
25
Approximation Algorithms via SDPs

Just like the use of linear programming was a major advance in the
design of approximation algorithms, specifically in the use of lin-
ear programs in the relax-and-round framework, another significant
advantage was the use of semidefinite programs in the same frame-
work. For instance, the approximation guaranteee for the Max-Cut

problem was improved from 1/2 to 0.878 using this technique. More-
over, subsequent results have shown that any improvements to this
approximation guarantee in polynomial-time would disprove the
Unique Games Conjecture.

25.1 Positive Semidefinite Matrices

The main objects of interest in semidefinite programming, not sur-
prisingly, are positive semidefinite matrices.

Definition 25.1 (Positive Semidefinite Matrices). Let A ∈ Rn×n be a
real-valued symmetric matrix and let r = rank(A). We say that A is
positive semidefinite (PSD) if any of the following equivalent conditions
hold:

a. x⊺Ax ≥ 0 for all x ∈ Rn.

b. All of A’s eigenvalues are nonnegative (with r of them being
strictly positive), and hence A = ∑r

i=1 λiviv
⊺
i for λ1, . . . , λr > 0,

and vi’s being orthonormal.

c. There exists a matrix B ∈ Rn×r such that A = BB⊺.

d. There exist vectors v1, . . . , vn ∈ Rr such that Ai,j =
〈
vi, vj

〉
for all

i, j.

e. There exist jointly distributed (real-valued) random variables
X1, . . . , Xn such that Ai,j = E[XiXj].

f. All principal minors have nonnegative determinants. A principal minor is a submatrix of A
obtained by taking the columns and
rows indexed by some subset I ⊆ [n].

264 semidefinite programs

The different definitions may be useful in different contexts. As an
example, we see that the condition in Definition 25.1(f) gives a short
proof of the following claim.

Lemma 25.2. Let A ⪰ 0. If Ai,i = 0 then Aj,i = Ai,j = 0 for all j. We will write A ⪰ 0 to denote that A is
PSD; more generally, we write A ⪰ B
if A − B is PSD: this partial order on
symmetric matrices is called the Löwner
order.

Proof. Let j ̸= i. The determinant of the submatrix indexed by {i, j} is

Ai,i Aj,j − Ai,j Aj,i

is nonnegative, by assumption. Since Ai,j = Aj,i by symmetry, and
Ai,i = 0, we get A2

i,j = A2
j,i ≤ 0 and we conclude Ai,j = Aj,i = 0.

Definition 25.3 (Frobenius Product). Let A, B ∈ Rn×n. The Frobenius
inner product A • B, also written as ⟨A, B⟩ is defined as

⟨A, B⟩ := A • B := ∑
i,j

Ai,jBi,j = Tr(A⊺B).

We can think of this as being the usual vector inner product treat-
ing A and B as vectors of length n× n. Note that by the cyclic prop-
erty of the trace, A • xx⊺ = Tr(Axx⊺) = Tr(x⊺Ax) = x⊺Ax; we will
use this fact to derive yet another of PSD matrices.

Lemma 25.4. A is PSD if and only if A • X ≥ 0 for all X ⪰ 0.

Proof. Suppose A ⪰ 0. Consider the spectral decomposition X =

∑i λixix
⊺
i where λi ≥ 0 by Definition 25.1(b). Then

A • X = ∑
i

λi(A • xix
⊺
i) = ∑

i
λi x⊺i Axi ≥ 0.

On the other hand, if A ⪰̸ 0, there exists v such that v⊺Av < 0,
by 25.1(a). Let X = vv⊺ ⪰ 0. Then A • X = v⊺Av < 0.

Finally, let us mention a useful fact (which can be proved, e.g.,
using the x⊺Ax ≥ 0 characterization of PSD matrices):

Fact 25.5 (PSD cone). Given two matrices A, B ⪰ 0, and scalars
α, β > 0 then αA + βB ⪰ 0. Hence the set of PSD matrices forms a
convex cone in Rn(n+1)/2. Here n(n + 1)/2 is the number of

entries on or above the diagonal in an
n× n matrix, and completely specifies a
symmetric matrix.25.2 Semidefinite Programs

Loosely, a semidefinite program (SDP) is the problem of optimizing a
linear function over the intersection of a convex polyhedron K (given
by finitely many linear constraints, say Ax ≥ b) with the PSD cone K.
Let us give two useful packagings for semidefinite programs.

approximation algorithms via sdps 265

25.2.1 As Linear Programs with a PSD Constraint

Consider a linear program where the variables are indexed by pairs
i, j ∈ [n], i.e., a typical variable is xi,j. Let X be the n× n dimensional
matrix whose (i, j)th entry is xi,j. As the objective and constraints are
linear, we can write them as C • X and Ak • X ≤ bk for some (not
necessarily PSD) matrices C, A1, . . . , Am and scalars b1, . . . , bm. An
SDP is an LP of this form with the additional constraint X ⪰ 0: Observe that if each of the matrices Ai

and C are diagonal matrices, say with
diagonals ai and c, this SDP becomes
the linear program

max{c⊺x | a⊺k x ≤ bk , x ≥ 0},
where x denotes the diagonal of the
PSD matrix X.

maximize
X∈Rn×n

C • X

subject to Ak • X ≤ bk, ∀k ∈ [m]

X ⪰ 0.

25.2.2 As Vector Programs

We can use Definition 25.1(d) to rewrite the above program as a “vec-
tor program”: where the linear objective and the linear constraints
are on inner products of vector variables:

maximize
v1,...,vn∈Rn ∑

i,j
cij
〈
vi, vj

〉

subject to ∑
i,j

a(k)ij
〈
vi, vj

〉
≤ bk, ∀k ∈ [m].

In particular, we optimize over vectors in n-dimensional space; we
cannot restrict the dimension of these vectors, much like we cannot
restrict the rank of the matrices X in the previous representation.

25.2.3 Examples of SDPs

Let A a symmetric n× n real matrix. Here is an SDP to compute the
maximum eigenvalue of A:

maximize
X∈Rn×n

A • X

subject to I • X = 1

X ⪰ 0

(25.1)

Lemma 25.6. SDP (25.1) computes the maximum eigenvalue of A.

Proof. Let X maximize SDP (25.1) (this exists as the objective is con-
tinuous and the feasible set is compact). Consider the spectral de-
composition X = ∑n

i=1 λixix
⊺
i where λi ≥ 0 and ∥xi∥2 = 1. The

trace constraint I • X = 1 implies ∑i λi = 1. Thus the objective value
A • X = ∑i λix

⊺
i Axi is a convex combination of x⊺i Axi. Hence without

loss of generality, we can put all the weight into one of these terms,
in which case X = yy⊺ is a rank-one matrix with ∥y∥2 = 1. By the
Courant-Fischer theorem, OPT ≤ max∥y∥2=1 y⊺Ay = λmax.

266 sdps in approximation algorithms

On the other hand, letting v be a unit eigenvector of A correspond-
ing to λmax, we have that OPT ≥ A • vv⊺ = v⊺Av = λmax.

Here is another SDP for the same problem: In fact, it turns out that this SDP is dual
to the one in (25.1). Weak duality still
holds for this case, but strong duality
does not hold in general for SDPs.
Indeed, there could be a duality gap for
some cases, where both the primal and
dual are finite, but the optimal solutions
are not equal to each other. However,
under some mild regularity conditions
(e.g., the Slater conditions) we can show
strong duality. More about SDP duality
here.

minimize
t

t

subject to tI − A ⪰ 0.
(25.2)

Lemma 25.7. SDP (25.2) computes the maximum eigenvalue of A.

Proof. The matrix tI − A has eigenvalues t− λi. And hence the con-
straint tI − A ⪰ 0 is equivalent to the constraint t− λ ≥ 0 for all its
eigenvalues λ. In other words, t ≥ λmax, and thus OPT = λmax.

25.3 SDPs in Approximation Algorithms

We now consider designing approximation algorithms using SDPs.
Recall that given a matrix A, we can check if it is PSD in (strongly)
polynomial time, by performing its eigendecomposition. Moreover, if
A is not PSD, we can return a hyperplane separating A from the PSD
cone. Thus using the ellipsoid method, we can approximate SDPs
when OPT is appropriately bounded. Informally, We know that there is an optimal LP

solution where the numbers are singly
exponential, and hence can be written
using a polynomial number of bits. But
this is not true in SDPs, in fact, OPT in
an SDP may be as large (or small) as
doubly exponential in the size of the
SDP. (See Section 2.6 of the Matoušek
and Gärtner.)

Theorem 25.8 (Informal Theorem). Assuming that the radius of the fea-
sible set is at most exp(poly(⟨SDP⟩)), the ellipsoid algorithm can weakly
solve SDP in time poly(⟨SDP⟩, log(1/ε)) up to an additive error of ε.

For a formal statement, see Theorem 2.6.1 of Matoušek and Gärt-
ner. However, we will ignore these technical issues in the remainder
of this chapter, and instead suppose that we can solve our SDPs ex-
actly.

25.4 The MaxCut Problem and Hyperplane Rounding

Given a graph G = (V, E), the MaxCut problem asks us to find a
partition of the vertices (S, V \ S) maximizing the number of edges
crossing the partition. This problem is NP-complete. In fact assuming
P ̸= NP, a result of Johan Håstad shows that we cannot approximate
MaxCut better than 17/16− ε for any ε > 0.

25.4.1 Greedy and Randomized Algorithms

We begin by considering a greedy algorithm: process the vertices
v1, . . . , vn in some order, and place each vertex vi in the part of the
bipartition that maximizes the number of edges cut so far (breaking
ties arbitrarily).

approximation algorithms via sdps 267

Lemma 25.9. The greedy algorithm cuts at least |E|/2-many edges.

Proof. Let δi be the number of edges from vertex i to vertices j < i:
then the greedy algorithm cuts at least ∑i δi/2 = |E|/2 edges.

This result shows two things: (a) every graph has a bipartition that
cuts half the edges of the graph, so Opt ≥ |E|/2. Moreover, (b) that
since Opt ≤ |E| on any graph, this means that Alg ≥ |E|/2 ≥ Opt /2.

We cannot hope to prove a better result
than Lemma 25.9 in terms of |E|, since
the complete graph Kn has (n

2) ≈ n2/2
edges and any partition can cut at most
n2/4 of them.

Here’s a simple randomized algorithm: place each vertex in either
S or in S̄ independently and uniformly at random. Since each edge is
cut with probability 1/2, the expected number of cut edges is |E|/2.
Moreover, by the probabilistic method Opt ≥ |E|/2.

25.4.2 Relax-and-Round using LPs

A natural direction would be to write an ILP formulation for Max-
Cut and to relax it: this approach does not give us anything beyond
a factor of 1/2, say.

25.4.3 A Semidefinite Relaxation

We now see a well-known example of an SDP-based approximation
algorithm due to Michel Goemans and David Williamson. Again, we
will use the relax-and-round framework from the previous chapter.
The difference is that we write a quadratic program to model the
problem exactly, and then relax it to get an SDP.

Indeed, observe that the MaxCut problem can be written as the
following quadratic program.

maximize
x1,...,xn∈R

∑
(i,j)∈E

(xi − xj)
2

4

subject to x2
i = 1 ∀i.

(25.3)

Since each xi is real-valued, and x2
i = 1, each variable must be as-

signed one of two labels {−1,+1}. Since each term in the objective
contributes 1 for an edge connecting two vertices in different parti-
tions, and 0 otherwise, this IP precisely captures MaxCut.

We now relax this program by replacing the variables xi with
vector variables vi ∈ Rn, where ∥vi∥2 = 1.

maximize
v1,...,vn∈Rn ∑

(i,j)∈E

∥vi − vj∥2

4

subject to ∥vi∥2 = 1 ∀i.

(25.4)

Noting that ∥vi − vj∥2 = ∥vi∥2 + ∥vj∥2 − 2
〈
vi, vj

〉
= 2− 2

〈
vi, vj

〉
, we

rewrite this vector program as The SDP relaxation for the MaxCut

problem was first introduced by Svata
Poljak and Franz Rendl.

268 the maxcut problem and hyperplane rounding

maximize
v1,...,vn∈Rn ∑

(i,j)∈E

1−
〈
vi, vj

〉

2

subject to ⟨vi, vi⟩ = 1 ∀i.

(25.5)

This is a relaxation of the original quadratic program, because we
can model any {−1,+1}-valued solution using vectors, say by a
corresponding {−e1,+e1}-valued solution. Since this is a maximiza-
tion problem, the SDP value is now at least the optimal value of the
quadratic program.

25.4.4 The Hyperplane Rounding Technique

In order to round this vector solution {vi} to the MaxCut SDP into
an integer scalar solution to MaxCut, we use the remarkably simple
method of hyperplane rounding. The idea is this: a term in the SDP
objective incurs a tiny cost close to zero when vi, vj are very close to
each other, and almost unit cost when vi, vj point in nearly opposite
directions. So we would like to map close vectors to the same value.

To do this, we randomly sample a hyperplane through the origin
and partition the vectors according to the side on which they land.
Formally, this corresponds to picking a vector g ∈ Rn according to
the standard n-dimensional Gaussian distribution, and setting

S := {i | ⟨vi, g⟩ ≥ 0}.

We now argue that this procedure gives us a good cut in expectation;
this procedure can be repeated to get an algorithm that succeeds with
high probability.

v1

v2

v3

v4

g

Figure 25.1: A geometric picture of
Goemans-Williamson randomized
rounding

Theorem 25.10. The partition produced by the hyperplane rounding algo-
rithm cuts at least αGW · SDP edges in expectation, where αGW := 0.87856.

Proof. By linearity of expectation, it suffices to bound the probability
of an edge (i, j) being cut. Let

θij := cos−1(
〈
vi, vj

〉
)

be the angle between the unit vectors vi and vj. Now consider the
2-dimensional plane P containing vi, vj and the origin, and let g̃ be
the projection of the Gaussian vector g onto this plane. Observe that
the edge (i, j) is cut precisely when the hyperplane defined by g
separates vi, vj. This is precisely when the vector perpendicular to
g̃ in the plane P lands between vi and vj. As the projection onto a
subspace of the standard Gaussian is again a standard Guassian (by
spherical symmetry),

Pr[(i, j) cut] =
2θij

2π
=

θij

π
.

approximation algorithms via sdps 269

θij

vjvi

g̃

Figure 25.2: Angle between two vectors.
We cut edge (i, j) when the vector
perpendicular to g̃ lands in the grey
area.

Since the SDP gets a contribution of

1−
〈
vi, vj

〉

2
=

1− cos(θi,j)

2

for this edge, it suffices to show that

θ

π
≥ α

1− cos θ

2
.

Indeed, we can show (either by plotting, or analytically) that α =

0.87856 . . . suffices for the above inequality, and hence

E[# edges cut] = ∑
(i,j)∈E

θij/π ≥ α ∑
(i,j)∈E

1− cos(θij)

2
= α SDP .

This proves the theorem.

Corollary 25.11. For any ε > 0, repeating the hyperplane rounding
algorithm O(1/ε log 1/δ) times and returning the best solution ensures that
we output a cut of value at least (.87856− ε) Opt with probability 1− δ.

We leave this proof as an exerise in using Markov’s inequality:
note that we want to show that the algorithm returns something not
too far below the expecation, which seems to go the wrong way, and
hence requires a moment’s thought.

The above algorithm is randomized and the result only holds in
expectation. However, it is possible to derandomize this result to
obtain a polynomial-time deterministic algorithm with the same
approximation ratio.

25.4.5 Subsequent Work and Connections

Can we get a better approximation factor, perhaps using a more so-
phisticated SDP? An influential result of Subhash Khot, Guy Kindler,
Elchanan Mossel, and Ryan O’Donnell says that a constant-better-
than-αGW-approximation would refute the Unique Games Conjecture.

Also, one can ask if similar rounding procedures exist for an
linear-programming relaxation as opposed to the SDP relaxation
here. Unfortunately the answer is again no: a result of Siu-On Chan,
James Lee, Prasad Raghavendra, and David Steurer shows that no
polynomial-sized LP relaxation of MaxCut can obtain a non-trivial
approximation factor, that is, any polynomial sized LP of MaxCut

has an integrality gap of 1/2.

25.5 Coloring 3-Colorable Graphs

Suppose we are given a graph G = (V, E) and a promise that there
is some 3-coloring of G. What is the minimum k such that we can

270 coloring 3-colorable graphs

find a k-coloring of G in polynomial time? It is well-known that 2-
coloring a graph can be done in linear time, but 3-coloring a graph is
NP-complete. Hence, even given a 3-colorable graph, it is NP-hard
to color it using 3 colors. (In fact, a result of Venkat Guruswami and
Sanjeev Khanna shows that it is NP-hard to color it using even 4 col-
ors.) But what if we ask to color a 3-colorable graph using 5 colors?
O(log n) colors? O(nα) colors, for some fixed constant α? We will see
an easy algorithm to achieve an O(

√
n)-coloring, and then will use

semidefinite programming to improve this to an Õ(nlog6(2)) color-
ing. Before we describe these, let us recall the easy part of Brooks’
theorem. The harder part is to show that in fact ∆

colors suffice unless the graph is either
a complete graph, or an odd-length
cycle.

Lemma 25.12. Let ∆ be the maximum degree of a graph G, then we can
find a (∆ + 1)-coloring of G in linear time.

Proof. Pick any vertex v, recursively color the remaining graph, and
then assign v a color not among the colors of its ∆ neighbors.

We will now describe an algorithm that colors a 3-colorable graph
G with O(

√
n) colors, originally due to Avi Wigderson: while there

exists a vertex with degree at least
√

n, color it using a fresh color.
Moreover, its neighborhood must be 2-colorable, so use two fresh
colors to do so. This takes care of

√
n vertices using 3 colors. Remove

these, and repeat. Finally, use Lemma 25.12 to color the remaining
vertices using

√
n colors. This proves the following result.

Lemma 25.13. There is an algorithm to color a 3-colorable graph with
O(
√

n) colors.

25.5.1 An Algorithm using SDPs

Let’s consider an algorithm that uses SDPs to color a 3-colorable
graph with maximum degree ∆ using Õ(∆log3 2) ≈ Õ(∆0.63) colors.
In general ∆ could be as large as n, so this could be worse than the
algorithm in Lemma 25.13, but we will be able to combine the ideas
together to get a better result.

For some parameter λ ∈ R, consider the following feasibility SDP
(where we are not optimizing any objective):

find v1, . . . , vn ∈ Rn

subject to
〈
vi, vj

〉
≤ λ ∀(i, j) ∈ E

⟨vi, vi⟩ = 1 ∀i ∈ V.

(25.6)

Why is this SDP relevant to our problem? The goal is to have vectors
clustered together in groups, such that each cluster represents a color.
Intuitively, we want to have vectors of adjacent vertices to be far
apart, so we want their inner product to be close to −1 (recall we are

https://en.wikipedia.org/wiki/Brooks%27_theorem
https://en.wikipedia.org/wiki/Brooks%27_theorem

approximation algorithms via sdps 271

dealing with unit vectors, due to the last constraint) and vectors of
the same color to be close together.

Lemma 25.14. For 3-colorable graphs, SDP (25.6) is feasible with λ =

−1/2.

Proof. Consider the vector placement shown in the figure to the right.

120◦

120◦

120◦

Figure 25.3: Optimal distribution of
vectors for 3-coloring graph

If the graph is 3-colorable, we can assign all vertices with color 1

the red vector, all vertices with color 2 the blue vector and all vertices
with color 3 the green vector. Now for every edge (i, j) ∈ E, we have
that

〈
vi, vj

〉
= cos

(
2π

3

)
= −1/2.

At first sight, it may seem like we are done: if we solve the above
SDP with λ = −1/2, don’t all three vectors look like the figure above?
No, that would only hold if all of them were to be co-planar. And in
n-dimensions we can have an exponential number of cones of angle
2π
3 , like in the next figure, so we cannot cluster vectors as easily as in

the above example.

Figure 25.4: Dimensionality problem of
2π/3 far vectors

To solve this issue, we apply a hyperplane rounding technique
similar to that from the MaxCut algorithm. Indeed, for some pa-
rameter t we will pick later, pick t random hyperplanes. Formally, we
pick gi ∈ Rn from a standard n-dimensional Gaussian distribution,
for i ∈ [t]. Each of these defines a normal hyperplane, and these split
the Rn unit sphere into 2t regions (except if two of them point in the
same direction, which has zero probability). Now, each vectors {vi}
that lie in the same region can be considered “close” to each other,
and we can try to assign them a unique color. Formally, this means
that if vi and vj are such that

sign(⟨vi, gk⟩) = sign(
〈
vj, gk

〉
)

for all k ∈ [t], then i and j are given the same color. Each region is
given a different color, of course.

However, this may color some neighbors with the same color, so
we use the method of alterations: while there exists an edge between
vertices of the same color, we uncolor both endpoints. When this
uncoloring stops, we remove the still-colored vertices from the graph,
and then repeat the same procedure on the remaining graph, until we
color every vertex. Note that since we use t hyperplanes, we add at
most 2t new colors per iteration. The goal is to now show that (a) the
number of interations is small, and (b) the value of 2t is also small.

Lemma 25.15. If half of the vertices are colored in a single iteration in
expectation, then the expected number of iterations to color the whole graph
is O(log n).

272 coloring 3-colorable graphs

Proof. Since the expected number of uncolored vertices is at most
half, Markov’s inequality says that more than 3/4 of the vertices are
uncolored in a single iteration, with probability at most 2/3. In other
words, at least 1/4 of the vertices are colored with probability 1/3.
Hence, the number of iterations to color the whole graph is domi-
nated by the number of flips of a coin of bias 1/3 to get log4 n heads.
This is 4 log4 n, which proves the result.

Lemma 25.16. The expected number of vertices that remain uncolored after
a single iteration is at most n∆ (1/3)t.

Proof. Fix an edge ij: for a single random hyperplane, the probability
that vi, vj are not separated by it is

π − θij

π
≤ 1

3
,

using that θij ≥ 2π
3 which follows from the constraint in the SDP.

Now if i is uncolored because of j, then vi, vj have the same color,
which happens when all t hyperplanes fail to separate the two. By
independence, this happens with probability at most (1/3)t. Finally,

E[remaining] = ∑
i∈V

Pr[i uncolored]

≤ ∑
i∈V

∑
(i,j)∈E

Pr[i uncolored because of j]. (25.7)

There are n vertices, and each vertex has degree at most ∆, which
proves the result.

Lemma 25.17. There is an algorithm that colors a 3-colorable graph with
maximum degree ∆ with O(∆log3 2 · log n) colors in expectation.

Proof. Setting t = log3(2∆) in Lemma 25.16, the expected number of
uncolored vertices in any iteration is

n · ∆ · (1/3)t ≤ n/2. (25.8)

Now Lemma 25.15 says we perform O(log n) iterations in expecta-
tion. Since we use most 2log3(2∆) = (2∆)log3 2 colors in each iteration,
we get the result.

25.5.2 Improving the Algorithms Further

The expected number of colors used by the above algorithm is
Õ(nlog3 2) ≈ Õ(n0.63), which is worse than our initial O(

√
n) algo-

rithm. However we can combine the ideas together to get a better
result:

approximation algorithms via sdps 273

Theorem 25.18. There is an algorithm that colors a 3-colorable graph with
Õ(nlog6(2)) colors.

Proof. For some value σ, repeatedly remove vertices with degree
greater than σ and color them and their neighbors with 3 new col-
ors, as in Lemma 25.13. This requires at most 3n/σ colors overall,
and leaves us with a graph having maximum degree σ. Now use
Lemma 25.17 to color the remaining graph with O(σlog3 2 · log n) col-
ors. Picking σ to be nlog6 3 to balance these terms, we get a procedure
that uses Õ(nlog6 2) ≈ Õ(n0.38) colors.

25.5.3 Final notes on coloring 3-colorable graphs

This result us due to David Karger, Rajeev Motwani, and Madhu Su-
dan. They gave a better rounding algorithm that uses spherical caps
instead of hyperplanes to achieve Õ(n1/4) colors. This result was
then improved over a sequence of papers: the current best result by
Ken-Ichi Kawarabayashi and Mikkel Thorup uses O(n0.199) colors.
It remains an outstanding open problem to either get a better algo-
rithm, or to show hardness results, even under stronger complexity-
theoretic hypotheses.

