
7
Graph Matchings I: Combinatorial Algorithms

Another fundamental graph problem is to find matchings: these are
subsets of edges that do not share endpoints. Matchings arise in var-
ious contexts: matching tasks to workers, or advertisements to slots,
or roommates to each other. Moreover, matchings have a rich com-
binatorial structure. The classical results can be found in Matching
Theory by Laci Lovász and Michael Plummer, though Lex Schrijver’s L. Lovász and M.D. Plummer

three-volume opus Combinatorial Optimization: Polyhedra and Efficiency A. Schrijver (2003)

might be easier to find, and contains more recent developments as
well.

Several different and interesting algorithmic techniques can be
used to find large matchings in graphs; we will discuss them over the
next few chapters. This chapter discusses the simplest combinatorial
algorithms, explaining the underlying concepts without optimizing
the runtimes.

7.1 Notation and Definitions

Consider an undirected (simple and connected) graph G = (V, E)
with |V| = n and |E| = m as usual. The graph is unweighted; we will
consider weighted versions of matching problems in later chapters.
When considering bipartite graphs, where the vertex set has parts
V = L ⊎ R (the “left” and “right”, and the edges E ⊆ L× R, we may
denote the graph as G = (L, R, E).

Definition 7.1 (Matching). A matching in graph G is a subset of the
edges M ⊆ E which have no endpoints in common. Equivalently,
the edges in M are disjoint, and hence every vertex in (V, M) has
maximum degree 1.

Given a matching M in G, a vertex v is open or exposed or free if
no edge in the matching is incident to v, else the vertex is closed or
covered or matched. Observe: the empty set of edges is a matching.
Moreover, any matching can have at most |V|/2 edges, since each

https://mathscinet.ams.org/mathscinet-getitem?mr=MR2536865
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1956924

62 notation and definitions

edge covers two vertices, and each vertex can be covered by at most
one edge.

Definition 7.2 (Perfect Matching). A perfect matching M is a matching
such that |M| = |V|/2. Equivalently, every vertex is matched in the
matching M.

Definition 7.3 (Maximum Matching). A maximum cardinality match-
ing (or simply maximum matching) in G is a matching with largest
possible cardinality. The size of the maximum matching in graph G is
denoted MM(G).

Definition 7.4 (Maximal Matching). A maximal matching on a graph
is a matching that is inclusion-wise maximal; that is, no additional
edges can be added to M while maintaining the matching property.
Hence, M ∪ {e} is not a matching for all edges e ̸∈ M.

The last definition is given to mention something we will not be
focusing on; our interest is in perfect and maximum matchings. That
being said, it is a useful exercise to show that any maximal matching
in G has at least MM(G)/2 edges.

7.1.1 Augmenting Paths for Matchings

Since we want to find a maximum matching, a question we may
ask is: given a matching M, can we (efficiently) decide if it is a maximum
matching? One answer to this was suggested by Berge, who gave a
characterization of maximum matchings in terms of “augmenting”
paths.

Definition 7.5 (Alternating Path). For matching M, an M-alternating
path is a path in which edges in M alternate with those not in M.

Figure 7.1: An alternating path P
(dashed edges are not in P, solid edges
are in P)

Figure 7.2: An augmenting path

Definition 7.6 (Augmenting Path). For matching M, an M-augmenting
path is an M-alternating path with both endpoints open.

Given sets S, T, their symmetric difference is denoted

S△T := (S \ T) ∪ (T \ S).

The following theorem explains the name for augmenting paths.

Theorem 7.7 (Berge’s Optimality Criterion). A matching M is a maxi-

Berge (1957)

mum matching in graph G if and only if there are no M-augmenting paths
in G.

Proof. If there is an M-augmenting path P, then M′ := M△P is a
larger matching than M. (Think of getting M′ by toggling the dashed

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0094811

graph matchings i: combinatorial algorithms 63

edges in the path to solid, and vice versa). Hence if M is maximum
matching, there cannot exist an M-augmenting path.

Conversely, suppose M is not a maximum matching, and matching
M′ has |M′| > |M|. Consider their symmetric difference S := M△M′.
Every vertex is incident to at most 2 edges in S (at most one each
from M and M′), so S consists of only paths and cycles, all of them
having edges in M alternating with edges in M′. Any cycle with this
alternating structure must be of even length, and any path has at
most one more edge from one matching than form the other. Since
|M′| > |M|, there must exists a path in S with one more edge from
M′ than from M. But this is an M-augmenting path.

If we could efficiently find an M-augmenting path (if one exists),
we could repeatedly augment the current matching until we have
a maximum matching. However, Berge’s theorem does not imme-
diately give an efficient algorithm: finding an M-augmenting path
could naively take exponential time. We now give algorithms to effi-
ciently find augmenting paths, first in bipartite graphs, and then in
general graphs.

7.2 Bipartite Graphs

Finding an M-augmenting path (if one exists) in bipartite graphs is
an easier task, though it still requires cleverness. A first step is to
consider a “dual” object, which is called a vertex cover.

Definition 7.8 (Vertex Cover). A vertex cover in G is a set of vertices C
such that every edge in the graph has at least one endpoint in C.

Note that the entire set V is trivially a vertex cover, and the chal-
lenge is to find small vertex covers. We denote the size of the smallest
cardinality vertex cover of graph G as VC(G). Our motivation for
calling it a “dual” object comes from the following fundamental theo-
rem from the early 20th century:

Theorem 7.9 (König’s Minimax Theorem). In a bipartite graph, the size Dénes König (1916)

of the largest possible matching equals the cardinality of the smallest vertex
cover:

MM(G) = VC(G).

This theorem is a special case of the max-flow min-cut theorem,
which you may have seen before. It is first of many min-max rela-
tionships, many of which lead to efficient algorithms. Indeed, the
algorithm for finding augmenting paths will come out of the proof of
this theorem. Exercise: Use König’s theorem to prove

P. Hall’s theorem: A bipartite graph has
a matching that matches all vertices of L if
and only for every subset S ⊆ L of vertices,
|N(S)| ≥ |S|. Here N(S) denotes the
“neighborhood” of S, i.e., those vertices
with a neighbor inside S.

https://mathscinet.ams.org/mathscinet-getitem?mr=MR1511872

64 bipartite graphs

Proof. In many such proofs, there is one easy direction. Here, it is
proving that MM(G) ≤ VC(G). Indeed, the edges of any matching
share no endpoints, so covering a matching of size MM(G) requires
at least as many vertices. The minimum vertex cover size is therefore
at least MM(G).

Next, we prove that MM(G) ≥ VC(G). To do this, we give a
linear-time algorithm that takes as input an arbitrary matching M,
and either returns an M-augmenting path (if such a path exists), or
else returns a vertex cover of size |M|. Since a maximum matching
M admits no M-augmenting path by Berge’s theorem, we would
get back a vertex cover of size MM(G), thereby showing VC(G) ≤
MM(G).

The proof is an “alternating” breadth-first search: it starts with
all open nodes among the left vertex set L, and places them at level
0. Then it finds all the (new) neighbors of these nodes reachable
using non-matching edges, and then all (new) neighbors of those
nodes using matching edges, and so on. Formally, the algorithm is as
follows, where we use X≤j to denote X0 ∪ . . . ∪ Xj.

9.1 X0 ← all open vertices in L
9.2 for i = 0, 1, 2, . . . do
9.3 X2i+1 ← {v | exists u ∈ X2i s.t. uv ̸∈ M, and v ̸∈ X≤2i}
9.4 X2i+2 ← {v | exists u ∈ X2i+1 s.t. uv ∈ M, and v ̸∈ X≤2i+1}

Let us make a few observations about the procedure. First, since
the graph is bipartite, Xi is a subset of L for even levels i, and of R for
odd levels i. Next, all vertices in X2 ∪ X4 ∪ . . . are matched vertices,
since they are reached from the previous level using an edge in the
matching. Moreover, if some odd level X2i+1 contains an open node
v, we have found an M-alternating path from an open node in X0 to
v, and hence we can stop and return this augmenting path.

A

B

C

2 1 Layer 0 3 4

Matched edge

Unmatched edge

Open vertex

D X

Y

Z

Figure 7.3: Illustration of the process
to find augmenting paths in a bipartite
graph. Mistakes here, to be fixed!

Hence, suppose we do not find an open node in an even level, and
stop when some Xj is empty. Let X = ∪jXj be all nodes added to any
of the sets Xj; we call these marked nodes. Define the set C to be the
vertices on the left which are not marked, plus the vertices on the right
which are marked. That is,

C := (L \ X) ∪ (R ∩ X)

We claim that C is a vertex cover of size |M|.

Figure 7.4: X = set of marked vertices,
O = marked open vertices, C = claimed
vertex cover of G. To be changed.

Claim 7.10. C is a vertex cover.

Proof. G is a bipartite graph, and C hits all edges that touch R ∩ X
and L \ X. Hence we must show there are no edges between L ∩ X
and R \ X, i.e., between the top-left and bottom-right of the figure.

graph matchings i: combinatorial algorithms 65

1. There can be no unmatched edge from the open vertices in L ∩ X to
R \ X, else that vertex would be reachable from X0 and so belong
to X1. Moreover, an open vertex has no unmatched edges, by
definition. Hence, any “offending edges” out of L ∩ X must come
from a covered vertex.

2. There can be no non-matching edge from a covered vertex in L ∩ X
to some node u in R \ X, else this node u would have been added
to some level X2i+1.

3. Finally, there can be no matching edge between a covered vertex
in L ∩ X and some vertex in R \ X. Indeed, every covered node in
L ∩ X (i.e., those in X2, X4, . . .) was reached via a matching edge
from some node in R ∩ X. There cannot be another matching edge
from some node in R \ X incident to it.

This shows that C is a vertex cover.

Claim 7.11. |C| ≤ |M|.
We use a simple counting argument:

• Every vertex in R ∩ X has a matching edge incident to it; else it
would be open, giving an augmenting path.

• Every vertex in L \ X has an incident edge in the matching, since
no vertices in L \ X ⊆ L \ X0 are open.

• There are no matching edges between L \ X and R ∩ X, else they
would have been explored and added to X.

Hence, every vertex in C = (L \ X) ∪ (R ∩ X) corresponds to a unique
edge in the matching, and |C| ≤ |M|.

Figure 7.5: Use Ford-Fulkerson algo-
rithm to find a matching

Observe that the proof of König’s theorem is algorithmic, and
can be implemented to run in O(m) time. Now, starting from some
trivial matching, we can use this linear-time algorithm to repeatedly
augment until we have a maximum matching. This means that maxi-
mum matching on bipartite graphs has an O(mn)-time algorithm.

Observe: this algorithm also gives a “proof of optimality” of the
maximum matching M, in the form of a vertex cover of size |M|. By
the easy direction of König’s theorem, this is a vertex cover of mini-
mum cardinality. Therefore, while finding the smallest vertex cover is
NP-hard for general graphs, we have just solved the minimum vertex
cover problem on bipartite graphs.

One other connection: if you have seen the Ford-Fulkerson al-
gorithm for computing maximum flows, the above algorithm may
seem familiar. Indeed, modeling the maximum matching problem in
bipartite graphs as that of finding a maximum integer s-t flow, and

66 general graphs: the tutte-berge theorem

running the Ford-Fulkerson “augmenting paths” algorithm results in
the same result. Moreover, the minimum s-t cut corresponds to a ver-
tex cover, and the max-flow min-cut theorem proves König’s theorem.
The figure to the right illustrates this on an example. Figure needs
fixing.

7.2.1 Other algorithms

There are faster algorithms to find maximum matchings in bipartite
graphs. For a long time, the fastest one was an algorithm by John
Hopcroft and Dick Karp, which ran in time O(m

√
n). It finds many J. Hopcroft and R.M. Karp (1973)

augmenting paths at once, and then combines them in a clever way.
There is also a related algorithm of Shimon Even and Bob Tarjan, S. Even and R.E. Tarjan (1975)

which runs in time O(min(m
√

m, mn2/3)); in fact, they compute
maximum flows on unit-capacity graphs in this running time.

There was remarkably little progress on the maximum match-
ing problem until 2016, when Aleksander Madry gave an algorithm A. Madry (2016)

that runs in time Õ(m10/7) time—in fact the algorithm also solves
the unit-capacity maximum-flow problem in that time. It takes an
interior-point algorithm for solving general linear programs, and spe-
cializes it to the case of maximum matchings. We may discuss this
max-flow algorithm in a later chapter. Then, following an interme-
diate improvement to m4/3+o(1) time, a remarkable paper presented L. Chen, R. Kyng, Y.P. Liu, R. Peng,

M. Probst Gutenberg, and S. Sachdeva
(2022).

at the FOCS 2022 conference gave an algorithm for both the maxi-
mum flow problem, and the min-cost flow problem in m1+o(1) time.
(The result assumes polynomially bounded capacities and costs, and
integer demands.)

7.3 General Graphs: The Tutte-Berge Theorem

The matching problem on general (non-bipartite) graphs gets more
involved, since the structure of matchings is richer. For example, the
flow-based approaches do not work any more. And while Berge’s
theorem (Theorem 7.7) still holds in this case, König’s theorem (The-
orem 7.9) is no longer true. Indeed, the 3-cycle C3 has a maximum
matching of size 1, but the smallest vertex cover is of size 2. However,
we can still give a min-max relationship, via the Tutte-Berge theorem.

To state it, let us give a definition: for a subset U ⊆ V, suppose
deleting the nodes of U and their incident edges from G gives con-
nected components {K1, K2, . . . , Kt}. The quantity odd(G \U) is the
number of such pieces with an odd number of vertices.

Theorem 7.12 (The Tutte-Berge Max-Min Theorem). Given a graph G, Tutte (1947), Berge (1958)

Tutte showed that the graph has a
perfect matching precisely if for every
U ⊆ V, odd(G \ U) ≤ |U|. Berge
gave the generalization to maximum
matchings.

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0337699
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0436964
https://mathscinet.ams.org/mathscinet-getitem?mr=MR3631022
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0023048,MR0100850

graph matchings i: combinatorial algorithms 67

the size of the maximum matching is described by the following equation.

MM(G) = min
U⊆V

n + |U| − odd(G \U)

2
.

The expression on the right can seem a bit confusing, so let’s con-
sider some cases.

• If U = ∅, we get that if |V| is even then MM(G) ≤ n/2, and if |V|
is odd, the maximum matching cannot be bigger than (n− 1)/2.
(Or if G is disconnected with k odd-sized components, this gives
n/2− k/2.)

• Another special case is when U is any vertex cover with size c.
Then the Ki’s must be isolated vertices, so odd(G \ U) = n − c.
This gives us MM ≤ c+n−(n−c)

2 = c, i.e., the size of the maximum
matching is at most the size of any vertex cover.

• Give example where G is even, connected, but MM < VC.

Trying special cases is a good way to understand the

Proof of the ≤ direction of Theorem 7.12. The easy direction is to show
that MM(G) is at most the quantity on the right. Indeed, consider
a maximum matching M. At most |U| of the edges in M can be hit
by nodes in U; the other edges must lie completely within some
connected component of G \ U. The maximum size of a matching
within Ki is ⌊Ki/2⌋, and it are these losses from the odd components
that gives the expression on the right. Indeed, we get

|M| ≤ |U|+
t

∑
i=1

⌊
|Ki|

2

⌋
= |U|+ n− |U|

2
− odd(G \U)

2

=
|U|+ n− odd(G \U)

2
.

We can prove the “hard” direction using induction (see the webpage
for several such proofs). However, we defer it for now, and derive it
later from the proof of the Blossom algorithm.

7.4 The Blossom Algorithm

The Blossom algorithm for finding the maximum matching in a gen-
eral graph is by Jack Edmonds. Recall: the algorithm for minimum- J. Edmonds (1965)

weight arborescences in §?? was also due to him, and you may see
some similarities in these two algorithms.

Theorem 7.13. Given a graph G, the Blossom algorithm finds a maximum
matching M in time O(mn2).

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0177907

68 the blossom algorithm

The rest of this section defines the algorithm, and proves this
theorem. The essential idea of the algorithm is simple, and similar
to the one for the bipartite case: if we have a matching M, Berge’s
characterization from Theorem 7.7 says that if M is not optimal, there
exists an M-augmenting path. So the natural idea would be to find
such an augmenting path. However, it is not clear how to do this
directly. The clever idea in the Blossom algorithm is to either find
an M-augmenting path, or else find a structure called a “blossom”.
The good thing about blossoms is that we can use them to contract
the graph in a certain way, and make progress. Let us now give some
definitions, and details.

Stem Blossom

Matched edge

Unmatched edge

Open vertex

(a)

(b)

A

Figure 7.6: An example of blossom and
the toggling of the stem.

A flower is a subgraph of G that looks like the the object to the
right: it has a open vertex at the base, then a stem with an even num-
ber of edges (alternating between matched and unmatched edges),
and then a cycle with an odd number of edges (again alternating,
though naturally having two unmatched edges adjacent to the stem).
The cycle itself is called the blossom.

7.4.1 The Main Procedure

The algorithm depends on a subroutine called FindAugPath, which
has the following guarantee.

Lemma 7.14. Given graph G and matching M, the subroutine FindAugPath,
runs in O(m) time. If G has an M-augmenting path, then it returns either
(a) a flower F, or (b) an M-augmenting path.

Note that we have not said what happens if there is no M-augmenting
path. Indeed, we cannot find an augmenting path, but we show that
the FindAugPath returns either a flower, or says “no M-augmenting
path, and returns a Tutte-Berge set U achieving equality in The-
orem 7.12 with respect to M. We can now use this FindAugPath

subroutine within our algorithm as follows.

1. Says “no M-augmenting path” and a set U of nodes. In this case, M is
the maximum matching.

2. Finds augmenting path P. We can now augment along P, by setting
M← M△P.

3. Finds a flower F. In this case, we don’t yet know if M is a maxi-
mum matching or not. But we can shrink the blossom down to
get a smaller graph G′ (and a matching M′ in it), and recurse.
Either we will find a proof of maximality of M′ in G′, or an M′-
augmenting path. This we can extend to the matching M in G.
That’s the whole algorithm!

graph matchings i: combinatorial algorithms 69

Figure 7.7: The shrinking of a blossom.
Image found at http://en.wikipedia.
org/wiki/Blossom_algorithm.

Let’s give some more details for the last step. Suppose we find
a flower F, with stem S and blossom B. First, toggle the stem (by
setting M ← M△S): this moves the open node to the blossom,
without changing the size of the matching M. (It makes the following
arguments easier, with one less case to consider.) (Change figure.)
Next, contract the blossom down into a single vertex vB, which is
now open. Denote the new graph G′ ← G/B, and M′ ← M/B. Given a graph and a subset C ⊆ V,

recall that G/C denotes the contraction
of C in G.

Since all the nodes in blossom B, apart from perhaps the base, were
matched by edges within the blossom, M′ is also a matching in G′.

Next, we recurse on this smaller graph G′ with matching M′.
Finally, if we get back an M′-augmenting path, we “lift” it to get an
M-augmenting path (as we see soon). Else if we find that M′ is a
maximum matching in G′, we declare that M is maximum in G. To
show correctness, it suffices to prove the following theorem.

Lemma 7.15. Given graph G and matching M, suppose we shrink a blos-
som to get G′ and M′. Then there exists an M-augmenting path in G if and
only if there exists an M′-augmenting path in G′.

Moreover, given an M′-augmenting path in G′, we can lift it back to an
M-augmenting path P in G in O(m) time.

Proof. Since we toggled the stem, the vertex v at the base of the blos-
som B is open, and so is the vertex vB created in G′ by contracting
B. Moreover, all other nodes in the blossom are matched by edges
within itself, so all edges leaving B are non-matching edges. The
picture essentially gives the proof, and can be used to follow along.

Figure 7.8: The translation of augment-
ing paths from G \ B to G and back.

(⇒) Consider an M-augmenting path in G, denoted by P. If P does
not go through the blossom B, the path still exists in G′. Else if
P goes through the blossom, we can assume that one of its end-
points is the base of the blossom (which is the only open node on
the blossom)—indeed, any other M-augmenting path P can be
rerouted to the base. (Figure!) So suppose this path P starts at the
base and ends at some v′ not in B. Because vB is open in G′, the
path from vB to v′ is an M′-augmenting path in G′.

(⇐) Again, an M′-augmenting path P′ in G′ that does not go through
vB still exists in G. Else, the M′-augmenting path P′ passes through
vB, and because vB is open in G′, the path starts at vB and ends at
some node t. Let the first edge on P′ be e′ = vBy for some node
y, and let it correspond to edge e = xy in G, where x ∈ B. Now,
if v is the open vertex at the base of the blossom, following one
of the two paths (either clockwise or counter-clockwise) along the
blossom from v to x, using the edge xy and then following the rest
of the path P′ from y to t gives an M-augmenting path in G. (This

http://en.wikipedia.org/wiki/Blossom_algorithm
http://en.wikipedia.org/wiki/Blossom_algorithm

70 the blossom algorithm

is where we use the fact that the cycle is odd, and is alternating
except for the two edges incident to v.)

The process to get from P′ in G′ to the M-augmenting path in G be
done algorithmically in O(m) time, completing the proof.

We can now analyze the runtime, and prove Theorem 7.13:

Proof of Theorem 7.13. We first call FindAugPath, which takes O(m)

time. We are either done (because M is a maximum matching, or else
we have an augmenting path), or else we contract down in another
O(m) time to get a graph G′ with at most n− 3 vertices and at most
m edges. Inductively, the time taken in the recursive call on G′ is
O(m(n− 3)). Now lifting an augmenting path takes O(m) time more.
So the total runtime to find an augmenting path in G (if one exists) is
O(mn).

Finally, we start with an empty matching, so its size can be aug-
mented at most n/2 times, giving us a total runtime of O(mn2).

7.4.2 The FindAugPath Subroutine

The subroutine FindAugPath is very similar to the analogous pro-
cedure in the bipartite case, but since there is no notion of left and
right vertices, we start with level X0 containing all vertices that are
unmatched in M0, and try to grow M-alternating paths from them, in
the hope of finding an M-augmenting path. As before, let X≤j denote X0 ∪ . . . ∪ Xj,

and let nodes added to some level Xj be
called marked.9.1 X0 ← all open vertices in V

9.2 for i = 0, 1, 2, . . . do
9.3 X2i+1 ← {v | exists u ∈ X2i s.t. uv ̸∈ M, and v ̸∈ X≤2i}
9.4 X2i+2 ← {v | exists u ∈ X2i+1 s.t. uv ∈ M, and v ̸∈ X≤2i+1}
9.5 if exists a “cross” edge between nodes of same level then
9.6 return augmenting path or flower
9.7 else
9.8 say “no M-augmenting path”

To argue correctness, let us look at the steps above in more detail.
In line 9.2, for each vertex u ∈ X2i, we consider the possible cases for
each non-matching edge uv incident to it:

1. If v is not in X≤2i+1 already (i.e., not marked already) then we add
it to X2i+1. Note that v ∈ X2i+1 now has an M-alternating path to
some node in X0, that hits each layer exactly once.

2. If v ∈ X2i, then uv is an unmatched edge linking two vertices
in the same level. This gives an augmenting path or a blossom!
Indeed, by construction, there are M-alternating paths P and

graph matchings i: combinatorial algorithms 71

Q from u and v to open vertices in X0. If P and Q do not inter-
sect, then concatenating path P, edge uv, and path Q gives an
M-augmenting path. If P and Q intersect, they must first intersect
some vertex w ∈ X2j for some j ≤ i, and the cycle containing u, v, w
gives us the blossom, with the stem being a path from w back to
an open vertex in X0.

3. If v ∈ X2j for j < i, then u would have been added to the odd level
X2j+1, which is impossible.

4. Finally, v may belong to some previous odd level, which is fine.
Observe that this “backward” non-matching edge uv is also an
even-to-odd edge, like the “forward” edge in the first case.

Now for the edges out of the odd layers considered in line 9.3.
Given u ∈ X2i+1 and matching edge uv ∈ M, the cases are:

1. If v is not in X≤2i+1 then add it to X2i+2. Notice that v cannot be in
X2i+2 already, since nodes in even layers are matched to nodes in
the preceding odd layer, and there cannot be two matching edges
incident to v.

Again, observe inductively that v has a path to some vertex in X0

that hits each intermediate layer once.

2. If v is in X2i+1, there is an matching edge linking two vertices in
the same odd level. This gives an augmenting path or a blossom,
as in case 2 above. (Success!)

3. The node v cannot be in a previous level, because all those vertices
are either open, or are matched using other edges.

Observe that if the algorithm does not succeed, all the matching
edges we explored are odd-to-even, whereas all the non-matching
edges are even-to-odd. Now we can prove Lemma 7.14.

Proof of Lemma 7.14. Let P be an M-augmenting path in G. For a
contradiction, suppose we do not succeed in finding an augmenting
path or blossom. Starting from one of the endpoints of P (which is in
X0, an even level), trace the path in the leveled graph created above.
The next vertex should be in an odd level, the next in an even level,
and so forth. Since the path P is alternating, FindAugPath ensures
that all its edges will be explored. (Make sure you see this!) Now P
has an odd number of edges (i.e., even number of vertices), so the last
vertex has an opposite parity from the starting vertex. But the last
vertex is open, and hence in X0, an even level. This is a contradiction.

72 subsequent work

7.4.3 Finding a Tutte-Berge Set⋆

If FindAugPath did not succeed, all the edges we explored form a
bipartite graph. This does not mean that the entire graph is bipar-
tite, of course—there can be non-matching edges incident to nodes
in odd levels that lead to nodes that remain unmarked. But these
components have no open vertices (which are all in X0 and marked).
Now define U = Xodd := X1 ∪ X3 ∪ . . . be the vertices in odd lev-
els. Since there are no cross edges, each of these nodes has a distinct
matching edge leading to the next level. Now G \U has two kinds of
components:

(a) the marked vertices in the even levels, Xeven which are all single-
tons since there are no cross edges, and

(b) the unmarked components, which have no open vertices, and
hence have even size.

Hence

n + |U| − odd(G \U)

2
=

n + |Xodd| − |Xeven|
2

=
2|Xodd|+ (n− |X|)

2

= |Xodd|+
(n− |X|)

2
= |M|.

The last equality uses that all nodes in V \ X are perfectly matched
among themselves, and all nodes in Xodd are matched using unique
edges.

The last piece is to show that a Tutte-Berge set U′ for a contracted
graph G′ = G/B with respect to M′ = M/B can be lifted to one for G
with respect to M. We leave it as an exercise to show that adding the
entire blossom B to U′ gives such an U.

7.5 Subsequent Work

The best runtime of combinatorial algorithms for maximum matching
in general graphs is O(m

√
n) by an algorithm of Silvio Micali and

Vijay Vazirani. The algorithm is based on finding augmenting paths S. Micali and V.V. Vazirani (1984)

much faster than the naïve approach above. It is quite involved; I rec-
ommend an algorithm due to Hal Gabow and Bob Tarjan that has the H.N. Gabow and R.E. Tarjan

same running time, and also extends to the min-cost version of the
problem. In a later chapter, we will see a very different “algebraic”
algorithm based on fast matrix multiplication. This algorithm due to
Marcin Mucha and Piotr Sankowski gives a runtime of O(nω), where M. Mucha and P. Sankowski (2006)

ω ≈ 2.376. Coming up next, however, is a discussion of weighted
versions of matching, where edges have weights and the goal is to

https://mathscinet.ams.org/mathscinet-getitem?mr=MR1134518
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2220932

graph matchings i: combinatorial algorithms 73

find the matching of maximum weight, or perfect matchings with
minimum weight.

