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15-853:Algorithms in the Real World

Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes sign up, template and instructions 

on the course webpage
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Recap: Block Codes

Each message and codeword is of 

fixed size

 = codeword alphabet

k =|m|    n = |c|   q = ||

C = “code” = set of codewords

C  Sn  (codewords)

D(x,y) = number of positions s.t. xi  yi

d = min{D(x,y) : x,y C, x  y}

Code described as: (n,k,d)q

codeword (c)

coder

noisy

channel

decoder

message (m)

message or error

codeword’ (c’)



Recap: Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:

1. detect any (d-1) errors

2. recover any (d-1) erasures

3. correct any  <write>    errors

Stated another way:

For s-bit error detection or erasure recovery: d  s + 1

For s-bit error correction d  2s + 1

To correct a erasures and b errors: 

d  a + 2b + 1
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Clarification

• Error model:

1. Arbitrary/adversarial errors

- Error can occur in “any” s code symbols

2. Symmetric across alphabet values

• Role of minimum distance decoding

- Think about which all points that a codeword can go to under error 

(spheres of Hamming radius s)

- If spheres overlap, no decoding algorithm can decode

- Closest codeword is the “correct” codeword. 

- So decoding is “min distance decoding”

- Naïve way of achieving min-dist-decoding is brute force search 

across all codewords. There are efficient ways of getting to the 

closest codeword when codes have structure.
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Recap: Linear Codes

If  is a field, then n is a vector space

Definition: C is a linear code if it is a linear subspace of n

of dimension k.

This means that there is a set of k independent vectors 

vi  n  (1  i  k) that span the subspace. 

i.e. every codeword can be written as:

c = a1 v1 + a2 v2 + … + ak vk where ai  

“Linear”:  linear combination of two codewords is a codeword.

Minimum distance = weight of least-weight codeword
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Recap: Generator and Parity Check 

Matrices

Generator Matrix:

A k x n matrix G such that: C = { xG | x  k }

Made from stacking the spanning vectors

Parity Check Matrix:

An (n – k) x n matrix H such that: C = {y  n | HyT = 0}

(Codewords are the null space of H.)

These always exist for linear codes
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Recap: Linear Codes

Basis vectors for the (7,4,3)2 Hamming code:

m7 m6 m5 p4 m3 p2 p1

v1 = 1 0 0 1 0 1 1

v2 = 0 1 0 1 0 1 0

v3 = 0 0 1 1 0 0 1

v4 = 0 0 0 0 1 1 1
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Example and “Standard Form”

For the Hamming (7,4,3) code:























1110000

1001100

0101010

1101001

G

By swapping columns 4 and 5 it is in the form Ik,A.  























1101000

1010100

0110010

1110001

G

G is said to be in “standard form”
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Relationship of G and H

Theorem: For binary codes, if G is in standard form [Ik A] 

then H = [AT In-k]

Example of (7,4,3) Hamming code:



















1001101

0101011

0010111

H























1101000

1010100

0110010

1110001

G

transpose
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Relationship of G and H

Proof: <Board>

Two parts to prove:

1. Suppose that x is a message.  Then H(xG)T = 0. 

2. Conversely, suppose that HyT = 0.  Then y is a 

codeword.
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Relationship of G and H

The above proof held only for 𝔽2.

Q: What about other alphabets?

For codes over a general field 𝔽𝑞, 

if G is of the standard form [𝐼𝑘 , 𝐴]

then the parity check matrix 𝐻 = [−𝐴𝑇 𝐼𝑛−𝑘]

In the binary case, −𝐴 = 𝐴 and hence the principle is the 

same
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The d of linear codes

Theorem: Linear codes have distance d if 
every set of (d-1) columns of H are linearly independent,
but there is a set of d columns that are linearly dependent.



















1001101

0101011

0010111

H























1101000

1010100

0110010

1110001

G

transpose

High level idea: for linear codes, distance equals least weight 

of non-zero codeword.  And each codeword gives some collection 

of columns that must sum to zero.
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The d of linear codes

Theorem: Linear codes have distance d if 
every set of (d-1) columns of H are linearly independent,
but there is a set of d columns that are linearly dependent.
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For every code with 

G = [Ik A]              and   H = [AT In-k]

we have a dual code with

G =  [In-k AT]          and   H = [A Ik]

Dual Codes

Jacques Hadamard 

(1865-1963)

The dual of the Hamming codes are the binary 
“simplex” or Hadamard codes: (2r-1, r, 2r-1)
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For every code with 

G = [Ik A]              and   H = [AT In-k]

we have a dual code with

G =  [In-k AT]          and   H = [A Ik]

The dual of the extended Hamming codes are the first-

order Reed-Muller codes.

Dual Codes

The dual of the Hamming codes are the binary 
“simplex” or Hadamard codes: (2r-1, r, 2r-1) codes

Irving Reed David Muller

Note that these codes are highly redundant, with very low 

rate.  Where would these be useful?
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NASA Mariner

Used (32,6,16) Reed Muller code (r = 5)

Rate = 6/32 = .1875   (only ~1 out of 5 bits are useful)

Can fix up to 7 bit errors per 32-bit word

Deep space probes from 

1969-1977.

Mariner 10 shown
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For every code with 

G = [Ik A]              and   H = [AT In-k]

we have a dual code with

G =  [In-k AT]          and   H = [A Ik]

Dual Codes

Dual of (7, 4, 3) Hamming code has generator matrix

Note: every non-zero r-bit vector appears as a column.

Lemma: this is a (2r – 1, r, 2r-1) code.

Proof: <discuss>
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How to find the error locations

HyT is called the syndrome (no error if 0).

In general we can find the error location by creating a table 

that maps each syndrome to a set of error locations.

Theorem: assuming s  (d-1)/2 errors, every syndrome value 

corresponds to a unique set of error locations. 

Proof: HW exercise.

Keep table of all these syndrome values. Has qn-k entries, 

each of size at most n (i.e. keep a bit vector of locations). 

Generic algorithm: not efficient for large values of (n-k)!

(Better algorithms exists for special codes.)



Consider a (5,2) linear block code:

Its standard array table:
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codewords

error vectors 

with same 

syndrome

syndrome

Example drawn from Bill Cherowitzo’s notes.



Another very useful bound: 

Singleton bound

Theorem:  For every (n , k, d)q code,  n ≥ k + d – 1

Proof:

<board>

Codes that meet Singleton bound with equality are called

Maximum Distance Separable (MDS)
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Maximum Distance Separable (MDS)

Q: Are Hamming codes MDS? <board>

Only two binary MDS codes! 

Q: What are they?

1. Repetition codes

2. Single-parity check codes

Need to go beyond the binary alphabet!

(We will need some number theory for this)
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Number Theory Outline

Groups

– Definitions,  Examples,  Properties

– Multiplicative group modulo n

Fields

– Definition, Examples

– Polynomials

– Galois Fields

Number theory is crucial for arithmetic over finite sets.
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Groups

A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b  G, a * b  G

2. Associativity. For all a,b,c  G, a*(b*c) = (a*b)*c

3. Identity. There exists I  G, such that for all 

a  G, a*I=I*a=a

4. Inverse. For every a  G, there exist a unique 

element b  G, such that a*b=b*a=I

An Abelian or Commutative Group is a Group with the 

additional condition

5. Commutativity. For all a,b  G, a*b=b*a
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Examples of groups

Q: Examples?

– Integers, Reals or Rationals with Addition

– The nonzero Reals or Rationals with Multiplication

– Non-singular n x n real matrices with 

Matrix Multiplication 

– Permutations over n elements with composition
[01, 12, 20] o [01, 10, 22] = [00, 12, 21]

Often we will be concerned with finite groups, I.e., 

ones with a finite number of elements.

(We will start with finite groups in the next lecture)


