What is the total table space used in the second level?

S (V) |
" M ofee T2 (V)=
v) C Z ()] = 2 M
(e kvo o C—:(C) = (NL _’:.,‘ => 2 Y
tnea colpn
C[%\ C(r)l-— %ccx‘}] = () St Mzol)
- FEY 2 ‘o ELE (-[\\)3 -0 (H)
__) C M . L) _ O&N) S £, ‘
i ’ Z =) ou shrun coyher

!

Q: What is the total table space?
O(N)

Collision-free and O(N) table space!

15-853 Page 20

k-wise independent hash functions

In addition to universality, certain independence properties of
hash functions are useful in analysis of algorithms

Definition. A family H of hash functions mapping U to [M] is
called k-wise-independent if for any k distinct keys

Z—ltXL, v Ky o e\ a.ny ke dicbhnrk voluvey o, 0 ""’Q(’L

we have L)
ROtg) =« - —
O (hte)ote O ROWD=h A - A C) =) £ =5

Case for k=2 is called “pairwise independent.

15-853 Page 21

k-wise independent hash functions

Properties:

Suppose H is a k-wise independent family for k>=2. Then
1. His also (k-1)-wise indepdent.

2. For any xeU and a € [M] P[h(x) = a] = 1/M.

3. His universal.

Q: Which is stronger: pairwise independent or universal?
Pairwise independent is stronger.

E.g.7

h(x) = Ax construction since P[h(0) =0] =1

15-853 Page 22

Some constructions: 2-wise independent

Construction 1 (variant of random matrix multiplication):
Let A be a m x u matrix with uniformly random binary entries.
Let b be a m-bit vector with uniformly random binary entries.

h(x):=Ax+Db
where the arithmetic is modulo 2.

Claim. This family of hash functions is 2-wise independent.

Q: How many hash functions are in this family?
2(u+1)m

Q: Number of bits to store?
O(um)
Can we do with fewer bits?

15-853 Page 23

Some constructions: 2-wise independent

Construction 2 (Using fewer bits):
Let A be a m x u matrix.

 Fill the first row and column with uniformly random binary
entries.

¢ SEt AI,] — Ai-l,j-l
Let b be a m-bit vector with uniformly random binary entries.

h(x):=Ax+Db
where the arithmetic 1s modulo 2.

Claim. This family of hash functions is 2-wise independent.
(HW)

15-853 Page 24

Some constructions: 2-wise independent

Construction 3 (Using finite fields)
Consider GF(2Y)

Pick two random numbers a, b € GF(2Y). For any x € U, define
h(x) :=ax+Db
where the calculations are done over the field GF(2u).

Q: What is the domain and range of this mapping?
[U] to [U]

Q: Is it 2-wise independent?
Yes (write as a matrix and invert) <board>

15-853 Page 25

Some constructions: 2-wise independent

Construction 3 (Using finite fields)

Consider GF(2Y).

Pick two random numbers a, b € GF(2Y). For any x € U, define
h(X) :=ax+Db

where the calculations are done over the field GF(2u).

Q: What is the domain and range of this mapping?
[U] to [U]

Q: Is it 2-wise independent?
Yes

Q: How change the range to [M]?
Truncate last u=m bits. Still is 2-wise independent.

15-853 Page 26

Some constructions: k-wise independent

Construction 4 (k-wise independence using finite fields):

Q: Any ideas based on the previous construction?
Hint: Going to higher degree polynomial instead of linear.

Consider GF(2Y).

Pick k random numbers &. . Q@ , ---
k-1
A(R)= Aot axt -——t O %

%, < (<)

where the calculations are done over the field GF(2u).

Similar proof as before.

15-853 Page 27

Other hashing schemes with good properties

Simple Tabulation HashinQ:

Consider U = [k]!

Initialize a 2-dimensional u x k array T with each of the u*k
entries having a random m-bit string.

For the key x = XX, . . . X,, define its hash as
h(X) =T[L,x]]DT[2,X]D...DTIu,Xx,]

15-853 Page 28

Other hashing schemes with good properties

Simple Tabulation HashinQ:

Consider U = [k]Y. Initialize a 2-dimensional u x k array T with
each of the u*k entries having a random m-bit string.

For the key x = XX, . . . X,, define its hash as
hX) =T[L,x]]DT[2,X]D...DTI[u, X,

Q: How many random bits?
ukm
Q: Size of the hash family?
2ukm

Theorem. Tabulation hashing is 3-wise independent but not 4-
wise independent.
(We will not prove this)

15-853 Page 29

Other approaches to collision handling

Open addressing:
NoO separate structures
All keys stored in a single array

Linear probing:

When inserting x and h(x) is occupied, look for the
smallest index 1 such that (h(x) + 1) mod M is free, and store
h(Xx) there.

When querying for g, look at h(q) and scan linearly until
you find g or an empty space.

15-853 Page 30

Other approaches to collision handling

Linear probing (cont.):

« Deletions are not quite as simple any more.

 Itis known that linear probing can also be done In
expected constant time, but universal hashing does not
suffice to prove this bound: 5-wise independent hashing is
necessary [PT10]and sufficient [PPR11].

Other probe sequences:
Using a step-size
Quadratic probing

[Mihai Patrascu and Mikkel Thorup, 2010]
[Anna Pagh, Rasmus Pagh, and Milan Ruzic, 2011]

15-853 Page 31

