
15-853 Page 1

15-853:Algorithms in the Real World

Announcements:

• HW2 due this Friday noon.

• Small correction made in the BWT question.

• Naama’s office hour cancelled. Francisco holding

additional office hours instead.

• Mid-semester grades released.

• Graph compression guest lecture on Oct 29

• There will be Cryptography lectures on Oct 31 and

a following lecture

15-853 Page 2

15-853:Algorithms in the Real World

Announcements:

• Start thinking about the project and the team

• Tentatively by Friday Nov 8 team and project

should be finalized

• Use the class email list with subject beginning

“project-team-finding” to ping your classmates

to form teams

15-853 Page 3

15-853:Algorithms in the Real World

Hashing:

Concentration bounds

Load balancing: balls and bins

Hash functions

Recap: Load balancing

N balls and N bins

Randomly put balls into bins

Theorem: The max-loaded bin has O(
log 𝑁

log log 𝑁
) balls with

probability at least 1 – 1/N.

Proof. High level steps:

1. We will first look at probability of any particular bin receiving

more than O(
log 𝑁

log log 𝑁
) balls.

2. Then we will look at the probability of there being a (i.e., at

least one) bin with more than these many balls.

15-853 Page 4

Load balancing

Theorem: The max-loaded bin has O(
log 𝑁

log log 𝑁
) balls with

probability at least 1 – 1/N.

Proof 1.

P (bin i has at least k balls) is

Using Sterling’s approximation and choosing

k =O(
log 𝑁

log log 𝑁
) gives the desired result

Proof 2.

Can also prove this result using the Chernoff bound on Binomial

R.V.

Q: What is the Binomial R.V. here?

15-853 Page 5

Load balancing

Another useful and interesting result.

It turns out that the bound is tight!

Theorem. With high probability the max load is

Uniformly randomly placing balls into bins does not balance the

load after all!

15-853 Page 6

Load balancing: power-of-2-choice

When a ball comes in, pick two bins and place the ball in the bin

with smaller number of balls.

Turns out with just checking two bins maximum number of

balls drops to O(log log n)!

=> called “power-of-2-choices”

Intuition: Ideas?

Even though max loaded bins has O(
log 𝑁

log log 𝑁
) balls, most

bins have far fewer balls.

15-853 Page 7

Load balancing: power-of-2-choice

Proof (Intuition):

For a ball b, let

height(b) = number of balls in its bin after placing b

Probability of an incoming ball getting height 3 is at most ?

• Q: What needs to happen for this?

• Q: Fraction of bins that can have ≥ 2 balls?

− at most ½ (since there are only N balls)

½ * ½ = ¼

So expected number of bins with 3 balls is at most = N/4

15-853 Page 8

Load balancing: power-of-2-choice

Proof (Intuition) cont.:

(For a ball b, let height(b) = number of balls in its bin after

placing b)

Probability of an incoming ball getting height 4 is at most ?

¼ * ¼ = 1/16 =

Probability of an incoming ball getting height h is at most ?

Choosing h = O(log log N)+2 gives probability 1/N.

15-853 Page 9

Load balancing: power-of-d-choice

When a ball comes in, pick d bins and place the ball in the bin

with smallest number of balls.

Theorem:

For any d>=2 the d-choice process gives a maximum load of

with probability at least 1 – O(1/N)

Observations:

Just looking at two bins gives huge improvement.

Diminishing returns for looking at more than 2 bins.

15-853 Page 10

Hashing

Central concept in CS

Numerous applications:

• Dictionary data structures, load balancing, placement, ...

Setting:

A large set of (possible) values: called universe U

Interested in only a subset of this: S

Let |S| = N (typically N << |U|)

Roughly, hashing is a way to map elements of U onto smaller

number of values such that with high probability there are not

too many collisions among elements of S.

15-853 Page 11

Hashing

Concrete running application for this module: dictionary.

Setting:

• A large universe of keys (e.g., set of all strings of certain

length): denoted by U

• The actual dictionary S (subset of U)

Operations:

• add(x): add a key x

• query(q): is key q there?

• delete(x): remove the key x

15-853 Page 12

Hashing

“....with high probability there are not too many collisions

among elements of S”

On what is this probability calculated over?

Two approaches:

1. Input is random

2. Input is arbitrary, but the hash function is random

Input being random is typically not valid for many applications.

So we will use 2.

• We will assume a family of hash functions H.

• When it is time to hash S, we choose a random function h

∈H

15-853 Page 13

Hashing: Desired properties

Let [M] = {0, 1, ..., M-1}

We design a hash function h: U -> [M]

1. Small probability of distinct keys colliding:

1. If x≠y ∈S, P[h(x) = h(y)] is “small”

2. Small range, i.e., small M so that the hash table is small

3. Small number of bits to store h

4. h is easy to compute

15-853 Page 14

Ideal Hash Function

Perfectly random hash function:

For each x∈S, h(x) =a uniformly random location in [M]

Properties:

• Low collision probability: P[h(x) = h(y)] = 1/M for any x≠y

• Even conditioned on hashed values for any other subset A of

S, for any element x∈S, h(x) is still uniformly random over [M]

Q: Problem with this ideal approach?

1. Too large to store this hash function: log M bits needed for

each element in S (since it can hash to any of the M locations)

2. Also computing h is going to be a table lookup

15-853 Page 15

Universal Hash functions

Captures the basic property of non-collision.

Due to Carter and Wegman (1979)

Definition: A family H of hash functions mapping U to [M] is

universal if for any x≠y ∈ U,

P[h(x) = h(y)] ≤ 1/M

Note: Must hold for every pair of distinct x and y ∈ U.

15-853 Page 16

Universal Hash functions

A simple construction of universal hashing:

Assume |U| = 2u and |M| = 2𝑚

Let A be a m x u matrix with random binary entries.

For any x ∈U, view it as a u-bit binary vector, and define

ℎ 𝑥 := 𝐴𝑥

where the arithmetic is modulo 2.

Q: How many hash functions in this family?

2um

15-853 Page 17

Universal Hash functions

A simple construction of universal hashing:

Let A be a m x u matrix with uniformly random binary entries.

ℎ 𝑥 := 𝐴𝑥

where the arithmetic is modulo 2.

Theorem. The family of hash functions defined above is

universal.

Proof. Ideas?

15-853 Page 18

Universal Hash functions

15-853 Page 19

Application: Hash table

One of the main applications of hash functions is in hash tables

(for dictionary data structures)

Handling collisions:

Closed addressing

Each location maintains some other data structure

One approach: “separate chaining”

Each location in the table stores a linked list with all the

elements mapped to that location.

Look up time = length of the linked list

To understand lookup time, we need to study the number of

many collisions.
15-853 Page 20

Application: Hash table

Let us study the number of many collisions:

Let C(x) be the number of other elements mapped to the value

where x is mapped to.

Q: What is E[C(x)] ?

E[C(x)] = (N-1)/M

Hence if we use M = N = |S|,

lookups take constant time in expectation.

Item deletion is also easy.

Let C = total number of collisions

Q: What is E[C] ?
𝑁

2
1/𝑀

15-853 Page 21

Application: Hash table

Can we design a collision free hash table?

Suppose we choose M >= N2

Q: P[there exists a collision] = ?

½

Can easily find a collision free hash table!

Constant lookup time for all elements! (worst-case guarantee)

But this is large a space requirement.

(Space measured in terms of number of keys)

Can we do better? O(N)? (while providing worst-case guarantee?)
15-853 Page 22

