2

Arborescences: Directed Spanning Trees

Greedy algorithms worked vey well for minimum weight spanning
tree problem, as we saw in Chapter 1. In this chapter, we define ar-
borescences which are a notion of spanning trees for rooted directed
graphs. We will see that a naive greedy approach no longer works,
but it requires just a slightly more sophisticated algorithm to effi-
ciently find them. We give two proofs of correctness for this algo-
rithm. The first is a direct inductive proof, but the second makes use
of linear programming duality, and highlights its use in analyzing
the performance of algorithms. This will be a theme that return to
multiple times in this course.

2.1 Arborescences

Consider a graph G = (V, A, w): here V is a set of vertices, and A a
set of directed edges, also known as arcs. The functionw : A — R
gives a weight to every arc. Let |V| = n and |A| = m. Once we root
G at anode r € V, we can define a “directed spanning tree” with r

being the sink/root.

Definition 2.1. An r-arborescence is a subgraph T = (V, A’) with
A’ C A such that

1. Every vertex has a directed path in T to the root r, and

2. Each vertex except r has one outgoing arc; r has none.

Remark 2.2. Observe that T forms a spanning tree in the undirected
sense. This property (along with either property 1 or property 2) can
alternatively be used to define an arborescence.

Remark 2.3. It’s easy to check if an r-arborescence exists. We can

reverse the arcs and run a depth-first search from the root. If all
vertices are reached, we have produced an r-arborescence.

The focus of this chapter is to find the minimum-weight r-arborescence.

We can simplify things slightly by assuming that all of the weights

2

We will use “arcs” instead of “edges”
to emphasize the directedness of the
graph.

A branching is the directed analog of
a forest; it drops the first reachability
requirement, and asks only for all
non-root vertices to have an outgoing
edge.

22 THE CHU-LIU/EDMONDS/BOCK ALGORITHM

are non-negative. Because no outgoing arcs from r will be part
of any arborescence, we can assume no such arcs exist in G either.
For brevity, we fix r and simply say arborescence when we mean
r-arborescence.

2.1.1 The Limitations of Greedy Algorithms

It’s natural to ask if greedy algorithms like those in Chapter 1 for the
directed case. E.g., we can try picking the lightest incoming arc into
the component containing r, as in Prim’s algorithm, but this fails,

for example in Figure 2.1. Or we could emulate Kruskal’s algorithm
and consider arcs in increasing order of weight, adding them if they

don’t close a directed cycle. (Exercise: give an example where it fails.)

The problem is that greedy algorithms (that consider the arcs in
some linear order and irrevocably add them in) don’t see to work.
However, the algorithm we eventually get will feel like Bortivka’s
algorithm, but one where we are allowed to revoke some of our past
decisions.

2.2 The Chu-Liu/Edmonds/Bock Algorithm

The algorithm we present was discovered independently by Yoeng-
Jin Chu and Tseng-Hong Liu, Jack Edmonds, and F. Bock. We will
follow Karp’s presentation of Edmonds’ algorithm.

Definition 2.4. For a vertex v € V or subset of vertices S C V, let
d"v and 91 S denote the set of arcs leaving the node v and the set S,
respectively.

Definition 2.5. For a vertex v € V in graph G, define Mg (v) :=
min,cy+, w(a) be the minimum weight among arcs leaving v in G.

The first step is to create a new graph G’ by subtracting some
weight from each outgoing arc from a vertex, such that there is at
least one arc of weight o. That is, set w(a’) < w(a) — Mg(v) for all
a€odtvandeachov e V.

Claim 2.6. T is a min-weight arborescence in G <= T is a min-

weight arborescence in G'.

Proof. Each arborescence has exactly one arc leaving each vertex.
Decreasing the weight of every arc exiting v by Mg (v) decreases the

weight of every possible arborescence by Mg (v) as well. Thus, the set
of min-weight arborescences remains unchanged. O

Now each vertex has at least one o-weight arc leaving it. Now, for
each vertex, pick an arbitrary o-weight arc out of it. If this choice is

If there are negative arc weights, add
a large positive constant M to every
weight. This increases the total weight
of each arborescence by M(n — 1), and
hence the identity of the minimum-
weight one remains unchanged.

Figure 2.1: A Prim-like algorithm will
select the arc with weight 2 and 3,
whereas the optimal choices are the arcs
with weights 3 and 1.

Y.-]. Chu and T.-H. Liu (1965)

J. Edmonds (1967)

F. Bock (1971)

R.M. Karp (1971)

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0227047
https://mathscinet.ams.org/mathscinet-getitem?mr=MR0294178

ARBORESCENCES:

an arborescence, this must be the minimum-weight arborescence,
since all arc weights are still nonnegative. Otherwise, the graph con-
sist of some connected components, each of which has one directed
cycle along with some acyclic incoming components, as shown in the
figure.

For the second step of the algorithm, consider one such o-weight
cycle C, and construct a new graph G” := G’/C by contracting the
cycle C down to a single new node v, removing arcs within C, and
replacing parallel arcs by the cheapest of these arcs. Let OPT(G)
denote the weight of the min-weight arborescence on G.

Claim 2.7. OPT(G’) = OPT(G").

Proof. To show OPT(G') < OPT(G"), we exhibit an arborescence in
G’ with weight at most OPT(G"). Indeed, let T” be a min-weight
arborescence in G’. Consider arborescence T’ in G’ obtained by ex-
panding vc back to the cycle C, and removing one arc in the cycle.
Since the cycle has weight 0 on all its arcs, T’ has the same weight as
T". (See Figure 2.3.)

Now to show OPT(G"”) < OPT(G’), take a min-weight arborescence
T’ of G', and identify the nodes in C down to get a vertex v¢c. The
resulting graph is clearly connected, with each vertex having a di-
rected path to the root. Now remove some arcs to get an arborescence
of G”, e.g., as in Figure 2.4. Since arc weights are non-negative, we
can only lower the weight by removing arcs. Therefore OPT(G") <
OPT(G'). O

The proof also gives an algorithm for finding the min-weight ar-
borescence on G’ by contracting the cycle C (in linear time), recursing
on G”, and the “lifting” the solution T” back to a solution T’. Since
we recurse on a graph which has at least one fewer nodes, there are
at most n recursive calls. Moreover, the weight-reduction, contraction,
and lifting steps in each recursive call take O(m) time, so the runtime
of the algorithm is O(mn).

Remark 2.8. This is not the best known run-time bound: there are
many optimizations possible. Tarjan presents an implementation of
the above algorithm using priority queues in O(min(mlogn, n?))
time, and Gabow, Galil, Spencer and Tarjan give an algorithm to
solve the min-weight arborescence problem in O(nlogn + m) time.
The best runtime currently known is O(mloglogn) due to Mendel-
son et al..

Open problem 2.9. Is there a linear-time (randomized or determinis-
tic) algorithm to find a min-weight arborescence in a digraph G?

DIRECTED SPANNING TREES 23

7./'

Figure 2.2: An example of a possible
component after running the first step
of the algorithm

¢ -4

Figure 2.3: The white node is expanded
into a 4-cycle, and the dashed arrow is
the arc that is removed after expanding.

Figure 2.4: Contracting the two white
nodes down to a cycle, and removing
arc b.

R.E. Tarjan (1971)

H.N. Gabow, Z. Galil, T. Spencer and
R.E. Tarjan (1986)

R. Mendelson, R.E. Tarjan, M. Thorup,
and U. Zwick (2006)

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0483681
https://mathscinet.ams.org/mathscinet-getitem?mr=MR875837
https://mathscinet.ams.org/mathscinet-getitem?mr=MR875837
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2284244
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2284244

24 LINEAR PROGRAMMING METHODS

2.3 Linear Programming Methods

Let us now see an alternate proof of correctness of the algorithm
above, this time using linear programming duality. This is how Ed-

monds originally proved his algorithm to be optimal. If you have access to the Chu-Liu or
Bock papers, I would love to see them.

2.3.1 Linear Programming Review

Before we actually represent the arborescence problem as a linear
program, we first review some standard definitions and results from
linear programming.

Definition 2.10. For some number of variables (a.k.a. dimension) n €
IN, number of constraints m € IN, objective vector ¢ € IR”, constraint
matrix A € R"*", and right-hand side b € IR", a (minimization)

linear program (LP) is This form of the LP is called the stan-
dard form. More here.

minimize cTx subject to Ax > bandx >0
Note that cTx is the inner product Y1 ; c;x;.

The constraints of a linear program form a polyhedron, which is
the convex body formed by the intersection of a finite number of
half spaces. Here we have m + n half spaces. There are m of them
corresponding to the constraints {a]x > b;}!" |, where 4; € R" is the
vector corresponding to the i row of the matrix A. Moreover, we Whenever we write a vector, we imag-
have n non-negativity constraints {x; > 0} j—1- If the polyhedron is ine it to be a column vector.
bounded, we call it a polytope.

Definition 2.11. A vector x € R”" is called feasible if it satisfies the
constraints: i.e., Ax > b and x > 0.

Definition 2.12. Given a linear program min{cTx | Ax < b,x > 0},
the dual linear program is

maximize bTy subject to ATy < candy > 0

The dual linear program has a single variable y; for each constraint
in the original (primal) linear program. This variable can be thought
of as giving an importance weight to the constraint, so that taking a
linear combination of constraints with these weights shows that the
primal cannot possibly surpass a certain value for cTx. This purpose
is exemplified by the following theorem.

Theorem 2.13 (Weak Duality). If x and y are feasible solutions to the
linear program min{cTx | Ax < b,x > 0} and its dual, respectively, then
cTx > bTy.

Proof. cTx > (ATy)Tx = yTAx > yTb = bTy. 0O

ARBORESCENCES:

This principle of weak duality tells us that if we have feasible
solutions x,y where cTx = bTy, then we know that both x and y are
optimal solutions. Our approach will be to give a linear program that
models min-weight arborescences, use the algorithm above to write a
feasible solution to the primal, and then to exhibit a feasible solution
to the dual such that the primal and dual values are the same—hence
both must be optimal!

2.3.2 Arborescences via Linear Programs

To analyze the algorithm, we first need to come up with a linear
program that “captures” the min-weight arborescence problem. Since
we want to find a set of arcs forming an arborescence T, we have

one variable x, for each arca € A. Ideally, each variable will be

an indicator for the arc being in the arborescence: i.e., it will binary
values: x, € {0,1}, with x, = 1ifand only if a € T. This choice

of variables allows us to express our objective to minimize the total
weight: wTx =Y ,c 4 w(a)x,.

Next, we need to come up with a way to express the constraint
that T is a valid arborescence. Let S C V — {r} be a set of vertices
not containing the root, and some vertex v € S. Every vertex must
be able to reach the root by a directed path. If 07SN T = @, there
is no arc in T leaving the set S, and hence we have no path from v to
r. We conclude that, at a minimum, 9*SN T # @. We represent this
constraint by ensuring that the number of arcs out of S is non-zero,
ie,

Z x; > 1.

aedts

We write an integer linear programming (ILP) formulation for min-
weight arborescences as follows:

minimize) w(a)x,

acA
subjectto) x,>1 VSCV—{r}
a€dts (2'1)
2 xa=1 Yo#r
acoto
x, € {0,1} Va € A.

The following lemma is easy to verify:

Lemma 2.14. T is an arborescence of G with x, = 1,7 if and only if x is
feasible for the integer LP (2.2). Hence the optimal solution to the ILP (2.1)
is exactly the min-weight arborescence.

DIRECTED SPANNING TREES 25

See the strong duality theorem in add
reference for a converse to this theorem.
For now, weak duality will suffice.

26 LINEAR PROGRAMMING METHODS

Relaxing the Boolean integrality constraints gives us the linear
programming relaxation:

minimize Y | w(a)x,

aeA
subjectto Y x,>1 VSCV—{r}
acdts (2'2)
Z X, =1 Yo#r
acoto
X, >0 Va € A.

Since we have relaxed the constraints, the optimal solution to the
(fractional) LP (2.2) can only have less value than the ILP (2.1), and
hence the optimal value of the LP is at most OPT(G). In the follow-
ing, we show that it is in fact equal to OPT(G)!

Exercise 2.15. Suppose all the arc weights are non-negative. Show
that the optimal solution to the linear program remains unchanged
even if drop the constraints) ,cy+, X; = 1.

2.3.3 Showing Optimality

The output T of the Chu-Liu/Edmonds/Bock algorithm is an ar-
borescence, and hence the associated solution x (as defined in Lemma 2.14)
is feasible for ILP (2.1) and hence for LP (2.2). To show that x is op-
timal, we now exhibit a vector y feasible for the dual linear program
with objective equal to wTx. Now weak duality implies that both x
and y must be optimal primal and dual solutions.

The dual linear program for (2.2) is

maximize Z Ys
SCv—{r}

subject to Z ys <w(a) VaeA (2:3)
S:a€dtS
ys>0 VSCV—{r},|S|>1

Observe that ys is unconstrained when [S| = 1, i.e., S corresponds to
a singleton non-root vertex.

We think of ys as payments raised by vertices inside set S so that
we can buy an arc leaving S. In order to buy an arc 2, we need to
raise w(a) dollars. We're trying to raise as much money as possible,
while not overpaying for any single arc a.

Lemma 2.16. If arc weights are non-negative, there exists a solution for the
dual LP (2.3) such that wTx = 1Ty, where all y, values are non-negative.

Proof. The proof is by induction over the execution of the algorithm.

ARBORESCENCES:

¢ The base case is when the chosen zero-weight arcs out of each
node form an arborescence. In this case we can set ys = 0 for
all S; since all arc weights are non-negative, this is a feasible dual
solution. Moreover, both the primal and dual values are zero.

* Suppose we subtract M := Mg(v) from all arcs leaving vertex v in
graph G so that v has at least one zero-weight arc leaving it. Let G’
be the graph with the new weights, and let T’ be the optimal so-
lution on G'. By induction on G/, let i’ be a non-negative solution
such that } . w, = Y s y%. Define y, := y, + M and ys = y5 for
all other subsets; this is the desired feasible dual solution for the
same tree T = T’ on the original graph G. Indeed, for one of the
arcs a = (v, u) out of the node v, we have

Y, ys= Y Ys + Y. Ys

S:a€0tS S:a€97tS,|S|=1 S:a€97S,|S|>2

— / /

=Wy tM+ Y} s
S:a€d+5,|5|>2

<M+w'(a) = M+ (w(a) — M) = w(a).

Moreover, the value of the dual increases by M, the same as the
increase in the weight of the arborescence.

¢ Else, suppose the chosen zero-weight arcs contain a cycle C, which
we contract down to a node vc. Using induction for this new
graph G, let i be the feasible dual solution. For any subset S’ of
nodes in G’ that contains the new node vc, let S = (§'\ {vc}) UC,
and define ys = y,. For all other subsets S in G’ not containing
vc, define ys = yg. Moreover, for all nodes v € C, define Yy = 0.
The dual value remains unchanged, as does the weight of the
solution T obtained by lifting T’. The dual constraint changes only
arcs of the forma = (v,u), wherev € Cand u ¢ C. But such
an arc is replaced by an arc ' = (v¢, u), whose weight is at most
w(a). Hence

Y. Vs =Y T Y ys <w(a') < w(a).
S:a€dtS S':a'eot S, S" £{vc}

This completes the inductive proof

Notice that the sets with non-zero weights correspond to single-

ton nodes, or to the various cycles contracted during the algorithm.
Hence these sets form a laminar family; i.e., any two sets S, S’ with
non-zero value in y are either disjoint, or one is contained within the
other. O

By Lemma 2.16 and weak duality, we conclude that the solution x
and the associated arborescence T is optimal. It is easy to extend the
argument to potentially negative arc weights.

DIRECTED SPANNING TREES 27

Figure 2.5: An optimal dual solution:
vertex sets are labeled with dual values,
and arcs with costs.

28 LINEAR PROGRAMMING METHODS

Corollary 2.17. There exists a solution for the dual LP (2.3) such that
wTx = 1Ty. Hence the algorithm produces an optimal arborescence even for
negative arc weights.

Proof. 1f some arc weights are negative, add M to all arc weights to
get the new graph G’ where all arc weights are positive. Let y’ be the
optimal dual for G’ from Lemma 2.16; define yg = yj for all sets of
size at least two, and y(,; = y’{v} — M for singletons. Note that the
weight of the optimal solution on G is precisely M(n — 1) smaller
than on G’; the same is true for the total dual value. Moreover, for arc
e = (u,v), we have

Z Ys = Z y/s+(y{{u}_M)§(we+M)—M:we‘
S:acotS S:a€97tS,|S|>2

The inequality above uses that i’ is a feasible LP solution for the
graph G’ with inflated arc weights. Finally, since the only non-
negative values in the dual solution are for singleton sets, all con-
straints in (2.2) are satisfied for the dual solution y, this completes the
proof. O

2.3.4 Integrality of the Polytope

The result of Corollary 2.17 is quite exciting: it says that no matter
what the objective function of the linear program (i.e., the arc weights
w(a)), there is an optimal integral solution to the linear program,
which our combinatorial algorithm finds. In other words, the optimal
solutions to the LP (2.2) and the ILP (2.1) are the same.

We will formally discuss this later in the course, but let us start
playing with these kinds of ideas. A good start is to visualize this ge-
ometrically: let A C R4l be the set of all solutions to the ILP (which
correspond to the characteristic vectors of all valid r-arborescences).
This is a finite set of points, and let K,,;, be the convex hull of these
points. (It can be shown that K, is a polytope, though we don’t do
it here.) If we optimize a linear function given by some weight vector
w over this polytope, we get the optimal arborescence for this weight.
This is the solution to ILP (2.1).

Moreover, let K C RI4| be the polytope defined by the constraints
in the LP relaxation (2.2). Note that each point in A is contained
within K, therefore so is their convex hull K. ILe.,

K,y C K.

In general, the two polytopes are not equal. But in this case, Corol-
lary 2.17 implies that for this particular setting, the two are indeed
equal. Indeed, a geometric hand-wavy argument is easy to make —
if K were strictly bigger than Kj,;, there would be some direction

ARBORESCENCES: DIRECTED SPANNING TREES

in which K extends beyond K,,;,. But each direction corresponds to
a weight-vector, and hence for that weight vector the optimal solu-
tion within K (which is the solution to the LP) would differ from the
optimal solution within K, (which is the solution to the ILP). This
contradicts Corollary 2.17.

2.4 Matroid Intersection

More to come here, maybe just a forward pointer to a later lecture.

29

