

15-853:Algorithms in the Real World

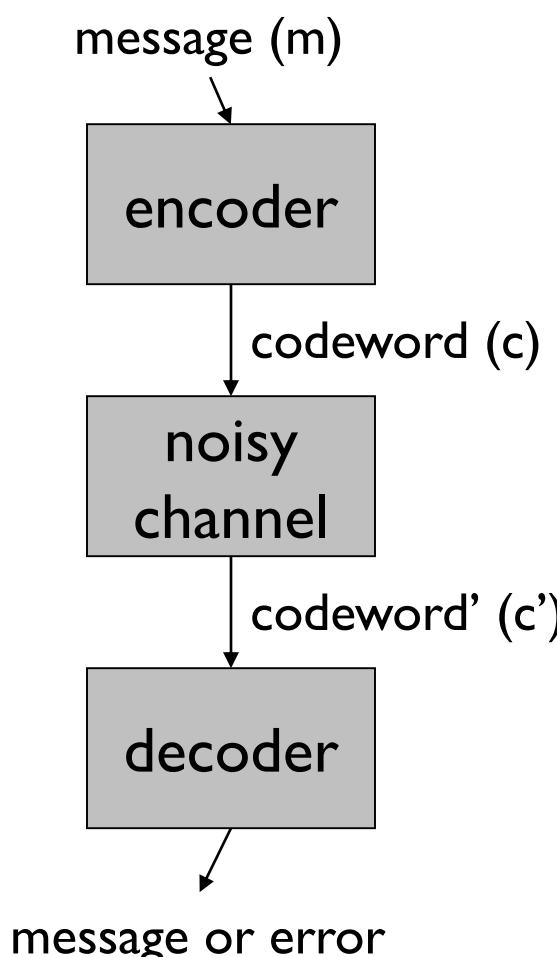
Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes template and instructions on the course webpage

General Model



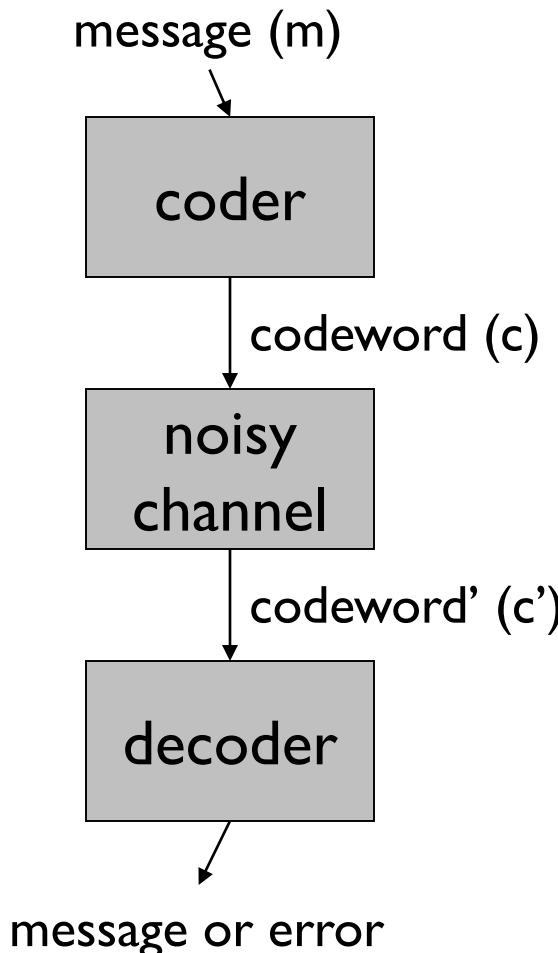
“Noise” introduced by the channel:

- changed fields in the codeword vector (e.g. a flipped bit).
 - Called **errors**
- missing fields in the codeword vector (e.g. a lost byte).
 - Called **erasures**

How the decoder deals with errors and/or erasures?

- **detection** (only needed for errors)
- **correction**

Block Codes



Each message and codeword is of fixed size

Σ = codeword alphabet

$$k = |m| \quad n = |c| \quad q = |\Sigma|$$

\mathbf{C} = “code” = set of codewords

$$\mathbf{C} \subseteq \Sigma^n \text{ (codewords)}$$

$\Delta(x, y)$ = number of positions s.t. $x_i \neq y_i$

$$d = \min\{\Delta(x, y) : x, y \in \mathbf{C}, x \neq y\}$$

Code described as: $(n, k, d)_q$

Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:

1. detect any $(d-1)$ errors
2. recover any $(d-1)$ erasures
3. correct any \langle write \rangle errors

Stated another way:

For s-bit error detection $d \geq s + 1$

For s-bit error correction $d \geq 2s + 1$

To correct a erasures and b errors if

$$d \geq a + 2b + 1$$

Next we will see
an application of erasure codes in
today's large-scale data storage systems

Large-scale distributed storage systems

1000s of interconnected servers

100s of petabytes of data

- Commodity components
- Software issues, power failures, maintenance shutdowns

Large-scale distributed storage systems

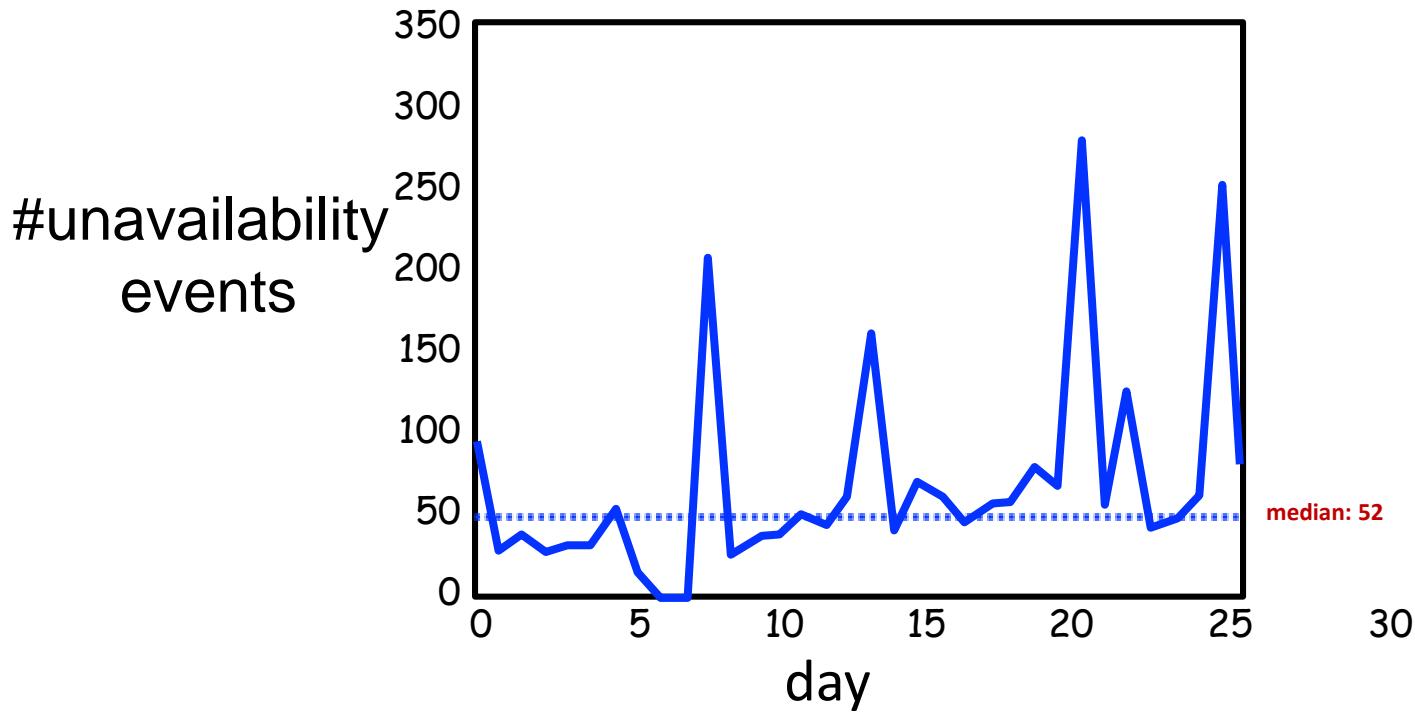
1000s of interconnected servers

**Unavailabilities are the norm
rather than the exception**

- Commodity components
- Software issues, power failures, maintenance shutdowns

Facebook analytics cluster in production: unavailability statistics

- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

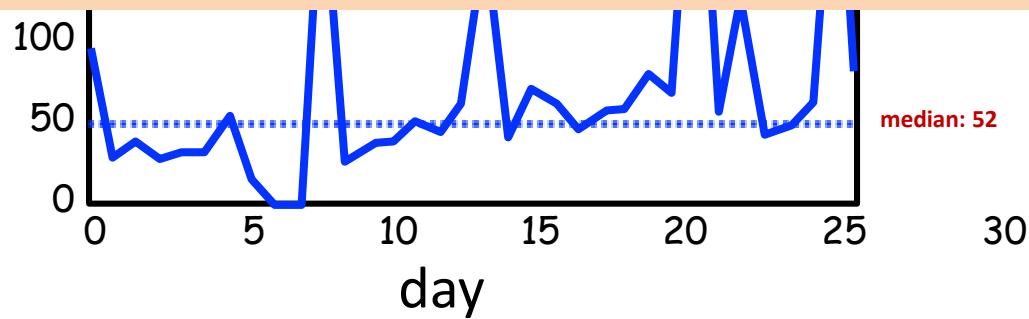


[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

Facebook analytics cluster in production: unavailability statistics

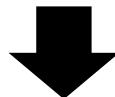
- Multiple thousands of servers
- Unavailability event: server unresponsive for > 15 min

Daily server unavailability = 0.5 - 1%



[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

Servers unavailable



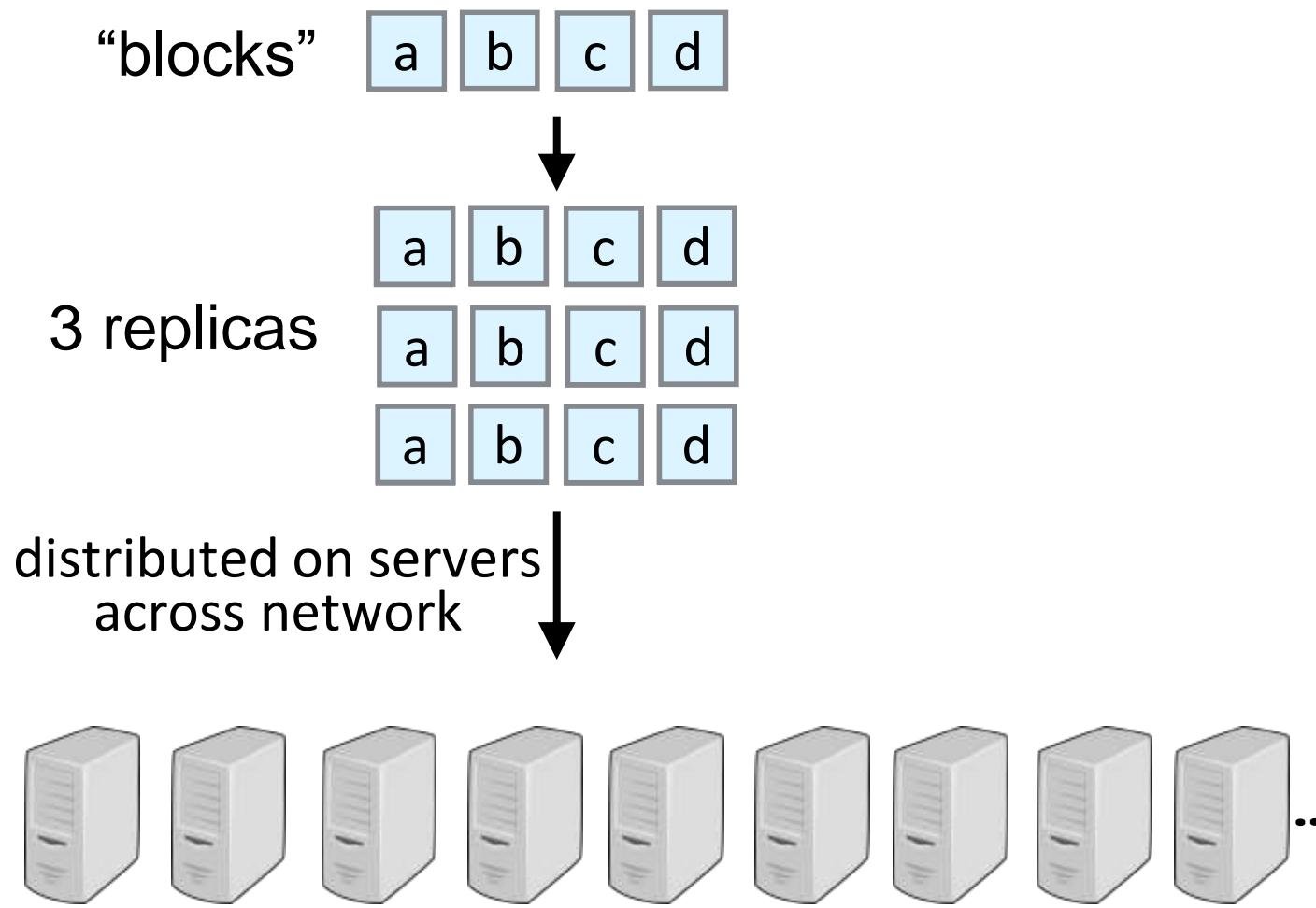
Data inaccessible

Applications cannot wait,
Data cannot be lost

Data needs to be stored in a redundant fashion

Traditional approach: Replication

- Storing **multiple copies** of data: Typically 3x-replication



Traditional approach: Replication

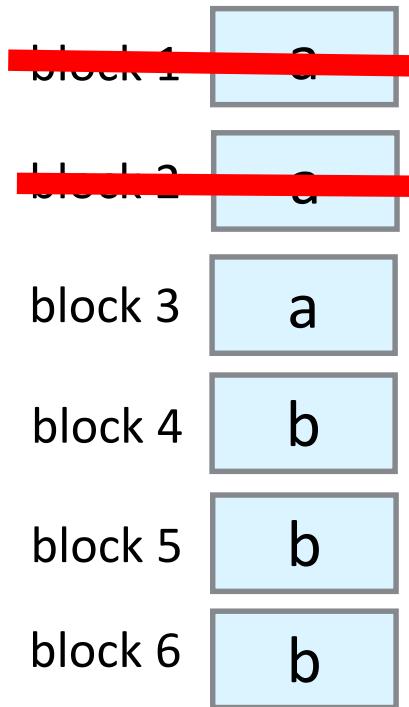
- Storing **multiple copies** of data: Typically 3x-replication

Too expensive for large-scale data

Better alternative: **sophisticated codes**

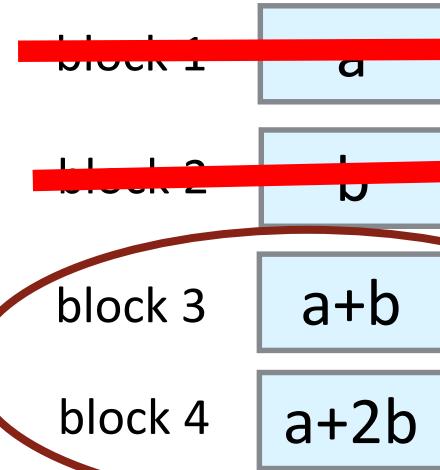
Two data blocks to be stored: a and b

Tolerate any 2 failures



3-replication

Storage overhead = 3x

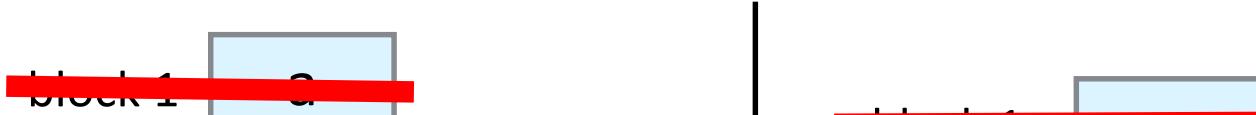


Erasure code

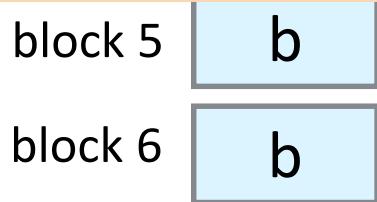
Storage overhead = 2x

Two data blocks to be stored: a and b

Tolerate any 2 failures



**Much less storage
for desired fault tolerance**



3-replication

Storage overhead = 3x

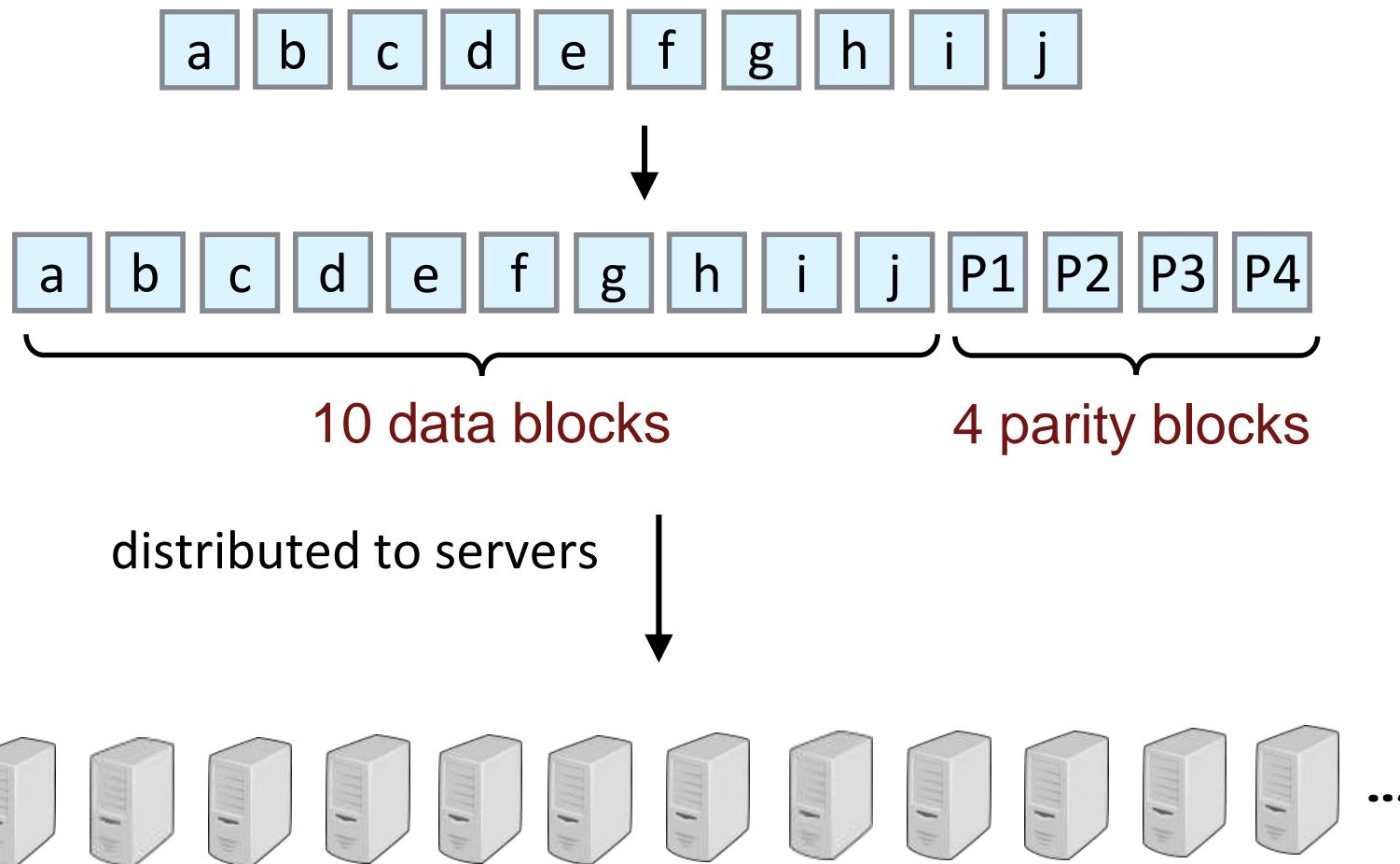
“parity blocks”

Erasure code

Storage overhead = 2x

Erasure codes: how are they used in distributed storage systems?

Example:



Almost all large-scale storage systems today employ erasure codes

Facebook, Google, Amazon, Microsoft...

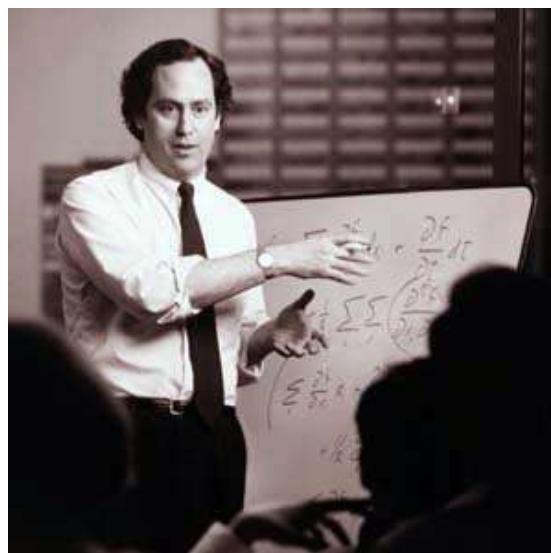
“Considering trends in data growth & datacenter hardware, we foresee HDFS **erasure coding** being an **important feature in years to come**”

- Cloudera Engineering (September, 2016)

Error Correcting Multibit Messages

We will first discuss Hamming Codes

Named after Richard Hamming (1915-1998), a pioneer in error-correcting codes and computing in general.



Error Correcting Multibit Messages

We will first discuss Hamming Codes

Codes are of form: $(2^r-1, 2^r-1 - r, 3)$ for any $r > 1$

e.g. $(3,1,3)$, $(7,4,3)$, $(15,11,3)$, $(31, 26, 3)$, ...

which correspond to 2, 3, 4, 5, ... “parity bits” (i.e. $n-k$)

Question: Error detection and correction capability?

(Can detect 2-bit errors, or correct 1-bit errors.)

The high-level idea is to “localize” the error.

Hamming Codes: Encoding

$r = 4$

Localizing error to top or bottom half 1xxx or 0xxx

$$P_8 = m_{15} \oplus m_{14} \oplus m_{13} \oplus m_{12} \oplus m_{11} \oplus m_{10} \oplus m_9$$

Localizing error to x1xx or x0xx

$$P_4 = m_{15} \oplus m_{14} \oplus m_{13} \oplus m_{12} \oplus m_7 \oplus m_6 \oplus m_5$$

Localizing error to xx1x or xx0x

$$P_2 = m_{15} \oplus m_{14} \oplus m_{11} \oplus m_{10} \oplus m_7 \oplus m_6 \oplus m_3$$

Localizing error to xxxx1 or xxxx0

$$P_1 = m_{15} \oplus m_{13} \oplus m_{11} \oplus m_9 \oplus m_7 \oplus m_5 \oplus m_3$$

Hamming Codes: Decoding

We don't need p_0 , so we have a $(15, 11, ?)$ code.

After transmission, we generate

$$b_8 = p_8 \oplus m_{15} \oplus m_{14} \oplus m_{13} \oplus m_{12} \oplus m_{11} \oplus m_{10} \oplus m_9$$

$$b_4 = p_4 \oplus m_{15} \oplus m_{14} \oplus m_{13} \oplus m_{12} \oplus m_7 \oplus m_6 \oplus m_5$$

$$b_2 = p_2 \oplus m_{15} \oplus m_{14} \oplus m_{11} \oplus m_{10} \oplus m_7 \oplus m_6 \oplus m_3$$

$$b_1 = p_1 \oplus m_{15} \oplus m_{13} \oplus m_{11} \oplus m_9 \oplus m_7 \oplus m_5 \oplus m_3$$

With no errors, these will all be zero

With one error $b_8 b_4 b_2 b_1$ gives us the error location.

e.g. **0100** would tell us that p_4 is wrong, and
1100 would tell us that m_{12} is wrong

Hamming Codes

Can be generalized to any power of 2

- $n = 2^r - 1$ (15 in the example)
- $(n-k) = r$ (4 in the example)
- Can correct one error
- $d \geq 3$ (since we can correct one error)
- Gives $(2^r-1, 2^r-1-r, 3)$ code

(We will later see an easy way to prove the minimum distance)

Extended Hamming code

- Add back the parity bit at the end
- Gives $(2^r, 2^r-1-r, 4)$ code
- Can still correct one error, but now can detect 3

A Lower bound on parity bits:

Hamming bound

How many nodes in hypercube do we need so that $d = 3$?

Each of 2^k codewords eliminates n neighbors plus itself,
i.e. $n+1$

$$\begin{aligned}2^n &\geq (n+1)2^k \\n &\geq k + \log_2(n+1) \\n &\geq k + \lceil \log_2(n+1) \rceil\end{aligned}$$

In above Hamming code, $15 \geq 11 + \lceil \log_2(15+1) \rceil = 15$.

Hamming Codes are called perfect codes since they match the lower bound exactly.

A Lower bound on parity bits: Hamming bound

What about fixing 2 errors (i.e. $d=5$)?

Each of the 2^k codewords eliminates itself, its neighbors and its neighbors' neighbors, giving:

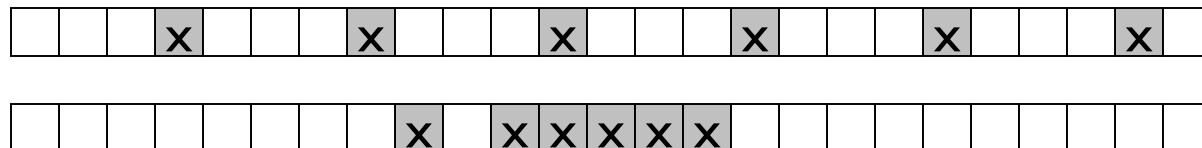
<board>

Generally to correct s errors:

$$n \geq k + \log_2 \left(1 + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{s} \right)$$

Lower Bounds: a side note

The lower bounds assume arbitrary placement of bit errors.
In practice errors are likely to have patterns:
maybe evenly spaced, or clustered:



Can we do better if we assume **regular errors**?

We will come back to this later when we talk about **Reed-Solomon** codes. This is a big reason why Reed-Solomon codes are used much more than Hamming-codes.

Q:

If no structure in the code, how would one perform encoding?

<board>

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is **linearity**

Linear Codes

If Σ is a field, then Σ^n is a vector space

Definition: C is a linear code if it is a linear subspace of Σ^n of dimension k.

This means that there is a set of k independent vectors

$v_i \in \Sigma^n$ ($1 \leq i \leq k$) that span the subspace.

i.e. every codeword can be written as:

$$c = a_1 v_1 + a_2 v_2 + \dots + a_k v_k \quad \text{where } a_i \in \Sigma$$

“Basis (or spanning) Vectors”

Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

<board>

2. Minimum distance (d) = weight of least weight (non-zero) codewords

<Write proof>

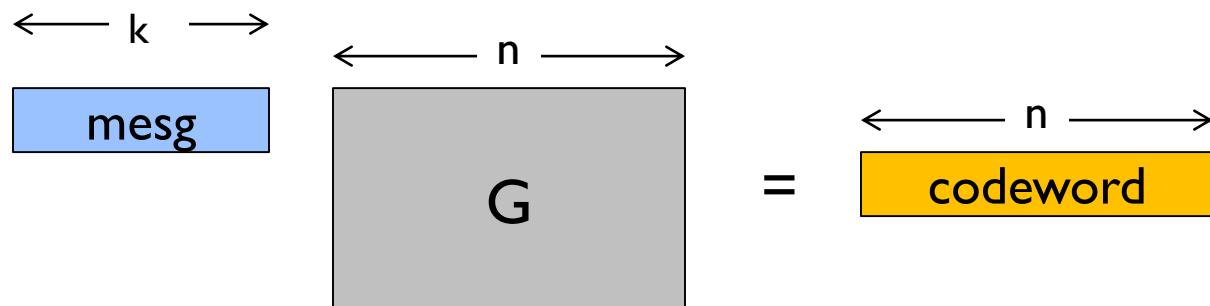
Generator and Parity Check Matrices

3. Every linear code has two matrices associated with it.

1. Generator Matrix:

A $k \times n$ matrix \mathbf{G} such that: $C = \{ x\mathbf{G} \mid x \in \Sigma^k \}$

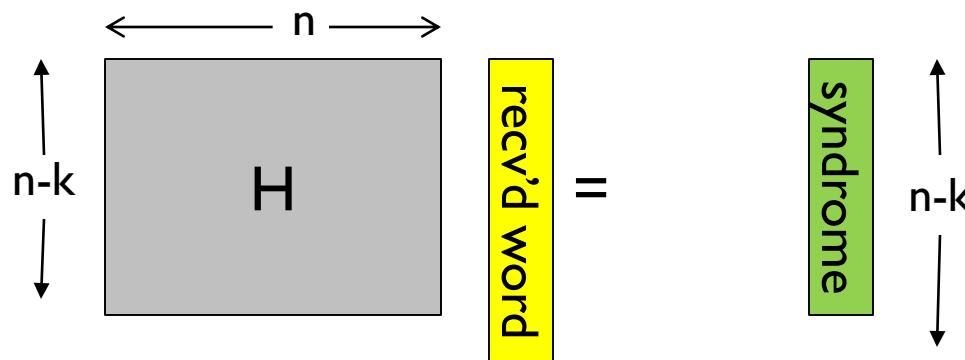
Made from stacking the spanning vectors



Generator and Parity Check Matrices

2. Parity Check Matrix:

An $(n - k) \times n$ matrix \mathbf{H} such that: $C = \{y \in \Sigma^n \mid \mathbf{H}y^T = 0\}$
(Codewords are the null space of \mathbf{H} .)



if syndrome = 0, received word = codeword

else have to use syndrome to get back codeword ("decode")

Advantages of Linear Codes

- Encoding is efficient (vector-matrix multiply)
- Error detection is efficient (vector-matrix multiply)
- **Syndrome** (Hy^T) has error information
- How to decode? In general, have q^{n-k} sized table for decoding (one for each syndrome).
Useful if $n-k$ is small, else want other approaches.

Linear Codes

Basis vectors for the $(7,4,3)_2$ Hamming code:

	m_7	m_6	m_5	P_4	m_3	P_2	P_1
v_1	1	0	0	1	0	1	1
v_2	0	1	0	1	0	1	0
v_3	0	0	1	1	0	0	1
v_4	0	0	0	0	1	1	1

Another way to see that $d = 3$ for Hamming codes?

What is the least Hamming weight among non-zero codewords?

In the next class we will continue studying linear codes
starting with
additional properties of generator and parity check matrices
and relationship between them