15-853: Algorithms in the Real World

- Reed Solomon Codes (Cont.)
- Concatenation of codes
- Start with LDPC codes

Announcements:
1. No class this Thursday, Sept. 19. Rescheduled to Friday, Sept 27.
2. Homework1 on ECC will be released on Tuesday Sept 24. Submission deadline Oct 4th noon.
Recap: Block Codes

Each message and codeword is of fixed size

\[\Sigma = \text{codeword alphabet} \]

\[k = |m| \quad n = |c| \quad q = |\Sigma| \]

\(C = \text{"code"} = \text{set of codewords} \)

\(C \subseteq \Sigma^n \quad (\text{codewords}) \)

\[\Delta(x,y) = \text{number of positions s.t. } x_i \neq y_i \]

\[d = \min\{\Delta(x,y) : x,y \in C, x \neq y\} \]

Code described as: \((n,k,d)_q\)
Recap: Linear Codes

If Σ is a field, then Σ^n is a vector space

Definition: C is a linear code if it is a linear subspace of Σ^n of dimension k.

This means that there is a set of k independent vectors $v_i \in \Sigma^n$ ($1 \leq i \leq k$) that span the subspace.

i.e. every codeword can be written as:

$$c = a_1 v_1 + a_2 v_2 + \ldots + a_k v_k$$

where $a_i \in \Sigma$

“Linear”: linear combination of two codewords is a codeword.

Minimum distance = weight of least-weight codeword
Recap: Generator and Parity Check Matrices

Generator Matrix:
A $k \times n$ matrix G such that: $C = \{ xG \mid x \in \Sigma^k \}$
Made from stacking the spanning vectors

Parity Check Matrix:
An $(n - k) \times n$ matrix H such that: $C = \{ y \in \Sigma^n \mid Hy^T = 0 \}$
(Codewords are the null space of H.)

These *always* exist for linear codes
Recap: Singleton bound and MDS codes

Theorem: For every $(n, k, d)_q$ code, $n \geq k + d - 1$

Codes that meet Singleton bound with equality are called **Maximum Distance Separable (MDS)**

Only two binary MDS codes!
1. Repetition codes
2. Single-parity check codes

Need to go beyond the binary alphabet!
(We will need some number theory for this)
Recap: Finite fields

• Size (or order): Prime or power of prime

• Power-of-prime finite fields:
 • Constructed using polynomials
 • Mod by irreducible polynomial

• Correspondence between polynomials and vector representation
Recap: \(\mathbb{GF}(2^n) \)

\(\mathbb{F}_{2^n} \) = set of polynomials in \(\mathbb{F}_2[x] \) modulo irreducible polynomial \(p(x) \in \mathbb{F}_2[x] \) of degree \(n \).

Elements are all polynomials in \(\mathbb{F}_2[x] \) of degree \(\leq n - 1 \).

Has \(2^n \) elements.

Natural correspondence with bits in \(\{0, 1\}^n \).

Elements of \(\mathbb{F}_{2^8} \) can be represented as a byte, one bit for each term.

\(E.g., \ x^6 + x^4 + x + 1 = 01010011 \)
RS code: Polynomials viewpoint

Message: \([a_{k-1}, \ldots, a_1, a_0]\) where \(a_i \in \text{GF}(q^r)\)

Consider the polynomial of degree \(k-1\)

\[
P(x) = a_{k-1} x^{k-1} + \cdots + a_1 x + a_0
\]

RS code:

Codeword: \([P(1), P(2), \ldots, P(n)]\)

To make the \(i\) in \(p(i)\) distinct, need field size \(q^r \geq n\)

That is, need sufficiently large field size for desired codeword length.
Recap: Minimum distance of RS code

Theorem: RS codes have minimum distance $d = n-k+1$

Proof:

1. *RS is a linear code:* if we add two codewords corresponding to $P(x)$ and $Q(x)$, we get a codeword corresponding to the polynomial $P(x) + Q(x)$. Similarly any linear combination.

2. *So look at the least weight codeword.* It is the evaluation of a polynomial of degree $k-1$ at some n points. So it can be zero on only $k-1$ points. Hence non-zero on at most $(n-(k-1))$ points. This means distance at least $n-k+1$

3. Apply Singleton bound

Meets Singleton bound: RS codes are MDS
Q: What is the generator matrix?

“Vandermonde matrix”

Special property of Vandermonde matrices:
Full rank (columns linearly independent)

Vandermonde matrix: Very useful in constructing codes.
Next we move on to RS decoding
Polynomials and their degrees

Fundamental theorem of Algebra:
Any non-zero polynomial of degree k has at most k roots (over any field).

Corollary 1:
If two degree-k polynomials P, Q agree on $k+1$ locations (i.e., if $P(x_i) = Q(x_i)$ for $x_0, x_1, ..., x_k$), then $P = Q$.

Corollary 2:
Given any $k+1$ points (x_i, y_i), there is at most one degree-k polynomial that has $P(x_i) = y_i$ for all these i.
Polynomials and their degrees

Corollary 2:
Given any \(k+1 \) points \((x_i, y_i) \), there is at most one degree-\(k \) polynomial that has \(P(x_i) = y_i \) for all these \(i \).

Theorem:
Given any \(k+1 \) points \((x_i, y_i) \), there is exactly one degree-\(k \) polynomial that has \(P(x_i) = y_i \) for all these \(i \).

Proof: e.g., use Lagrange interpolation.
Decoding: Recovering Erasures

Recovering from at most \((d-1)\) erasures:

Received codeword:
\([P(1), *, \ldots, *, P(n)]: \text{at most } (d-1) \text{ symbols erased}\)

Ideas?
1. At most \(n-k\) symbols erased
2. So have \(p(i)\) for at least \(k\) evaluations
3. Interpolation to recover the polynomial

Matrix viewpoint: ideas?
RS Code

A \((n, k, 2s + 1)\) code:

Can **detect** \(2s\) errors
Can **correct** \(s\) errors
Generally can correct \(a\) erasures and \(b\) errors if \(a + 2b \leq 2s\)
Decoding: Correcting Errors

Correcting s errors: \(d = 2s+1\)

Naïve algo:
- Find \(k+s\) symbols that agree on a degree \((k-1)\) poly \(P(x)\).
 - There must exist one: since originally \(k + 2s\) symbols agreed and at most \(s\) are in error
 (i.e., “guess” the \(n-s\) uncorrupted locations)
- Can we go wrong?
 Are there \(k+s\) symbols that agree on the wrong degree \((k-1)\) polynomial \(P'(x)\)?
 No.
 - Any subset of \(k\) symbols will define \(P'(x)\)
 - Since at most \(s\) out of the \(k+s\) symbols are in error, \(P'(x) = p(x)\)
Decoding: Correcting Errors

Correcting s errors: $(d = 2s+1)$

Naïve algo:
- Find $k+s$ symbols that agree on a degree $(k-1)$ poly $P(x)$.
 - There must exist one: since originally $k + 2s$ symbols agreed and at most s are in error
 (i.e., “guess” the $n-s$ uncorrupted locations)

But this suggests a brute-force approach, very inefficient.
“guess” = “enumerate”, so time is $(n \text{ choose } s) \sim n^s$.

More efficient algorithms exist.
The Berlekamp Welch Algorithm

Say we sent $c_i = P(i)$ for $i = 1..n$
 Received c_i' where $c_i = c_i'$ for all but s locations.
 Let S be the set of these s error locations.

Suppose we magically know “error-locator” polynomial $E(x)$
 such that $E(x) = 0$ for all x in S.
 And $E(x)$ has degree s.

Does such a thing exist?

Sure. $E(x) = \prod_{a \in S} (x - a)$
The Berlekamp Welch Algorithm

Say we sent $c_i = P(i)$ for $i = 1..n$
Received c'_i where $c_i = c'_i$ for all but s locations.
Let S be the set of these s error locations.

Suppose we magically know “error-locator” polynomial
$E(x)$ such that $E(x) = 0$ for all x in S.
And $E(x)$ has degree s.

Then we know that
$P(i) \cdot E(i) = c'_i \cdot E(i)$
for all i in $1..n$
The Berlekamp Welch Algorithm

Know that
\[P(i) \cdot E(i) = c'_i \cdot E(i) \quad \text{for all } i \in 1..n \]

Want to solve for polys \(P(x) \) (of deg \(k - 1 \)), \(E(x) \) of deg \(s \).

How? First, rewrite as:
\[R(i) = c'_i \cdot E(i) \quad \text{for all } i \in 1..n \]

for polynomials \(R \) of degree \((k+s-1)\), \(E \) of degree \(s \).

\(R \) has \(k+s \) “degrees of freedom”. \(E \) has \(s+1 \).

Have \(n \) equalities.

So perhaps can get solution if \((k + s) + (s + 1) \geq n\).

Return \(\frac{R(x)}{E(x)} \).
The current situation

We know that
\[R(i) = c_i' \cdot E(i) \quad \text{for all } i \text{ in } 1..n \]

Suppose \(R(x) = \sum_{j=1..k+s-1} r_j x^j \)
\[k + s \text{ unknowns (the } r_i \text{ values)} \]

And \(E(x) = \sum_{j=0..s} e_j x^j \)
\[s + 1 \text{ unknowns (the } e_i \text{ values)} \]

How to solve for \(R(x), E(x) \)?
The linear system

Linear equalities

\[r_0 + r_1 \cdot 1 + r_2 \cdot 1^2 + \ldots + r_{k+s-1} 1^{k+s-1} = c'_1 \cdot (e_0 + e_1 \cdot 1 + \ldots + e_s 1^s) \]

\[r_0 + r_1 \cdot 2 + r_2 \cdot 2^2 + \ldots + r_{k+s-1} 2^{k+s-1} = c'_2 \cdot (e_0 + e_1 \cdot 2 + \ldots + e_s 2^s) \]

\[\ldots \]

\[r_0 + r_1 \cdot i + r_2 \cdot i^2 + \ldots + r_{k+s-1} i^{k+s-1} = c'_i \cdot (e_0 + e_1 \cdot i + \ldots + e_s i^s) \]

\[\ldots \]

\[r_0 + r_1 \cdot n + r_2 \cdot n^2 + \ldots + r_{k+s-1} n^{k+s-1} = c'_n \cdot (e_0 + e_1 \cdot n + \ldots + e_s n^s) \]

- Linearly independent equalities. Why? (Vandermonde structure.)
- Under-constrained. Why?
 n equations, \((k+s)+(s+1) = n+1\) variables.
- Can have multiple solutions. Problem?
 - <board>
RS and “burst” bit errors

Let’s compare to Hamming Codes.

<table>
<thead>
<tr>
<th></th>
<th>code bits</th>
<th>check bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS ((255, 253, 3)_{256})</td>
<td>2040</td>
<td>16</td>
</tr>
<tr>
<td>Hamming ((2^{11}-1, 2^{11}-11-1, 3)_{2})</td>
<td>2047</td>
<td>11</td>
</tr>
</tbody>
</table>

They can both correct 1 error, but not 2 random errors.

- The Hamming code does this with fewer check bits
- However, RS can fix 8 contiguous bit errors in one byte
- Much better than lower bound for 8 arbitrary errors

\[
\log\left(1 + \binom{n}{1} + \cdots + \binom{n}{8}\right) > 8\log(n - 7) \approx 88 \text{ check bits}
\]
CONCATENATION OF CODES
Concatenation of Codes

Take a RS code \((n,k,n-k+1)_q\) code.

Can encode each alphabet symbol using another code.
Concatenation of Codes

Take any \((N, K, D)_q^k\) code.

Can encode each alphabet symbol of \(k\) bits using another \((n, k, d)_q\) code.

Theorem:
The concatenated code is a \((Nn, Kk, Dd)_q\) code

Proof:
<Discuss>
Concatenation of Codes

Take a RS code \((n,k,n-k+1)\) code with \(n = q^{k'}\).

Can encode each alphabet symbol of \(k' = \log Q = \log n\) bits using another code.

E.g., use \(((k' + \log k'), k', 3)_2\)-Hamming code. Now we can correct one error per alphabet symbol with little rate loss. (Good for sparse periodic errors.)

Or \((2^{k'}, k', 2^{k'-1})_2\) Hadamard code. (Say \(k = n/2\).) Then get \((n^2, (n/2) \log n, n^2/4)_2\) code.

Much better than plain Hadamard code in rate, distance worse only by factor of 2.