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15-853:Algorithms in the Real World

Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes template and instructions on the 

course webpage
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General Model

codeword (c)

encoder

noisy

channel

decoder

message (m)

message or error

codeword’ (c’)

“Noise” introduced by the channel:

• changed fields in the codeword
vector (e.g. a flipped bit). 

• Called errors

• missing fields in the codeword
vector (e.g. a lost byte).  

• Called erasures

How the decoder deals with errors 
and/or erasures?

• detection (only needed for 
errors)

• correction
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Block Codes

Each message and codeword is of 

fixed size

 = codeword alphabet

k =|m|    n = |c|   q = ||

C = “code” = set of codewords

C  Sn  (codewords)

D(x,y) = number of positions s.t. xi  yi

d = min{D(x,y) : x,y C, x  y}

Code described as: (n,k,d)q

codeword (c)

coder

noisy

channel

decoder

message (m)

message or error

codeword’ (c’)



Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:

1. detect any (d-1) errors

2. recover any (d-1) erasures

3. correct any  <write>    errors

Stated another way:

For s-bit error detection d  s + 1

For s-bit error correction d  2s + 1

To correct a erasures and b errors if 

d  a + 2b + 1
15-853 Page4
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Next we will see 

an application of erasure codes in 

today’s large-scale data storage systems 



Large-scale distributed storage systems

1000s of interconnected servers 

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns



Large-scale distributed storage systems

1000s of interconnected servers 

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns

Unavailabilities are the norm 
rather than the exception



Facebook analytics cluster in production: 
unavailability statistics

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,  
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52
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Facebook analytics cluster in production: 
unavailability statistics

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,  
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52
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Daily server unavailability = 0.5 - 1% 



Data needs to be stored in a redundant fashion

Servers unavailable

Data inaccessible

Applications cannot wait,

Data cannot be lost
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• Storing multiple copies of data: Typically 3x-replication

Traditional approach: Replication
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a b c d

a b c d

……

distributed on servers
across network

3 replicas

a b c d

a b c d

a b c d

a b c d“blocks”

• Storing multiple copies of data: Typically 3x-replication

Too expensive for large-scale data

Traditional approach: Replication

Better alternative: sophisticated codes
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ablock 1

block 2

block 4

block 5

block 3

block 6

a

a

b

b

b

a

b

a+b

a+2b

3-replication Erasure code

block 1

block 2

block 3

Storage overhead  = 3x Storage overhead  = 2x

block 4

Two data blocks to be stored: and

Tolerate any 2 failures

“parity blocks”

Much less storage 

for desired fault tolerance

a b



a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in 
distributed storage systems?

distributed to servers

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data blocks 4 parity blocks

Example:



Almost all large-scale storage systems today 
employ erasure codes

“Considering trends in data growth & datacenter hardware, we foresee 
HDFS erasure coding being an important feature in years to come” 

- Cloudera Engineering (September, 2016)

Facebook, Google, Amazon, Microsoft...
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Error Correcting Multibit Messages

We will first discuss Hamming Codes

Named after Richard Hamming (1915-1998), a pioneer in 

error-correcting codes and computing in general.
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Error Correcting Multibit Messages

We will first discuss Hamming Codes

Codes are of form: (2r-1, 2r-1 – r, 3) for any r > 1

e.g. (3,1,3), (7,4,3), (15,11,3), (31, 26, 3), …

which correspond to 2, 3, 4, 5, … “parity bits” (i.e. n-k)

Question: Error detection and correction capability?

(Can detect 2-bit errors, or correct 1-bit errors.)

The high-level idea is to “localize” the error.
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Hamming Codes: Encoding

m3m5m6m7m11m10 m9 p8 p0m15m14m13m12

Localizing error to top or bottom half 1xxx or 0xxx

p8 = m15  m14  m13  m12  m11  m10  m9

Localizing error to x1xx or x0xx

m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p4 = m15  m14  m13  m12  m7  m6  m5

Localizing error to xx1x or xx0x

p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p2 = m15  m14  m11  m10  m7  m6  m3

Localizing error to xxx1 or xxx0

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p1 = m15  m13  m11  m9  m7  m5  m3

r = 4
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Hamming Codes: Decoding

We don’t need p0, so we have a (15,11,?) code.

After transmission, we generate

b8 = p8  m15  m14  m13  m12  m11  m10  m9

b4 = p4  m15  m14  m13  m12  m7  m6  m5

b2 = p2  m15  m14  m11  m10  m7  m6  m3

b1 = p1  m15  m13  m11  m9  m7  m5  m3

With no errors, these will all be zero

With one error b8b4b2b1 gives us the error location.

e.g. 0100 would tell us that p4 is wrong, and 
1100 would tell us that m12 is wrong

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12
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Hamming Codes

Can be generalized to any power of 2

– n = 2r – 1 (15 in the example)

– (n-k) = r (4 in the example)

– Can correct one error

– d ≥ 3 (since we can correct one error)

– Gives (2r-1, 2r-1-r, 3) code

(We will later see an easy way to prove the minimum distance)

Extended Hamming code

– Add back the parity bit at the end

– Gives (2r, 2r-1-r, 4) code

– Can still correct one error, but now can detect 3
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A Lower bound on parity bits: 

Hamming bound

How many nodes in hypercube do we need so that d = 3?

Each of 2k codewords eliminates n neighbors plus itself, 

i.e. n+1

 )1(log

)1(log

2)1(2

2

2







nkn

nkn

n kn

In above Hamming code, 15  11 + log2(15+1)  = 15.

Hamming Codes are called perfect codes since they 

match the lower bound exactly.
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A Lower bound on parity bits: 

Hamming bound

What about fixing 2 errors (i.e. d=5)?

Each of the 2k codewords eliminates itself, its neighbors 

and its neighbors’ neighbors, giving:

Generally to correct s errors:
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<board>
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Lower Bounds: a side note

The lower bounds assume arbitrary placement of bit errors.

In practice errors are likely to have patterns: 

maybe evenly spaced, or clustered:

x x x x x x

x x x x x x

Can we do better if we assume regular errors?

We will come back to this later when we talk about Reed-
Solomon codes. This is a big reason why Reed-Solomon 
codes are used much more than Hamming-codes.
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Q:

If no structure in the code, how would one perform encoding?

<board>

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity
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Linear Codes

If  is a field, then n is a vector space

Definition: C is a linear code if it is a linear subspace of n

of dimension k.

This means that there is a set of k independent vectors 

vi  n (1  i  k) that span the subspace. 

i.e. every codeword can be written as:

c = a1 v1 + a2 v2 + … + ak vk where ai  

“Basis (or spanning) Vectors”
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Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

<board>

2. Minimum distance (d) = weight of least weight (non-zero) 

codewords

<Write proof>
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Generator and Parity Check Matrices

3. Every linear code has two matrices associated with it.

1. Generator Matrix:

A k x n matrix G such that: C = { xG | x  k }

Made from stacking the spanning vectors

mesg

G codeword=

n

n

k
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Generator and Parity Check Matrices

2. Parity Check Matrix:

An (n – k) x n matrix H such that: C = {y  n | HyT = 0}

(Codewords are the null space of H.)

re
cv’d

w
o
rd

H

syn
d
ro

m
e

= n-k

n

if syndrome = 0, received word = codeword

else have to use syndrome to get back codeword (“decode”)

n-k
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Advantages of Linear Codes

• Encoding is efficient (vector-matrix multiply)

• Error detection is efficient (vector-matrix multiply)

• Syndrome (HyT) has error information

• How to decode? In general, have qn-k sized table 

for decoding (one for each syndrome).  

Useful if n-k is small, else want other approaches.
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Linear Codes

Basis vectors for the (7,4,3)2 Hamming code:

m7 m6 m5 p4 m3 p2 p1

v1 = 1 0 0 1 0 1 1

v2 = 0 1 0 1 0 1 0

v3 = 0 0 1 1 0 0 1

v4 = 0 0 0 0 1 1 1

Another way to see that d = 3 for Hamming codes?

What is the least Hamming weight among non-zero codewords?
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In the next class we will continue studying linear codes 

starting with 

additional properties of generator and parity check matrices 

and relationship between them


