
15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes (cont..)

Scribe volunteers: ?

Announcement:

Scribe notes template and instructions on the

course webpage

15-853 Page2

General Model

codeword (c)

encoder

noisy

channel

decoder

message (m)

message or error

codeword’ (c’)

“Noise” introduced by the channel:

• changed fields in the codeword
vector (e.g. a flipped bit).

• Called errors

• missing fields in the codeword
vector (e.g. a lost byte).

• Called erasures

How the decoder deals with errors
and/or erasures?

• detection (only needed for
errors)

• correction

15-853 Page3

Block Codes

Each message and codeword is of

fixed size

 = codeword alphabet

k =|m| n = |c| q = ||

C = “code” = set of codewords

C  Sn (codewords)

D(x,y) = number of positions s.t. xi  yi

d = min{D(x,y) : x,y C, x  y}

Code described as: (n,k,d)q

codeword (c)

coder

noisy

channel

decoder

message (m)

message or error

codeword’ (c’)

Role of Minimum Distance

Theorem:

A code C with minimum distance “d” can:

1. detect any (d-1) errors

2. recover any (d-1) erasures

3. correct any <write> errors

Stated another way:

For s-bit error detection d  s + 1

For s-bit error correction d  2s + 1

To correct a erasures and b errors if

d  a + 2b + 1
15-853 Page4

15-853 Page 5

Next we will see

an application of erasure codes in

today’s large-scale data storage systems

Large-scale distributed storage systems

1000s of interconnected servers

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns

Large-scale distributed storage systems

1000s of interconnected servers

100s of petabytes of data

• Commodity components

• Software issues, power failures, maintenance shutdowns

Unavailabilities are the norm
rather than the exception

Facebook analytics cluster in production:
unavailability statistics

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52

#unavailability

events

350

300

250

200

150

100

50

0
0 5 10 15 20 25 30

Facebook analytics cluster in production:
unavailability statistics

day

• Multiple thousands of servers

• Unavailability event: server unresponsive for > 15 min

[Rashmi, Shah, Gu, Kuang, Borthakur, Ramchandran,
USENIX HotStorage 2013 and ACM SIGCOMM 2014]

median: 52

#unavailability

events

350

300

250

200

150

100

50

0
0 5 10 15 20 25 30

Daily server unavailability = 0.5 - 1%

Data needs to be stored in a redundant fashion

Servers unavailable

Data inaccessible

Applications cannot wait,

Data cannot be lost

a b c d

a b c d

a b c d

……

distributed on servers
across network

3 replicas

a b c d

a b c d

a b c d

a b c d“blocks”

• Storing multiple copies of data: Typically 3x-replication

Traditional approach: Replication

a b c d

a b c d

a b c d

……

distributed on servers
across network

3 replicas

a b c d

a b c d

a b c d

a b c d“blocks”

• Storing multiple copies of data: Typically 3x-replication

Too expensive for large-scale data

Traditional approach: Replication

Better alternative: sophisticated codes

ablock 1

block 2

block 4

block 5

block 3

block 6

a

a

b

b

b

a

b

a+b

a+2b

3-replication Erasure code

block 1

block 2

block 3

Storage overhead = 3x Storage overhead = 2x

block 4

Two data blocks to be stored: and

Tolerate any 2 failures

“parity blocks”

a b

ablock 1

block 2

block 4

block 5

block 3

block 6

a

a

b

b

b

a

b

a+b

a+2b

3-replication Erasure code

block 1

block 2

block 3

Storage overhead = 3x Storage overhead = 2x

block 4

Two data blocks to be stored: and

Tolerate any 2 failures

“parity blocks”

Much less storage

for desired fault tolerance

a b

a b c d e f g h i j P1 P2 P3 P4

……

Erasure codes: how are they used in
distributed storage systems?

distributed to servers

a b c d e f g h i j

a b c d e f g h i j P1 P2 P3 P4

10 data blocks 4 parity blocks

Example:

Almost all large-scale storage systems today
employ erasure codes

“Considering trends in data growth & datacenter hardware, we foresee
HDFS erasure coding being an important feature in years to come”

- Cloudera Engineering (September, 2016)

Facebook, Google, Amazon, Microsoft...

15-853 Page17

Error Correcting Multibit Messages

We will first discuss Hamming Codes

Named after Richard Hamming (1915-1998), a pioneer in

error-correcting codes and computing in general.

15-853 Page18

Error Correcting Multibit Messages

We will first discuss Hamming Codes

Codes are of form: (2r-1, 2r-1 – r, 3) for any r > 1

e.g. (3,1,3), (7,4,3), (15,11,3), (31, 26, 3), …

which correspond to 2, 3, 4, 5, … “parity bits” (i.e. n-k)

Question: Error detection and correction capability?

(Can detect 2-bit errors, or correct 1-bit errors.)

The high-level idea is to “localize” the error.

15-853 Page19

Hamming Codes: Encoding

m3m5m6m7m11m10 m9 p8 p0m15m14m13m12

Localizing error to top or bottom half 1xxx or 0xxx

p8 = m15  m14  m13  m12  m11  m10  m9

Localizing error to x1xx or x0xx

m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p4 = m15  m14  m13  m12  m7  m6  m5

Localizing error to xx1x or xx0x

p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p2 = m15  m14  m11  m10  m7  m6  m3

Localizing error to xxx1 or xxx0

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p1 = m15  m13  m11  m9  m7  m5  m3

r = 4

15-853 Page20

Hamming Codes: Decoding

We don’t need p0, so we have a (15,11,?) code.

After transmission, we generate

b8 = p8  m15  m14  m13  m12  m11  m10  m9

b4 = p4  m15  m14  m13  m12  m7  m6  m5

b2 = p2  m15  m14  m11  m10  m7  m6  m3

b1 = p1  m15  m13  m11  m9  m7  m5  m3

With no errors, these will all be zero

With one error b8b4b2b1 gives us the error location.

e.g. 0100 would tell us that p4 is wrong, and
1100 would tell us that m12 is wrong

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

15-853 Page21

Hamming Codes

Can be generalized to any power of 2

– n = 2r – 1 (15 in the example)

– (n-k) = r (4 in the example)

– Can correct one error

– d ≥ 3 (since we can correct one error)

– Gives (2r-1, 2r-1-r, 3) code

(We will later see an easy way to prove the minimum distance)

Extended Hamming code

– Add back the parity bit at the end

– Gives (2r, 2r-1-r, 4) code

– Can still correct one error, but now can detect 3

15-853 Page22

A Lower bound on parity bits:

Hamming bound

How many nodes in hypercube do we need so that d = 3?

Each of 2k codewords eliminates n neighbors plus itself,

i.e. n+1

 )1(log

)1(log

2)1(2

2

2







nkn

nkn

n kn

In above Hamming code, 15  11 + log2(15+1)  = 15.

Hamming Codes are called perfect codes since they

match the lower bound exactly.

15-853 Page23

A Lower bound on parity bits:

Hamming bound

What about fixing 2 errors (i.e. d=5)?

Each of the 2k codewords eliminates itself, its neighbors

and its neighbors’ neighbors, giving:

Generally to correct s errors:

)
21

1(log2 



























s

nnn
kn 

<board>

15-853 Page24

Lower Bounds: a side note

The lower bounds assume arbitrary placement of bit errors.

In practice errors are likely to have patterns:

maybe evenly spaced, or clustered:

x x x x x x

x x x x x x

Can we do better if we assume regular errors?

We will come back to this later when we talk about Reed-
Solomon codes. This is a big reason why Reed-Solomon
codes are used much more than Hamming-codes.

15-853 Page25

Q:

If no structure in the code, how would one perform encoding?

<board>

Gigantic lookup table!

If no structure in the code, encoding is highly inefficient.

A common kind of structure added is linearity

15-853 Page26

Linear Codes

If  is a field, then n is a vector space

Definition: C is a linear code if it is a linear subspace of n

of dimension k.

This means that there is a set of k independent vectors

vi  n (1  i  k) that span the subspace.

i.e. every codeword can be written as:

c = a1 v1 + a2 v2 + … + ak vk where ai  

“Basis (or spanning) Vectors”

15-853 Page27

Some Properties of Linear Codes

1. Linear combination of two codewords is a codeword.

<board>

2. Minimum distance (d) = weight of least weight (non-zero)

codewords

<Write proof>

15-853 Page28

Generator and Parity Check Matrices

3. Every linear code has two matrices associated with it.

1. Generator Matrix:

A k x n matrix G such that: C = { xG | x  k }

Made from stacking the spanning vectors

mesg

G codeword=

n

n

k

15-853 Page29

Generator and Parity Check Matrices

2. Parity Check Matrix:

An (n – k) x n matrix H such that: C = {y  n | HyT = 0}

(Codewords are the null space of H.)

re
cv’d

w
o
rd

H

syn
d
ro

m
e

= n-k

n

if syndrome = 0, received word = codeword

else have to use syndrome to get back codeword (“decode”)

n-k

15-853 Page30

Advantages of Linear Codes

• Encoding is efficient (vector-matrix multiply)

• Error detection is efficient (vector-matrix multiply)

• Syndrome (HyT) has error information

• How to decode? In general, have qn-k sized table

for decoding (one for each syndrome).

Useful if n-k is small, else want other approaches.

15-853 Page31

Linear Codes

Basis vectors for the (7,4,3)2 Hamming code:

m7 m6 m5 p4 m3 p2 p1

v1 = 1 0 0 1 0 1 1

v2 = 0 1 0 1 0 1 0

v3 = 0 0 1 1 0 0 1

v4 = 0 0 0 0 1 1 1

Another way to see that d = 3 for Hamming codes?

What is the least Hamming weight among non-zero codewords?

15-853 Page 32

In the next class we will continue studying linear codes

starting with

additional properties of generator and parity check matrices

and relationship between them

