
19
The Centroid and Ellipsoid Algorithms

Our focus in this chapter is on the constrainted optimization prob-
lem:

Given a convex function f , a convex set K, and a parameter ε > 0, find
a point x̂ ∈ K such that

f (x̂) ≤ min
x∈K

f (x) + ε.

In previous sections, we saw gradient descent and mirror descent
gave us algorithms whose dependence on ε was like poly(1/ε). The algorithms also had some depen-

dence on f and K; e.g., if gradients
∥∇ f (x)∥2 ≤ G for x ∈ K, and the diam-
eter of K was at most D, then projected
gradient descent ran in O((GD/ε)2)
time.

Moreover, we have examples that show algorithms based only on
local gradient information need time at least polynomial in 1/ε.
Where? So can we do better?

In this chapter, we show how to use global information to get
algorithms for convex programming that have O(log 1/ε)-type con-
vergence guarantees (under suitable assumptions). Specifically, we
will examine the Centroid and Ellipsoid algorithms in depth. In turn,
these will give us polynomial-time algorithms for Linear Program-
ming problems.

19.1 The Centroid Algorithm

In this section, we discuss the Centroid Algorithm in the context
of constrained convex minimization. Besides being interesting in
its own right, it is a good lead-in to Ellipsoid, since it gives some
intuition about high-dimensional bodies and their volumes.

Given a convex body K ⊆ Rn and a convex function f : K → R,
we want to approximately minimize f (x) over x ∈ K. As in previous
sections, we assume a gradient oracle for f , one that returns the
value ∇ f (x) for any query point x ∈ K. We also assume that we
can perform exact arithmetic over the reals; however, we will soon
begin discussing issues that arise from using only finite-precision
arithmetic.

232 the centroid algorithm

As the name suggests, the algorithm is based on the notion of
centroid for compact convex sets. The centroid of a set K is the point This is the analog of the centroid of a

discrete set S = {x1, x2, . . . , xN}:

centroid(S) :=
1
|S| ∑i

xi .

Other names for the centroid are the
center of gravity, and the barycenter.

c ∈ Rn such that

c :=

∫
x∈K x dx
vol(K)

=

∫
x∈K x dx∫
x∈K dx

,

where vol(K) is the volume of the set K. Since c is the “average”
of points in some convex set K, it also lies within K. The following
result captures the crucial fact about the centroid that we use in our
algorithm. B. Grünbaum (1960)

Theorem 19.1 (Grünbaum’s Theorem). For any compact convex set K ∈
Rn with a centroid c ∈ Rn, and any halfspace H = {x | a⊺(x − c) ≥ 0}
whose supporing hyperplane passes through c,

1
e
≤ vol(K ∩ H)

vol(K)
≤
(

1− 1
e

)
.

This bound of 1/e in Grünbaum’s Theorem is the best possible:
e.g., consider the simplex K = {x ∈ [0, 1]n | ∥x∥1 ≤ 1} with centroid

1
n+1 1. Defining the halfspace H = {x1 ≥ c}, we get that K ∩ H is a
scaled-down copy of K, with volume

(
1− 1

n + 1

)n

→ 1/e

as n→ ∞.

19.1.1 The Algorithm

In 1965, A. Ju. Levin and Donald Newman independently (and on A.Ju. Levin (1965)
D.J. Newman (1965)opposite sides of the iron curtain) proposed the following algorithm.
For most of this chapter, we assume
that we can perform exact arithmetic on
real numbers. This assumption could be
very restrictive loss in generality, since
some of our algorithm take square-
roots (e.g., when computing ellipsoids).
Rounding numbers create all sorts
of numerical problems, and a large
part of the complication in the actual
algorithms comes from these numerical
issues.

Algorithm 18: Centroid(K, f, T)

18.1 K1 ← K
18.2 for t = 1, . . . T do
18.3 at step t, let ct ← centroid of Kt

18.4 Kt+1 ← Kt ∩ {x | ⟨∇ f (ct), x− ct⟩ ≤ 0}
18.5 return x̂ ← arg mint∈{1,...,T} f (ct)

The figure to the right shows a sample execution of the algorithm,
where K is initially a ball. (Ignore the body Kε for now.) We find the
centroid c1 and compute the gradient ∇ f (c1). Instead of moving in
the direction opposite to the gradient, we consider the halfspace H1

of vectors negatively correlated with the gradient, restrict our search
to K ← K ∩ H1, and continue. We repeat this step some number of
times, and then return the smallest of the function value at all the
centroids seen by the algorithm. Note that the algorithm assumes:

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0124818
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0175629
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0182129

the centroid and ellipsoid algorithms 233

1. Access to both a gradient oracle and a value oracle for the function
f , and

2. access to a procedure that computes the centroid for any compact
convex set K. Kε

K

• c0

∇ f (c0)

•
c1

∇ f (c1)

•
c2

∇ f (c2)

Figure 19.1: Sample execution of first
three steps of the Centroid Algorithm.

Theorem 19.2. Consider a convex set K ⊆ (0, R) ⊆ Rn, and a convex
function f : K → R such that let ∥∇ f (x)∥ ≤ G for all x ∈ K. If x̂ is the
result of the algorithm, and x∗ = arg minx∈K f (x), then

f (x̂)− f (x∗) ≤ 4GR · exp(−T/3n).

Hence, for any ε ≤ 1, as long as T ≥ 3n ln 4GR
ε ,

f (x̂)− f (x∗) ≤ ε.

Proof. For some δ ≤ 1, define the body

Kδ := {(1− δ)x∗ + δx | x ∈ K}
as a scaled-down version of K centered at x∗. The following facts are
immediate:

1. vol(Kδ) = δn · vol(K).

2. For any points x, y ∈ K, integrating along the path from x to y and
using the fact that the gradients are bounded by G gives

f (x)− f (y) =
∫ 1

t=0
⟨ f (y + t(x− y)), x− y⟩ dt

≤
∫ 1

t=0
∥ f (y + t(x− y))∥∥x− y∥dt ≤ G∥x− y∥ ≤ G · (2R).

3. The value of f on any point y = (1− δ)x∗ + δx ∈ Kδ is

f (y) = f ((1− δ)x∗ + δx) ≤ (1− δ) f (x∗) + δ f (x)

≤ f (x∗) + δ(f (x)− f (x∗)) ≤ f (x∗) + 2δGR.

Using Grünbaum’s lemma, the volume falls by a constant factor in
each iteration, so vol(Kt) ≤ vol(K) · (1 − 1

e)
t. If we define δ :=

2(1 − 1/e)T/n, then after T steps the volume of KT is smaller than
that of Kδ, so some point of Kδ must have been cut off.

Consider such a step t such that Kδ ⊆ Kt but Kδ ̸⊆ Kt+1. Let
y ∈ Kδ ∩ (Kt \ Kt+1) be a point that is “cut off”. By convexity we have

f (y) ≥ f (ct) + ⟨∇ f (ct), y− ct⟩ ;

moreover, ⟨∇ f (ct), y− ct⟩ > 0 since the cut-off point y ∈ Kt \ Kt+1.
Hence the corresponding centroid has value f (ct) < f (y) ≤ f (x∗) +
2δGR. Since x̂ is the centroid with the smallest function value, we get

f (x̂)− f (x∗) ≤ 2GR · 2
(
1− 1/e

)T/n ≤ 4GR exp(−T/3n).

The second claim follows by substituting T ≥ 3n ln 4GR
ε into the first

claim, and simplifying.

234 multi-dimensional binary search

19.1.2 Comments on the Runtime

The number of iterations T needed by the Centroid algorithm to get
an error of ε is O(n log(GR/ε)); compare this linear convergence Recall that linear convergence refers to

a rate where we the number of bits of
precision increases linearly: i.e., the
number of iterations is logarithmic in
1/ε.

to gradient descent requiring O((GR/ε)2) steps in the same setting.
One downside with this approach is that the number of iterations
explicitly depends on the number of dimensions n, whereas gradient
descent does not.

Another all-important question is: how do we compute the centroid?
This is a difficult problem—it is #P-hard to do exactly, which means
it is at least as hard as counting the number of satisfying assignments
to a SAT instance. (You will see this in a homework problem.) In
2002, Dimitris Bertsimas and Santosh Vempala suggested a way to D. Bertsimas and S. Vempala (2006)

find approximate centroids by sampling random points from convex
bodies (which in turn is done via random walks). Combined with a
robust version of Grünbaum’s theorem gives us a polynomial-time
version of the algorithm.

19.2 Multi-Dimensional Binary Search

Let us put the Centroid algorithm in a broader context. Given a con-
vex body, one of the canonical ways of specifying it will be via a
separation oracle. An ε-weak separation oracle is one

where we are just ensured that ⟨a, x⟩ >
⟨a, y⟩ − ε for all y ∈ K. Specifying K
via a weak separation oracle makes all
our tasks much more challenging; in
this course we restrict our discussions
to strong separation, and defer the
generalization to the GLS book.

Definition 19.3 (Strong Separation Oracle). For a convex set K ⊆ Rn,
a strong separation oracle for K is an algorithm that takes a point z ∈
Rn and correctly outputs one of:

(i) Yes (i.e., z ∈ K), or

(ii) No (i.e., z ̸∈ K), as well as a separating hyperplane given by a ∈
Rn, b ∈ R such that K ⊆ {x ∈ Rn | ⟨a, x⟩ ≤ b} but ⟨a, z⟩ > b.

The Hahn-Banach separation theorem ensures that exactly one of
the two cases can hold for any x and K. Our goal now is to solve the
following feasibility problem:

Given access to a strong separation oracle for a convex body K, as well
as positive values R, r such that (a) K ⊆ B(0, R) ⊆ Rn, and (b) the body
K is either empty, or else there is some unknown (full-dimensional)
r-ball B(c, r) ⊆ K. If K ̸= ∅, output a point x ∈ K, else say K = ∅.

19.2.1 Feasibility using Centroids

The ideas behind the Centroid algorithm also solves the feasibility
problem:

https://mathscinet.ams.org/mathscinet-getitem?mr=MR2147847
https://en.wikipedia.org/wiki/Hyperplane_separation_theorem

the centroid and ellipsoid algorithms 235

Algorithm 19: CentroidFeasibility(K, R, r)

19.1 E0 ← B(0, R)
19.2 for t = 0, 1, . . . T := 3n ln(R/r) do
19.3 query strong separation oracle on ct, the centroid of Et

19.4 if ct ̸∈ K then
19.5 at ← direction from strong separation oracle
19.6 Et+1 ← Et ∩ {x | ⟨∇at, x− ct⟩ ≤ 0}
19.7 else
19.8 output “ct ∈ K” and stop
19.9 output “K = ∅”

The argument is nearly identical to the one we saw above:

1. By Grünbaum’s theorem,

vol(Et) ≤ (1− 1/e)t vol(E0) = (1− 1/e)t vol(B(0, R)),

which gives an upper bound on Et’s volume.

2. Suppose K ̸= ∅. If none of the centers ct′ for t′ < t belong to K,
then K ⊆ Et and hence vol(Et) ≥ vol(B(c, r)). This gives a lower
bound on the volume of Et, as long as none of the centroids fall
within our target convex body K.

3. Putting the above statements togehter, (1− 1/e)t ≤ vol(B(0,R))
vol(B(c,r)) =

(R/r)n. This means that if we do not find a point in K within
3n log(R/r) steps, K must be empty!

This approach is very flexible: we just need to (efficiently) main-
tain a sequence of bodies {Et}t such that for each step t:

(a) vol(Et+1) ≤ vol(Et) · (1− δ) for some δ > 0,

(b) if each of the “test points” c1, c2, . . . , ct did not belong to K, then
K ⊆ Et+1.

Following the same outline with these properties gives an iteration
complexity of O

(n
δ log

(R
r
))

. Maybe this more abstract view allows us
to get an efficient algorithm (since computing centroids is #P-hard)?

19.2.2 The Ellipsoid Algorithm

Going from the Centroid to the Ellipsoid algorithm requires a re-
markably small change. If our test point ct = centroid(Et) does not
belong to K, the separation oracle returns a half-space H := {x |
⟨at, x− ct⟩ ≤ 0} that contains K. Now we don’t just define

Et+1 ← Et ∩ H

236 ellipsoid for convex optimization

but instead define: The minimum-volume ellipsoid con-
taining a convex body K is often called
the John ellipsoid for K, after Fritz John
who proved several properties for it in
1948.

Et+1 ← minimum volume ellipsoid containing Et ∩ H.

How can we compute this minimum-volume ellipsoid? And does the
volume go down by a constant factor? Why not balls? Clearly, the smallest

volume ball that contains half a ball is
the ball itself. Interestingly, the same
is true for boxes: the volume of the
new box may not decrease. Thankfully,
ellipsoids—and in fact, simplices—do
have the volume-reduction property.

Since we start off with E0 being a ball (which is trivially an el-
lipsoid), it suffices to show how to compute the minimum-volume
ellipsoid Et+1 of half an ellipsoid (the intersection of an ellipsoid Et

with a half-space passing through its center). We show how to do
this in §19.5, and show that the ellipsoid Et+1 ⊇ Et ∩ Ht has volume

vol(Et+1)

vol(Et)
≤ e−

1
2(n+1) ≈

(
1−O(1/n)

)
.

Therefore, after 2(n + 1) iterations, the ratio of the volumes falls by
at least a factor of 1

e . Hence, if after O(n2 ln(R/r)) steps, none of the This volume reduction is weaker by a
factor of Θ(n) than that of the Centroid
algorithm.

ellipsoid centers have been inside K, we know that K must be empty.

19.3 Ellipsoid for Convex Optimization

Let’s go back to convex minimization: we want to solve min{ f (x) |
x ∈ K}. Again, assume that K is given by a strong separation oracle,
and we have numbers R, r such that K ⊆ Ball(0, R), and K is either
empty or contains a ball of radius r. The general structure is a one
familiar by now, and combines ideas from both the previous sections.

1. Let the starting point x1 ← 0, the starting ellipsoid be E1 ←
Ball(0, R), and the starting convex set K1 ← K.

2. At time t, ask the separation oracle: “Is the center ct of ellipsoid Et

in the convex body Kt?”

Yes: Define half-space Ht := {x | ⟨∇ f (ct), x− ct⟩ ≤ 0}. Observe
that Kt ∩ Ht contains all points in Kt with value at most f (ct).

No: In this case the separation oracle also gives us a separating
hyperplane. This defines a half-space Ht such that ct ̸∈ Ht, but
Kt ⊆ Ht.

In both cases, set Kt+1 ← Kt ∩ Ht, and Et+1 to an ellipsoid con-
taining Et ∩ Ht. Since we knew that Kt ⊆ Et, we maintain that
Kt+1 ⊆ Et+1.

3. Finally, after T = 2n(n + 1) ln(R/r) rounds either we have not seen
any point in K—in which case we say “K is empty”—or else we
output

x̂ ← arg min{ f (ct) | ct ∈ Kt, t ∈ 1 . . . T}.

the centroid and ellipsoid algorithms 237

One subtle issue: we make queries to a separation oracle for Kt,
but we are promised only a separation oracle for K1 = K. However,
we can build separation oracles for Ht inductively: indeed, given
strong separation oracle for Kt−1, we build one for Kt = Kt−1 ∩ Ht−1

as follows:

Given z ∈ Rn, query the oracle for Kt−1 at z. If z ̸∈ Kt−1, the separating
hyperplane for Kt−1 also works for Kt. Else, if z ∈ Kt−1, check if
z ∈ Ht−1. If so, z ∈ Kt = Kt−1 ∩ Ht−1. Otherwise, the defining
hyperplane for halfspace Ht−1 is a separating hyperplane between z
and Kt.

Now adapting the analysis from the previous sections gives us the
following result (assuming exact arithmetic again):

Theorem 19.4 (Idealized Convex Minimization using Ellipsoid).
Given K, r, R as above (and a strong separation oracle K), and a function
f with gradients bounded by G, the Ellipsoid algorithm run for T steps
either correctly reports that K = ∅, or else produces a point x̂ such that

f (x̂)− f (x∗) ≤ O(GR)
r

exp
{
− T

2n(n + 1)

}
.

Note the similarity to Theorem 19.2, as well as the differences: the
exponential term is slower by a factor of 2(n + 1). This is because
the volume of the successive ellipsoids shrinks much slower than
in Grünbaum’s lemma. Also, we lose a factor of R/r because K is
potentially smaller than the starting body by precisely this factor.
(Again, this presentation ignores precision issues, and assumes we
can do exact real arithmetic.)

19.4 The Ellipsoid Algorithm to Solve LPs

The Ellipsoid algorithm is usually attributed to Naum Shor; the fact N. Z. Šor and N. G. Žurbenko (1971)

that this algorithm gives a polynomial-time algorithm for linear pro-
gramming was a breakthrough result due to Khachiyan, and was L.G. Khachiyan (1979)

front page news at the time. A great source of information about
this algorithm is the Grötschel-Lovász-Schrijver book. A historical M. Grötschel, L. Lovász, and A. Schri-

jver (1988)perspective appears in this this survey by Bland, Goldfarb, and Todd.
Let us mention some theorem statements about the Ellipsoid algo-

rithm that are most useful in designing algorithms. The second-most
important theorem is the following. Recall the notion of an extreme
point or basic feasible solution (bfs) from §9.1.2. Let ⟨A⟩, ⟨b⟩, ⟨c⟩ de-
note the number of bits required to represent of A, b, c respectively.

Theorem 19.5 (Linear Programming in Polynomial Time). Given a
linear program min{c⊺x | Ax ≥ b}, the Ellipsoid algorithm produces an
optimal vertex solution for the LP, in time polynomial in ⟨A⟩, ⟨b⟩, ⟨c⟩.

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0305820
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0522052
http://www.nytimes.com/1979/11/07/archives/a-soviet-discovery-rocks-world-of-mathematics-russians-surprise.html
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0936633
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0936633
http://www.math.uwaterloo.ca/~cswamy/courses/co759/approx-material/ellipsoid-survey.pdf

238 the ellipsoid algorithm to solve lps

One may ask: does the runtime depend on the bit-complexity of
the input because doing basic arithmetic on these numbers may re-
quire large amounts of time. Unfortunately, that is not the case. Even
if we count the number of arithmetic operations we need to perform,
the Ellipsoid algorithm performs poly(⟨A⟩ + ⟨b⟩ + ⟨c⟩) operations.
A stronger guarantee would have been for the number of arithmetic
operations to be poly(m, n), where the matrix A ∈ Qm×n: such an
algorithm would be called a strongly polynomial-time algorithm. Ob-
taining such an algorithm remains a major open question.

19.4.1 Finding Vertex Solutions for LPs

There are several issues that we need to handle when solving LPs
using this approach. For instance, the polytope may not be full-
dimensional, and hence we do not have any non-trivial ball within
K. Our separation oracles may only be approximate. Moreover, all
the numerical calculations may only be approximate.

Even after we take care of these issues, we are working over the
rationals so binary search-type techniques may not be able to get us
to a vertex solution. So finally, when we have a solution xt that is Consider the case where we perform

binary-search over the interval [0, 1]
and want to find the point 1/3: no
number of steps will get us exactly to
the answer.

“close enough” to x∗, we need to “round” it and get a vertex solu-
tion. In a single dimension we can do the following (and this idea
already appeared in a homework problem): we know that the opti-
mal solution x∗ is a rational whose denominator (when written in
reduced terms) uses at most some b bits. So we find a solution within
distance to x∗ is smaller than some δ. Moreover δ is chosen to be
small enough such that there is a unique rational with denominator
smaller than 2b in the δ-ball around xt. This rational can only be x∗,
so we can “round” xt to it.

In higher dimensions, the analog of this is a technique (due to
Lovász) called simultaneous Diophantine equations.

19.4.2 Separation Implies Optimization

The most important theorem about Ellipsoid is the following:

Theorem 19.6 (Separation implies Optimization). Given an LP

min{c⊺x | x ∈ K}

for a polytope K = {x | Ax ≥ b} ⊆ Rn, and given access to a strong
separation oracle for K, the Ellipsoid algorithm produces a vertex solution
for the LP in time poly(n, maxi⟨ai⟩, maxi⟨bi⟩, ⟨c⟩).

There is no dependence on the number of constraints in the LP; we
can get a basic solution to any finite LP as long as each constraint has

the centroid and ellipsoid algorithms 239

a reasonable bit complexity, and we can define a separation oracle for
the polytope. This is often summarized by saying: “separation implies
optimization”. Let us give two examples of exponential-sized LPs,
for which we can give a separation oracles, and hence optimize over
them.

19.5 Getting the New Ellipsoid

This brings us to the final missing piece: given a current ellipsoid
E and a half-space H that does not contain its center, we want an
ellipsoid E ′ that contains E ∩ H, and as small as possible. To start off,
let us recall some basic facts about ellipsoids. The simplest ellipses in
R2 are axis aligned, say with principal semi-axes having length a and
b, and written as:

x2

a2 +
y2

b2 ≤ 1.

Or in matrix notation we could also say
[

x
y

]⊺ [
1/a2 0

0 1/b2

] [
x
y

]
≤ 1

More generally, any ellipsoid E is perhaps best thought of as a in-
vertible linear transformation L applied to the unit ball B(0, 1), and
then it being shifted to the correct center c. The linear transformation
yields:

L(Ball(0, 1)) = {Lx : x⊺x ≤ 1}
= {y : (L−1y)⊺(L−1y) ≤ 1}
= {y : y⊺(LL⊺)−1y ≤ 1}
= {y : y⊺Q−1y ≤ 1},

where Q−1 := LL⊺ is a positive semidefinite matrix. For an ellipsoid
centered at c we simply write

{y + 1 : y⊺Q−1y ≤ 1} = {y : (y− c)⊺Q−1(y− c) ≤ 1}.

It is helpful to note that for any ball A,

vol(L(A)) = vol(A) · |det(L)| = vol(A)
√

det(Q)

In the above problems, we are given an ellipsoid Et and a half-
space Ht that does not contain the center of Et. We want to find a
matrix Qt+1 and a center ct+1 such that the resulting ellipsoid Et+1

contains Et ∩ Ht, and satisfies

vol(Et+1)

vol(Et)
≤ e−1/2(n+1).

240 getting the new ellipsoid

Given the above discussion, it suffices to do this when Et is a unit
ball: indeed, when Et is a general ellipsoid, we apply the inverse
linear transformation to convert it to a ball, find the smaller ellipsoid
for it, and then apply the transformation to get the final smaller
ellipsoid. (The volume changes due to the two transformations cancel
each other out.)

We give the construction for the unit ball below, but first let us
record the claim for general ellipsoids:

Theorem 19.7. Given an ellipsoid Et given by (ct, Qt) and a separating
hyperplane a⊺t (x − ct) ≤ 0 through its center, the new ellipsoid Et+1 with
center ct+1 and psd matrix Qt+1) is found by taking

ct+1 := ct −
1

n + 1
h

and

Qt+1 =
n2

n2 − 1

(
Qk −

2
n + 1

hh⊺
)

where h =
√

a⊺t Qtat.

Note that the construction requires us to take square-roots: this
may result in irrational numbers which we then have to either trun-
cate, or represent implicitly. In either case, we face numerical issues;
ensuring that these issues are not real problems lies at the heart of
the formal analysis. We refer to the GLS book, or other textbooks for
details and references.

19.5.1 Halving a Ball

Before we end, we show that the problem of finding a smaller ellip-
soid that contains half a ball is, in fact, completely straight-forward.
By rotational symmetry, we might as well find a small ellipsoid that
contains

K = Ball(0, 1) ∩ {x | x1 ≥ 0}.

By symmetry, it makes sense that the center of this new ellipsoid E
should be of the form

c = (c1, 0, . . . , 0).

Again by symmetry, the ellipsoid can be axis-aligned, with semi-axes
of length a along e1, and b > a along all the other coordinate axes.
Moreover, for E to contain the unit ball, it should contain the points
(1, 0) and (0, 1), say. So

(1− c1)
2

a2 ≤ 1 and
c2

1
a2 +

1
b2 ≤ 1.

the centroid and ellipsoid algorithms 241

Suppose these two inequalities are tight, then we get

a = 1− c1, b =

√
(1− c1)2

(1− c1)2 − c2
1
=

√
(1− c1)2

(1− 2c1
,

and moreover the ratio of volume of the ellipsoid to that of the ball is

abn−1 = (1− c1) ·
((1− c1)

2

1− 2c1

)(n−1)/2
.

This is minimized by setting c1 = 1
n+1 gives us

vol(E)
vol(Ball(0, 1))

= · · · ≤ e−
1

2(n+1) .

For a more detailed description and proof of this process, see these
notes from our LP/SDP course for details.

In fact, we can view the question of finding the minimum-volume
ellipsoid that contains the half-ball K: this is a convex program, and
looking at the optimality conditions for this gives us the same con-
struction above (without having to make the assumptions of symme-
try).

19.6 Algorithms for Solving LPs

We have now seen two different classes of algorithms to solve lin-
ear programs: the first approach using multiplicative weights gave
us solutions which violate the constraints by ε and take O(1/ε2)

steps (ignoring terms that depend on the other input parameters
for now). Next we saw the Centroid and Ellipsoid algorithms for
convex programming which require only O(log 1/ε) steps. How-
ever, they are typically not used to solve LPs in practice. There
are several other algorithms: let us mention them in passing. Let
K := {x | Ax ≥ b} ⊆ Rn, and we want to minimize {c⊺x | x ∈ K}.

Simplex: This is perhaps the first algorithm for solving LPs that most
of us see. It was also the first general-purpose linear program
solver known, having been developed by George Dantzig in 1947. G.B. Dantzig (1990)

This is a local-search algorithm: it maintains a vertex of the poly-
hedron K, and at each step it moves to a neighboring vertex with-
out decreasing the objective function value, until it reaches an op-
timal vertex. (The convexity of K ensures that such a sequence of
steps is possible.) The strategy to choose the next vertex is called
the pivot rule. Unfortunately, for most known pivot rules, there
are examples on which the following the pivot rule takes expo-
nential (or at least a super-polynomial) number of steps. Despite
that, it is often used in practice: e.g., the Excel software contains an
implementation of simplex.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture08.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture08.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1203105

242 algorithms for solving lps

Interior Point: A different approach to get algorithms for LPs is via
interior-point algorithms: these happen to be good both in theory
and in practice. The first polynomial-time interior-point algorithm
was proposed by Karmarkar in 1984. We discuss this in the next
chapter.

Geometric Algorithms for LPs: These approaches are geared towards
solving LPs fast when the number of dimensions n is small. If m
is the number of constraints, these algorithms often allow a poor
runtime in n, at the expense of getting a good dependence on m.
As an example, a randomized algorithm of Raimund Seidel’s has
a runtime of O(m · n!) = O(m · nn/2); a different algorithm of Ken
Clarkson (based on the multiplicative weights approach!) has a
runtime of O(n2m) + nO(n)O(log m)O(log n). One of the fastest such
algorithm is by Jiri Matoušek, Micha Sharir, and Emo Welzl, and
has a runtime of

O(n2m) + eO(
√

n log n).

For details and references, see this survey by Martin Dyer, Nimrod
Megiddo, and Emo Welzl.

Naturally, there are other approaches to solve linear programs as
well: write more here.

http://www.eecs.berkeley.edu/~jrs/meshpapers/SeidelLP.pdf
http://www.inf.ethz.ch/personal/emo/PublFiles/LpSurvey03.pdf

