15-853:Algorithms in the Real World

Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes template and instructions on the
course webpage
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General Model

message (m) “Noise” introduced by the channel:

\ « changed fields in the codeword
vector (e.g. a flipped bit).

 Called errors

encoder

codeword (c)

noisy  missing fields in the codeword
channel vector (e.g. a lost byte).

« Called erasures

codeword’ (c’)

decoder How the decoder deals with errors
7 and/or erasures?
« detection (only needed for

message or error
errors)

e correction
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Block Codes

message (m) Each message and codeword is of
; fixed size
coder 2. = codeword alphabet

k=lm| n=lc| g=[2]

codeword (c)

noisy
channel

C = "“code” = set of codewords
C < X" (codewords)

codeword’ (c)

decoder A(x,y) = number of positions s.t. x. # y.
/ d = min{A(X,y) : X,ye C, X # Yy}

message or error

Code described as: (n,k,d),
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Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:
1. detect any (d-1) errors
2. recover any (d-1) erasures
3. correct any <write> errors

Stated another way:
For s-bit error detectiond >s + 1
For s-bit error correctiond >2s + 1

To correct a erasures and b errors if

d>a+2b+1

15-853
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Next we will see
an application of erasure codes In
today’s large-scale data storage systems
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Large-scale distributed storage systems

YouTube

1000s of interconnected servers

100s of petabytes of data

« Commodity components

« Software issues, power failures, maintenance shutdowns



Large-scale distributed storage systems

Dropbox

1000s of interconnected servers SR Tpslaie N (P
Unavailabilities are the norm
rather than the exception

« Software issues, power failures, maintenance shutdowns




Facebook analytics cluster in production:

unavailability statistics

* Multiple thousands of servers
* Unavailability event: server unresponsive for > 15 min
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[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]



Facebook analytics cluster in production:
unavailability statistics

* Multiple thousands of servers
* Unavailability event: server unresponsive for > 15 min

350
ol |

Daily server unavailability = 0.5 - 1%
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[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]



Servers unavailable

¥

Data inaccessible

Applications cannot wait,
Data cannot be lost

Data needs to be stored in a redundant fashion



Traditional approach: Replication

« Storing multiple copies of data: Typically 3x-replication

“blocks” |al|b||c| d

al bllci|d
3replicas [S][pllc!ld

allblicl|ld

across network

PooPooororoy

distributed on serversl



Traditional approach: Replication

« Storing multiple copies of data: Typically 3x-replication

Too expensive for large-scale data

S replicas |a||b||c||d|

Better alternative: sophisticated codes

gooPPooorore



Two data blocks to be stored:| a |and| b

Tolerate any 2 failures

ot S e
N

block 3 a

block 3
block4 | b

block 4
block 5 b

parity blocks
block 6 b
3-replication Erasure code

Storage overhead = 3x | | Storage overhead = 2x |




Two data blocks to be stored:| a |and| b

roe——

Much less storage
for desired fault tolerance

block 5

block 6

3-replication

b

Tolerate any 2 failures

[ 1

b

Storage overhead = 3x |

\ /

“parity blocks"

Erasure code

| Storage overhead = 2x |




Erasure codes: how are they used in
distributed storage systems?

Example:

allbllclid|lel|fllgl|lh|lill]j

'

allbilc|idllel|fllglh||il|l]j]|P1|P2/|P3|/P4

\ J \. J
Y Y

10 data blocks 4 parity blocks

distributed to servers l

-90000000000000-



Almost all large-scale storage systems today
employ erasure codes

Facebook, Google, Amazon, Microsoft...

“Considering trends in data growth & datacenter hardware, we foresee
HDFS erasure coding being an important feature in years to come”

- Cloudera Engineering (September, 2016)



Error Correcting Multibit Messages

We will first discuss Hamming Codes

Named after Richard Hamming (1915-1998), a pioneer in
error-correcting codes and computing in general.
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Error Correcting Multibit Messages

We will first discuss Hamming Codes

Codes are of form: (2"-1, 2™-1 —r, 3) forany r> 1
e.g. (3,1,3), (7,4,3), (15,11,3), (31, 26, 3), ...
which correspond to 2, 3, 4, 5, ... “parity bits” (i.e. n-k)

Question: Error detection and correction capability?
(Can detect 2-bit errors, or correct 1-bit errors.)

The high-level idea is to “localize” the error.
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Hamming Codes: Encoding

Localizing error to top or bottom half Ixxx or Oxxx

ms

M4

m, 3

m,my,

Mo

m, [Bllm,

Mg,

Mg

ms

Pe=MsOmMOm;Em;&m; & m;; &my

Localizing error to x|xx or x0xx

ms

m, 4m;3

mmy

Mo

My

Ps

m;

Mg,

m5.m3

P4=mMsOmOm;Em;; ®m; ®m, © mg

Localizing error to xx|x or xx0x

ms

m4

m;

m,

my

Mo

Mgy

Ps

my

Mg,

Mg

P4

m, [l [

P=mMs;@m,®m; &my®m; ®m, O m;
Localizing error to xxx| or xxx0

M

[0T%s

m;

m,

my,

Mo

Mgy

Ps

my

Mg,

Mg

P4

ms

A

PP=mMs®m;®m, ®mg@m; & mg @ my
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Hamming Codes: Decoding

ms

m 4

m;

m,

my

Mo

m, [Blm,

Mg,

ms [ . [T

We don’t need p,, so we have a (15,11,?) code.
After transmission, we generate
bg = pg © Mys ® My © Mz ® My, ® My; S My © Mg
b,=p, @M E®M, EMz; @My, M, dMg D Mg
b, =p,®@M: @M, EMy; @M &M, DMy D My
D, =P, EPMEEMZDEM;DEMEA M, M DMy
With no errors, these will all be zero

With one error bgh,b,b, gives us the error location.

e.g. 0100 would tell us that p, is wrong, and
1100 would tell us that m,, is wrong
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Hamming Codes

Can be generalized to any power of 2
— n=2"-1 (15 in the example)
— (n-k) =r (4 in the example)
— Can correct one error
— d = 3 (since we can correct one error)
— Gives (2'-1, 2"-1-r, 3) code
(We will later see an easy way to prove the minimum distance)

Extended Hamming code
— Add back the parity bit at the end
— Gives (27, 2'-1-r, 4) code
— Can still correct one error, but now can detect 3
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A Lower bound on parity bits:
Hamming bound

How many nodes in hypercube do we need so that d = 3?
Each of 2k codewords eliminates n neighbors plus itself,

l.e. n+l ’ y
2 (Nn+1)2
n k +log,(n+1)
n =2 k+|_log2(n +1)_\

VAR \V/

In above Hamming code, 15 > 11 + | log,(15+1) | = 15.

Hamming Codes are called perfect codes since they
match the lower bound exactly.
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A Lower bound on parity bits:
Hamming bound

What about fixing 2 errors (i.e. d=5)?

Each of the 2k codewords eliminates itself, its neighbors
and its neighbors’ neighbors, giving:

<board>

Generally to correct s errors:
n>k|o(1+n+n+ +n)
D _|_ e o
20T 7 s
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| ower Bounds: a side note

The lower bounds assume arbitrary placement of bit errors.

In practice errors are likely to have patterns:
maybe evenly spaced, or clustered:

X X X X X X

X XXX X[X

Can we do better if we assume regular errors!

We will come back to this later when we talk about Reed-
Solomon codes. This is a big reason why Reed-Solomon
codes are used much more than Hamming-codes.
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Q:

If no structure in the code, how would one perform encoding?

<board>

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity
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Linear Codes

If > is a field, then >." is a vector space

Definition: Cis a linear code if it is a linear subspace of >."
of dimension k.

This means that there is a set of k independent vectors
v, € 2" (1 <1 <Kk) that span the subspace.

l.e. every codeword can be written as:
c=a Vv,+ta,v,+...+a Vv, wherea e

“Basis (or spanning) Vectors”
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Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

<board>

2. Minimum distance (d) = weight of least weight (non-zero)
codewords

<Write proof>
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Generator and Parity Check Matrices

3. Every linear code has two matrices associated with it.

1. Generator Matrix:
A k x n matrix G such that: C = {xG | x € 2X}
Made from stacking the spanning vectors

mesg n
codeword

@
I
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Generator and Parity Check Matrices

2. Parity Check Matrix:
An (n — k) x n matrix H such that: C={y € >" | Hy" = 0}
(Codewords are the null space of H.)

n-k H

n-k

SWIOJpUAS

PJOM P AJ3
I

if syndrome = 0, received word = codeword

else have to use syndrome to get back codeword (“decode”)
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Advantages of Linear Codes

Encoding is efficient (vector-matrix multiply)
Error detection is efficient (vector-matrix multiply)
Syndrome (Hy") has error information

How to decode? In general, have g™ sized table
for decoding (one for each syndrome).

Useful if n-k is small, else want other approaches.
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Linear Codes

Basis vectors for the (7,4,3), Hamming code:

m; Mg Mg pg M3 Py P

v = 1L 0 0 I 0 I |
v, = 0 1 0 I 0 I 0
vv = 0 0 I 1 0 0 |
v, = 0 0 0 0 | I |

Another way to see that d = 3 for Hamming codes?
What is the least Hamming weight among non-zero codewords?
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In the next class we will continue studying linear codes
starting with
additional properties of generator and parity check matrices
and relationship between them
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