

15-853:Algorithms in the Real World

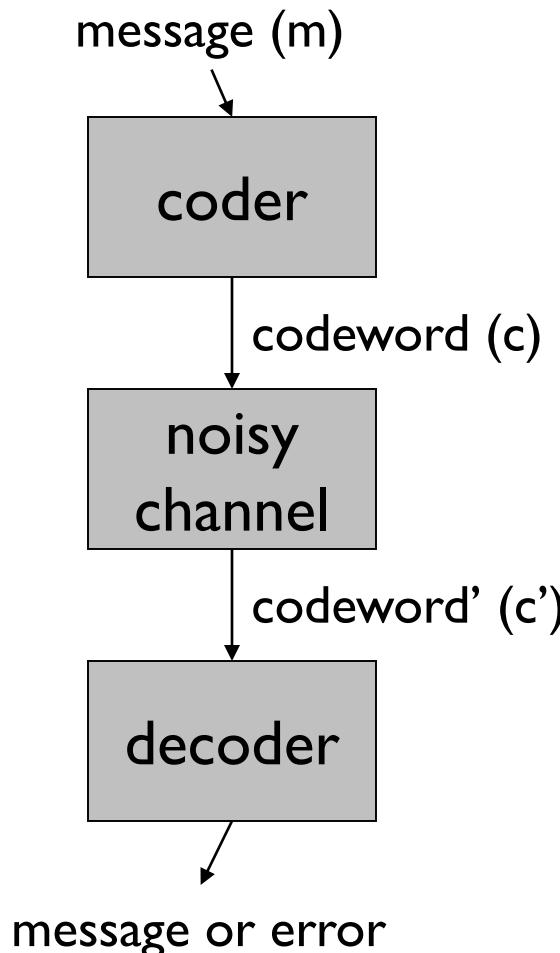
Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes sign up, template and instructions
on the course webpage

Recap: Block Codes



Each message and codeword is of fixed size

Σ = codeword alphabet

$k = |m| \quad n = |c| \quad q = |\Sigma|$

\mathbf{C} = “code” = set of codewords

$\mathbf{C} \subseteq \Sigma^n$ (codewords)

$\Delta(x, y)$ = number of positions s.t. $x_i \neq y_i$

$d = \min\{\Delta(x, y) : x, y \in \mathbf{C}, x \neq y\}$

Code described as: $(n, k, d)_q$

Recap: Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:

1. detect any $(d-1)$ errors
2. recover any $(d-1)$ erasures
3. correct any <write> errors

Stated another way:

For s -bit error detection or erasure recovery: $d \geq s + 1$

For s -bit error correction $d \geq 2s + 1$

To correct a erasures and b errors:

$$d \geq a + 2b + 1$$

Clarification

- Error model:
 1. Arbitrary/adversarial errors
 - Error can occur in “any” s code symbols
 2. Symmetric across alphabet values
- Role of minimum distance decoding
 - Think about which all points that a codeword can go to under error (spheres of Hamming radius s)
 - If spheres overlap, no decoding algorithm can decode
 - Closest codeword is the “correct” codeword.
 - So decoding is “min distance decoding”
 - Naïve way of achieving min-dist-decoding is brute force search across all codewords. There are efficient ways of getting to the closest codeword when codes have structure.

Recap: Linear Codes

If Σ is a field, then Σ^n is a vector space

Definition: C is a linear code if it is a linear subspace of Σ^n of dimension k .

This means that there is a set of k independent vectors

$v_i \in \Sigma^n$ ($1 \leq i \leq k$) that span the subspace.

i.e. every codeword can be written as:

$$c = a_1 v_1 + a_2 v_2 + \dots + a_k v_k \quad \text{where } a_i \in \Sigma$$

“Linear”: linear combination of two codewords is a codeword.

Minimum distance = weight of least-weight codeword

Recap: Generator and Parity Check Matrices

Generator Matrix:

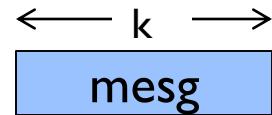
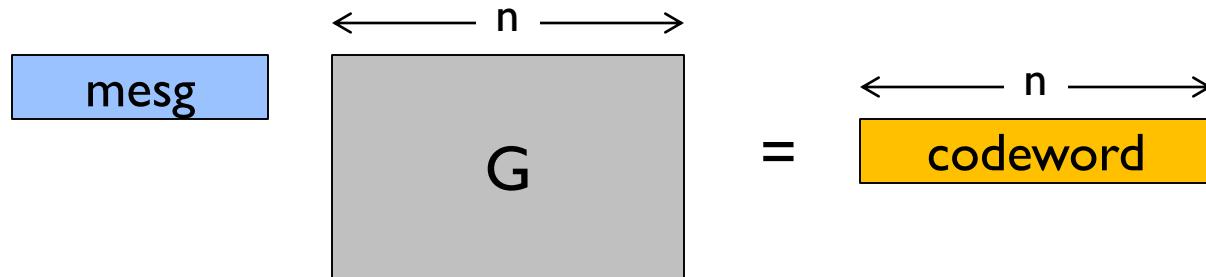
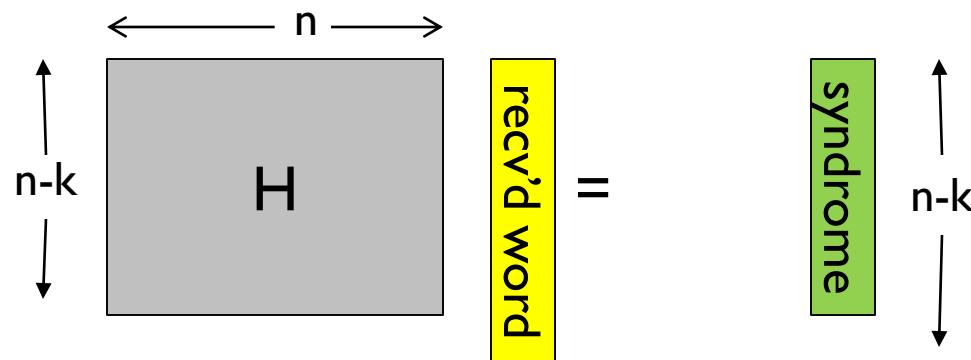
A $k \times n$ matrix \mathbf{G} such that: $C = \{ x\mathbf{G} \mid x \in \Sigma^k \}$

Made from stacking the spanning vectors

Parity Check Matrix:

An $(n - k) \times n$ matrix \mathbf{H} such that: $C = \{ y \in \Sigma^n \mid \mathbf{H}y^T = 0 \}$
(Codewords are the null space of \mathbf{H} .)

These **always exist for linear codes**



if syndrome = 0, received word = codeword
 else use syndrome to get back codeword

Recap: Linear Codes

Basis vectors for the $(7,4,3)_2$ Hamming code:

	m_7	m_6	m_5	P_4	m_3	P_2	P_1
v_1	1	0	0	1	0	1	1
v_2	0	1	0	1	0	1	0
v_3	0	0	1	1	0	0	1
v_4	0	0	0	0	1	1	1

Example and “Standard Form”

For the Hamming (7,4,3) code:

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

By swapping columns 4 and 5 it is in the form I_k, A .

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

G is said to be in “standard form”

Relationship of G and H

Theorem: For binary codes, if G is in standard form $[I_k \ A]$ then $H = [A^T \ I_{n-k}]$

Example of (7,4,3) Hamming code:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{matrix} \xrightarrow{\text{transpose}} H = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Relationship of G and H

Proof: <Board>

Two parts to prove:

1. Suppose that x is a message. Then $H(xG)^T = 0$.
2. Conversely, suppose that $Hy^T = 0$. Then y is a codeword.

Relationship of G and H

The above proof held only for \mathbb{F}_2 .

Q: What about other alphabets?

For codes over a general field \mathbb{F}_q ,

if G is of the standard form $[I_k, \mathbf{A}]$

then the parity check matrix $H = [-\mathbf{A}^T \ I_{n-k}]$

In the binary case, $-\mathbf{A} = \mathbf{A}$ and hence the principle is the same

The d of linear codes

Theorem: Linear codes have distance d if every set of $(d-1)$ columns of \mathbf{H} are linearly independent, but there is a set of d columns that are linearly dependent.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{matrix} \quad \xrightarrow{\text{transpose}} \quad H = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

High level idea: for linear codes, distance equals least weight of non-zero codeword. And each codeword gives some collection of columns that must sum to zero.

The d of linear codes

Theorem: Linear codes have distance d if every set of $(d-1)$ columns of \mathbf{H} are linearly independent, but there is a set of d columns that are linearly dependent.

If some set S of $d-1$ columns were linearly dependent, then

$$\sum_{i \in S} c_k H_k = 0$$

But then y which has zeroes on coordinates outside S , and c_i for each coordinate $i \in S$ satisfies $Hy = 0$, so is codeword of weight $< d$, a contradiction.

Conversely, distance d means there's a codeword y of weight d, which means $Hy = 0$ and hence the columns of \mathbf{H} for the non-zero coordinates of y are linearly dependent.

Dual Codes

For every code with

$$G = [I_k \ A] \quad \text{and} \quad H = [A^T \ I_{n-k}]$$

we have a dual code with

$$G = [I_{n-k} \ A^T] \quad \text{and} \quad H = [A \ I_k]$$

Jacques Hadamard
(1865-1963)

The dual of the Hamming codes are the **binary “simplex” or Hadamard codes**: $(2^{r-1}, r, 2^{r-1})$

Dual Codes

For every code with

$$G = [I_k \ A] \quad \text{and} \quad H = [A^T \ I_{n-k}]$$

we have a dual code with

$$G = [I_{n-k} \ A^T] \quad \text{and} \quad H = [A \ I_k]$$

Irving Reed

David Muller

The dual of the Hamming codes are the **binary “simplex” or Hadamard codes: $(2^{r-1}, r, 2^{r-1})$ codes**

The dual of the extended Hamming codes are the **first-order Reed-Muller codes**.

Note that these codes are highly redundant, with very low rate. Where would these be useful?

NASA Mariner

Deep space probes from
1969-1977.

Mariner 10 shown

Used (32,6,16) Reed Muller code ($r = 5$)

Rate = $6/32 = .1875$ (only ~ 1 out of 5 bits are useful)

Can fix up to 7 bit errors per 32-bit word

Dual Codes

For every code with

$$G = [I_k \ A] \quad \text{and} \quad H = [A^T \ I_{n-k}]$$

we have a dual code with

$$G = [I_{n-k} \ A^T] \quad \text{and} \quad H = [A \ I_k]$$

Dual of (7, 4, 3) Hamming code has generator matrix

$$G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Note: every non-zero r -bit vector appears as a column.

Lemma: this is a $(2^r - 1, r, 2^{r-1})$ code.

Proof: <discuss>

How to find the error locations

Hy^T is called the **syndrome** (no error if 0).

In **general** we can find the error location by creating a table that maps each syndrome to a set of error locations.

Theorem: assuming $s \leq (d-1)/2$ errors, every syndrome value corresponds to a unique set of error locations.

Proof: HW exercise.

Keep table of all these syndrome values. Has q^{n-k} entries, each of size at most n (i.e. keep a bit vector of locations).

Generic algorithm: not efficient for large values of $(n-k)$!
(Better algorithms exists for special codes.)

Consider a (5,2) linear block code:

$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix} \quad H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Its standard array table:

	codewords				syndrome
	00000	10101	01110	11011	000
	00001	10100	01111	11010	001
	00010	10111	01100	11001	010
error vectors with same syndrome	00100	10001	01010	11111	100
	01000	11101	00110	10011	110
	10000	00101	11110	01011	101
	11000	01101	10110	00011	011
	10010	00111	11100	01001	111

Example drawn from Bill Cherowitzo's notes.

Another very useful bound: Singleton bound

Theorem: For every $(n, k, d)_q$ code, $n \geq k + d - 1$

Proof:

<board>

Codes that meet Singleton bound with equality are called
Maximum Distance Separable (MDS)

Maximum Distance Separable (MDS)

Q: Are Hamming codes MDS? <board>

Only two binary MDS codes!

Q: What are they?

1. Repetition codes
2. Single-parity check codes

Need to go beyond the binary alphabet!

(We will need some number theory for this)

Number Theory Outline

Groups

- Definitions, Examples, Properties
- Multiplicative group modulo n

Fields

- Definition, Examples
- Polynomials
- Galois Fields

Number theory is crucial for arithmetic over finite sets.

Groups

A **Group** $(G, *, I)$ is a set G with operator $*$ such that:

1. **Closure.** For all $a, b \in G$, $a * b \in G$
2. **Associativity.** For all $a, b, c \in G$, $a * (b * c) = (a * b) * c$
3. **Identity.** There exists $I \in G$, such that for all $a \in G$, $a * I = I * a = a$
4. **Inverse.** For every $a \in G$, there exist a unique element $b \in G$, such that $a * b = b * a = I$

An **Abelian or Commutative Group** is a Group with the additional condition

5. **Commutativity.** For all $a, b \in G$, $a * b = b * a$

Examples of groups

Q: Examples?

- Integers, Reals or Rational with Addition
- The nonzero Reals or Rational with Multiplication
- Non-singular $n \times n$ real matrices with
Matrix Multiplication
- Permutations over n elements with composition
 $[0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 0] \circ [0 \rightarrow 1, 1 \rightarrow 0, 2 \rightarrow 2] = [0 \rightarrow 0, 1 \rightarrow 2, 2 \rightarrow 1]$

Often we will be concerned with **finite groups**, i.e.,
ones with a finite number of elements.

(We will start with finite groups in the next lecture)