15-853:Algorithms in the Real World

Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes sign up, template and instructions
on the course webpage
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Recap: Block Codes

message (M)

\

coder

codeword (c)

noisy
channel

codeword’ (c)

decoder

/

message or error
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Each message and codeword is of
fixed size

Y. = codeword alphabet
k=lm[ n=ic] q=[x]

C = "“code” = set of codewords
C < X" (codewords)

A(X,y) = number of positions s.t. X; # y;
d = minfA(x,y) : x,ye C, x # y}

Code described as: (n,k,d),

Page?2



Recap: Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:
1. detect any (d-1) errors
2. recover any (d-1) erasures
3. correct any <write> errors

Stated another way:
For s-bit error detection or erasure recovery:d>s + 1
For s-bit error correctiond >2s + 1

To correct a erasures and b errors:

d>a+2b+1
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Clarification

* Error model:

1. Arbitrary/adversarial errors
- Error can occur in “any” s code symbols

2. Symmetric across alphabet values

* Role of minimum distance decoding

- Think about which all points that a codeword can go to under error
(spheres of Hamming radius s)

- If spheres overlap, no decoding algorithm can decode
- Closest codeword is the “correct” codeword.
- So decoding is “min distance decoding”

- Naive way of achieving min-dist-decoding is brute force search
across all codewords. There are efficient ways of getting to the
closest codeword when codes have structure.
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Recap: Linear Codes

If > is a field, then >." is a vector space

Definition: Cis a linear code if it is a linear subspace of >."
of dimension k.

This means that there is a set of k independent vectors
v, € 2" (1 <1 <Kk) that span the subspace.

l.e. every codeword can be written as:
c=a,Vv,ta,Vv,+...+a, Vv, wherea e

“Linear”: linear combination of two codewords is a codeword.
Minimum distance = weight of least-weight codeword
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Recap: Generator and Parity Check
Matrices

Generator Matrix:
A k x n matrix G such that: C = { xG | x € > X}
Made from stacking the spanning vectors

Parity Check Matrix:
An (n — k) x n matrix H such that: C={y € >" | Hy" = 0}
(Codewords are the null space of H.)

These always exist for linear codes
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If syndrome = 0, received word = codeword
else use syndrome to get back codeword
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Recap: Linear Codes

Basis vectors for the (7,4,3), Hamming code:

m; Mg Mg pg M3 Py P

v = 1L 0 0 I 0 I |
v, = 0 1 0 I 0 I 0
vv = 0 0 I 1 0 0 |
v, = 0 0 0 0 | I |
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Example and “Standard Form”

For the Hamming (7,4,3) code:

By swapping columns

0 01
1 01
0 11

R O O O

0000

R O

h

1
0
0
0
4 and 5itis in
1
0
0
_0

o o +—» O
o +— O
—, O O
o - - B

t
1
1
0
1

1
0
1
1
(S
1
0
1
1

G is said to be in “standard form”
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form | ,A.

Page9



Relationship of G and H

Theorem: For binary codes, if G is in standard form [I, A]
then H =[AT I ,]

Example of (7,4,3) Hamming code:

transpose

H =

o rr O O
R O O O

e

o K Bk

1
0
1

O O O K
O O O
O B kB B
) O Rk
P P O
o o K
o L O
) O O

=T
1
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Relationship of G and H

Proof. <Board>
Two parts to prove:

1. Suppose that x is a message. Then H(xG)' = 0.

2. Conversely, suppose that Hy" = 0. Thenyisa
codeword.
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Relationship of G and H

The above proof held only for IF,.
Q: What about other alphabets?

For codes over a general field IFg,

If G is of the standard form [I, A]
then the parity check matrix H = [—A" I,,_,]

In the binary case, —A = A and hence the principle is the
same
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The d of linear codes

Theorem: Linear codes have distance d if
every set of (d-1) columns of H are linearly independent,
but there is a set of d columns that are linearly dependent.

transpose

H =

e
o K Bk

1
0
1

o B O O
m, O O O
P P O
o O K
o O
~ O O

O O O K
O O O
O B kB B
) O Rk

=T
1

High level idea: for linear codes, distance equals least weight
of non-zero codeword. And each codeword gives some collection
of columns that must sum to zero.
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The d of linear codes

Theorem: Linear codes have distance d if
every set of (d-1) columns of H are linearly independent,
but there is a set of d columns that are linearly dependent.

If some set S of d-1 columns were linearly dependent, then
dies CkHi = 0

But then y which has zeroes on coordinates outside S, and
c; for each coordinate i € S satisfies Hy = 0,
so is codeword of weight < d, a contradiction.

Conversely, distance d means there’s a codeword y of weight d,
which means Hy = 0 and hence the columns of H for the
non-zero coordinates of y are linear dependent.
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Dual Codes

For every code with

G =l Al and H=[AT I ,]
we have a dual code with
G= [l AT and H=[A ]

Jacques Hadamard
(1865-1963)

The dual of the Hamming codes are the binary
“simplex” or Hadamard codes: (2"-1,r,2"')
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Dual Codes

For every code with
G =l Al and H=[AT I ,]
we have a dual code with
G= [l AT and H=[A ] A

David Muller

The dual of the Hamming codes are the binary
“simplex”” or Hadamard codes: (2"-1,r,2"') codes

The dual of the extended Hamming codes are the first-
order Reed-Muller codes.

Note that these codes are highly redundant, with very low
rate. Where would these be useful?
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NASA Mariner

Deep space probes from
1969-1977.

Mariner 10 shown

Used (32,6,16) Reed Muller code (r = 5)
Rate = 6/32 = .1875 (only ~1 out of 5 bits are useful)
Can fix up to 7 bit errors per 32-bit word
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Dual Codes

For every code with

G =l Al and H=[AT |_,]
we have a dual code with
G= [l AT and H=T[AI]

Dual of (7, 4, 3) Hamming code has generator matrix

0001111
G=101100
10101

1 1 1].
0 0 1

Note: every non-zero r-bit vector appears as a column.

Lemma: thisisa (2"— 1, r, 2"') code.
Proof: <discuss>
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How to find the error locations

Hy' is called the syndrome (no error if 0).

In general we can find the error location by creating a table
that maps each syndrome to a set of error locations.

Theorem: assuming s < (d-1)/2 errors, every syndrome value
corresponds to a unique set of error locations.

Proof: HW exercise.

Keep table of all these syndrome values. Has g"* entries,
each of size at most n (i.e. keep a bit vector of locations).

Generic algorithm: not efficient for large values of (n-k)!
(Better algorithms exists for special codes.)
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Consider a (5,2) linear block code:

1 01 0 1
G=
(01110)

Its standard array table:

1 1
H=|0 1
1 0

codewords

0
0
1

< 00000 10101 01110 11011.>

00001 10100 OI1111

0001

001

error vectorscgo100 10001 01010 1111

with same 01000 11101
syndrome 10000 00101
11000 01101
10010 00111

Example drawn from Bill Cherowitzo’s notes.
15-853

00110 10011
11110 01011
10110 00011
11100 01001

11010

syndrome

000
001
010
100
110
101
011
111
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Another very useful bound:
Singleton bound

Theorem: Forevery (n, k, d),code, n2k+d-1
Proof:
<board>

Codes that meet Singleton bound with equality are called
Maximum Distance Separable (MDS)
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Maximum Distance Separable (MDS)

Q: Are Hamming codes MDS? <board>

Only two binary MDS codes!

Q: What are they?

1. Repetition codes
2. Single-parity check codes

Need to go beyond the binary alphabet!
(We will need some number theory for this)
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Number Theory Outline

Groups
— Definitions, Examples, Properties
— Multiplicative group modulo n

Fields
— Definition, Examples
— Polynomials
— Galois Fields

Number theory is crucial for arithmetic over finite sets.
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Groups

A Group (G,* 1) is a set G with operator * such that:

1.
2.
3.

4.

Closure. Foralla,b €e G,a*b € G
Associativity. For all a,b,c € G, a*(b*c) = (a*b)*c
ldentity. There exists | € G, such that for all

a € G, a*l=l*a=a

Inverse. For every a € G, there exist a unique
element b € G, such that a*b=b*a=I

An Abelian or Commutative Group is a Group with the

additional condition

.
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Commutativity. For all a,b € G, a*b=b*a
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Examples of groups

Q: Examples?
— Integers, Reals or Rationals with Addition
— The nonzero Reals or Rationals with Multiplication

— Non-singular n x n real matrices with
Matrix Multiplication

— Permutations over n elements with composition
[0—1, 152, 2—-0] 0 [0—1, 150, 2>2] = [0—-0, 152, 2—>1]

Often we will be concerned with finite groups, l.e.,
ones with a finite number of elements.

(We will start with finite groups in the next lecture)
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