
15
Solving Linear Programs using Experts

We can now use the low-regret algorithms for the experts problem to
show how to approximately solve linear programs (LPs). As a warm-
up, we use it to solve two-player zero-sum games, which are a special
case of LPs. In fact, zero-sum games are equivalent

to linear programming, see this work of
Ilan Adler. Is there an earlier reference?

15.1 (Two-Player) Zero-Sum Games

There are two players in such a game, traditionally called the “row
player" and the “column player". Each of them has some set of ac-
tions: the row player with m actions (associated with the set [m]), and
the column player with the n actions in [n]. Finally, we have a payoff
matrix M ∈ Rm×n. In a play of the game, the row player chooses a
row i ∈ [m], and simultaneously, the column player chooses a column
j ∈ [n]. If this happens, the row player gets Mi,j, and the column
player loses Mi,j. The winnings of the two players sum to zero, and
so we imagine that the payoff is from the row player to the column
player. Henceforth, when we talk about pay-

offs, these will always refer to payoffs to
the row player from the column player.
This payoff may be negative, which
would capture situations where the
column player does better.

15.1.1 Strategies, and Best-Response

Each player is allowed to have a randomized strategy. Given strate-
gies p ∈ ∆m for the row player, and q ∈ ∆n for the column player, the
expected payoff (to the row player) is

E[payoff to row] = p⊺Mq = ∑
i,j

piqj Mi,j.

The row player wants to maximize this value, while the column
player wants to minimize it.

Suppose the row player fixes a strategy p ∈ ∆m. Knowing p, the
column player can choose an action to minimize the expected payoff:

C(p) := min
q∈∆n

p⊺Mq = min
j∈[n]

p⊺Mej.

184 (two-player) zero-sum games

The equality holds because the expected payoff is linear, and hence
the column player’s best strategy is to choose a column that mini-
mizes the expected payoff. The column player is said to be playing
their best response. Analogously, if the column player fixes a strategy
q ∈ ∆n, the row player can maximize the expected payoff by playing
their own best response:

R(q) := max
p∈∆m

p⊺Mq = max
i∈[m]

e⊺i Mq.

Now, the row player would love to play the strategy p such that
even if the column player plays best-response, the payoff is as large
as possible: i.e., it wants to achieve

max
p∈∆m

C(p).

Similarly, the column player wants to choose q to minimize the payoff
against a best-response row player, i.e., to achieve

min
q∈∆n

R(q).

Lemma 15.1. For any p ∈ ∆m, q ∈ ∆n, we have

C(p) ≤ R(q) (15.1)

Proof. Intuitively, since the column player commits to a strategy
q, it hence gives more power to the row player. Formally, the row
player could always play strategy p in response to q, and hence could
always get value C(p). But R(q) is the best response, which could be
even higher.

Interestingly, there always exist strategies p ∈ ∆m, q ∈ ∆n which
achieve equality. This is formalized by the following theorem:

Theorem 15.2 (Von Neumann’s Minimax Theorem). For any finite
zero-sum game M ∈ Rm×n,

max
p∈∆m

C(p) = min
q∈∆n

R(q).

This common value V is called the value of the game M.

Proof. We assume for the sake of contradiction that ∃M ∈ [−1, 1]m×n

such that maxp∈∆m C(p) ≤ minq∈∆n R(q) − δ for some δ > 0. (The
assumption that Mij ∈ [−1, 1] follows by scaling.) Now we use the
fact that the average regret of the Hedge algorithm tends to zero to
construct strategies p̂ and q̂ that have R(q̂)− C(p̂) < δ, thereby giving
us a contradiction.

We consider an instance of the experts problem, with m experts,
one for each row of M. At each time step t, the row player produces

solving linear programs using experts 185

pt ∈ ∆m. Initially p1 =
(

1
m , . . . , 1

m

)
, which represents that the row

player chooses each row with equal probability, when they have no
information to work with.

At each time t, the column player plays the best-response to pt, i.e.,

jt := arg max
j∈[n]

(pt)⊺Mej.

This defines a gain vector for the row player:

gt := Mejt ,

which is the jth column of M. The row player uses this to update the
weights and get pt+1, etc. Define

p̂ :=
1
T

T

∑
t=1

pt and q̂ :=
1
T

T

∑
t=1

ejt

to be the average long-term plays of the row player, and of the best
responses of the column player to those plays. We know that

C(p̂) ≤ R(q̂)

by (15.1). But by Corollary 14.10, after T ≥ 4 ln m
ε2 steps,

1
T ∑

t
⟨pt, gt⟩ ≥ max

i

1
T ∑

t

〈
ei, gt〉− ε (by Hedge)

= max
i

〈
ei,

1
T ∑

t
gt
〉
− ε

= max
i

〈
ei, M

(1
T ∑

t
ejt

)〉
− ε (by definition of gt)

= max
i
⟨ei, Mq̂⟩ − ε

= R(q̂)− ε.

Since pt is the row player’s strategy, and C is concave (i.e., the payoff
on the average strategy p̂ is no more than the average of the payoffs: To see this, recall that

C(p) := min
q

p⊺Mq.

Let q∗ be the optimal value of q that
minimizes C(p). Then for any a, b ∈ ∆m,
we have that

C(a + b) = (a + b)⊺Mq∗ = a⊺Mq∗ + b⊺Mq∗

≥ min
q

a⊺Mq + min
q

b⊺Mq = C(a) + C(b)

1
T ∑⟨pt, gt⟩ = 1

T ∑ C(pt) ≤ C
(1

T ∑ pt
)
= C(p̂).

Putting it all together:

R(q̂)− ε ≤ C(p̂) ≤ R(q̂).

Now for any δ > 0 we can choose ε < δ to get the contradiction.

Observe that the proof gives us an explicit algorithm to find strate-
gies p̂, q̂ that have a small gap. The minimax theorem is also im-
plied by strong duality of linear programs: indeed, we can write
minq∈∆n R(q) as a linear program, take its dual and observe that it
computes minp∈∆m C(p). The natural question is: we can solve linear
programs using low-regret algorithms. We now show how to do this.
We should get a clean proof of strong duality this way?

186 solving lps approximately

15.2 Solving LPs Approximately

Consider an LP with constraint matrix A ∈ Rm×n:

max ⟨c, x⟩ (15.2)

Ax ≤ b

x ≥ 0

Suppose x∗ is an optimal solution, with OPT := ⟨c, x∗⟩. Let K ⊆ Rn

be the polyhedron defined by the “easy” constraints, i.e.,

K := {x ∈ Rn | ⟨c, x⟩ = OPT, x ≥ 0},

where OPT is found by binary search over possible objective values.
Binary search over the reals is typically not a good idea, since it may
never reach the answer. (E.g., searching for 1/3 by binary search over
[0, 1].) However, we defer this issue for now, and imagine we know
the value of OPT. We now use low-regret algorithms to find x̂ ∈ K
such that ⟨ai, x⟩ ≤ bi + ε for all i ∈ [m]. The fix to the “binary search over reals”

problem is this: the optimal value of a
linear program in n dimensions where
all numbers integers using at most b
bits is a rational p/q, whereboth p, q use
at most poly(nb) bits. So once we the
granularity of the search is fine enough,
there is a unique rational close the
query point, and we can snap to it. See,
e.g., the problem on finding negative
cycles in the homeworks.

15.2.1 The Oracle

The one assumption we make is that we can solve the feasibility
problem obtained by intersecting the “easy” constraints K with a
single linear constraint. Suppose α ∈ Rn, β ∈ R, then we want to
solve the problem:

Oracle: find a point x ∈ K ∩ {x | ⟨α, x⟩ ≤ β}. (15.3)

Proposition 15.3. There is an O(n)-time algorithm to solve (15.3), when
K = {x ≥ 0 | ⟨c, x⟩ = OPT}.
Proof. We give the proof only for the case where ci > 0 for all i; the
general case is left as an exercise. Let j∗ := arg minj αj/cj, and define
x = (OPT/cj∗)ej∗ . Say “infeasible” if x does not satisfy ⟨α, x⟩ ≤ β, else
return x.

Of course, this problem can be solved in time linear in the num-
ber of variables (as Proposition 15.3 above shows), but the situation
can be more interesting when the number of variables is large. For
instance, when we solve flow LPs, the number of variables will be
exponential in the size of the graph, yet the oracle will be imple-
mentable in time poly(n).

15.2.2 The Algorithm

The key idea to solving general LPs is then similar to that for zero-
sum games. We have m experts, one corresponding to each con-
straint. In each round, we combine the multiple constraints using a

solving linear programs using experts 187

weighted sum, we call the above oracle on this single-constraint LP
to get a solution, we construct a gain vector from this solution and
feed this to Hedge, which then updates the weights that we use for
the next round. The gain of an expert in a round is based based on
how badly the constraint was violated by the current solution. The
intuition is simple: greater violation means more gain, and hence
more weight in the next iteration, which forces us to not violate the
constraint as much.

An upper bound on the maximum possible violation is the width ρ

of the LP, defined by

ρ := max
x∈K,i∈[m]

{| ⟨ai, x⟩ − bi|}. (15.4)

We assume that ρ ≥ 1.

Algorithm 13: LP-Solver

13.1 p1 ← (1/m, . . . , 1/m). T ← Θ(ρ2 ln m/ε2)

13.2 for t = 1 to T do
13.3 Define αt := ∑m

i=1 pt
i ai ∈ Rn and βt = ∑m

i=1 pt
i bi ∈ R.

13.4 Use Oracle to find x ∈ K ∩ {
〈
αt, xt〉 ≤ βt}.

13.5 if oracle says infeasible then
13.6 return infeasible
13.7 else
13.8 gt

i ← ⟨ai, xt⟩ − bi for all i.
13.9 feed gt to Hedge(ε) to get pt+1.

13.10 return x̂ ← (x1 + · · ·+ xT)/T.

15.2.3 The Analysis

Theorem 15.4. Fix 0 ≤ ε ≤ 1/4. Then Algorithm 13 calls the oracle
O(ρ2 ln m/ε2) times, and either correctly returns “infeasible”, or returns
x̂ ∈ K such that

Ax̂ ≤ b− ε1.

Proof. Observe that if x∗ is feasible for the original LP (15.2) then it is
feasible for any of the calls to the oracle, since it satisfies any positive
linear combination of the constraints. Hence, we are correct if we ever
return “infeasible”. Moreover, xt ∈ K in each iteration, and x̂ is an
average of xt’s, so it also lies in K by convexity. So it remains to show
that x̂ approximately satisfies the other linear constraints.

Recall the guarantee from Corollary 14.10:

1
T ∑

t
⟨pt, gt⟩ ≥ max

i

1
T ∑

t

〈
ei, gt〉− ε, (15.5)

for precisely the choice of T in Algorithm 13, since the definition of
width in (15.4) ensures that gt ∈ [−ρ, ρ]m.

188 solving lps approximately

Let i ∈ [m], and recall the definitions of αt = ∑m
i=1 pt

i ai, βt =

∑m
i=1 pt

i bi, and gt = Axt − b from the algorithm. Then

⟨pt, gt⟩ = ⟨pt, Axt − b⟩
= ⟨pt, Axt⟩ − ⟨pt, b⟩
= ⟨αt, xt⟩ − βt ≤ 0,

the last inequality because xt satisfies the single linear constraint〈
αt, x

〉
≤ βt. Averaging over all times, the left hand side of (15.5) is

1
T

T

∑
t=1
⟨pt, gt⟩ ≤ 0.

However, the average on the RHS in (15.5) for constraint/expert i is:

1
T

T

∑
t=1

〈
ei, gt〉 =

〈
ei,

1
T

T

∑
t=1

gt
〉

=
1
T

T

∑
t=1

(〈
ai, x̂t〉− bi

)

= ⟨ai, x̂⟩ − bi.

Substituting into (15.5) we have

0 ≥ 1
T

T

∑
t=1
⟨pt, gt⟩ ≥ max

i

(
⟨ai, x̂⟩ − bi

)
− ε.

This shows that Ax̂ ≤ b + ε1.

15.2.4 A Small Extension: Approximate Oracles

Recall the definition of the problem width from (15.4). A few com-
ments:

• In the above analysis, we do not care about the maximum value
of |a⊺i x − bi| over all points x ∈ K, but only about the largest this
expression gets over points that are potentially returned by the
oracle. This seems a pedantic point, but if there are many solutions
to (15.3), we can return one with small width. But we can do more,
as the next point outlines.

• We can also relax the oracle to satisfy ⟨α, x⟩ ≤ β + δ for some
small δ > 0 instead. Define the width of the LP with respect such a
relaxed oracle to be

ρrlx := max
i∈[m],x returned by relaxed oracle

{|a⊺i x− bi|}. (15.6)

solving linear programs using experts 189

Now running the algorithm with a relaxed oracle gives us a
slightly worse guarantee that

Ax̂ ≤ b + (ε + δ)1,

but now the number of calls to the relaxed oracle can be even
smaller, namely O(ρ2

rlx ln m/ε2).

• Of course, if we violations can be bounded in some better way,
e.g., if we can ensure that violations are always positive or nega-
tive, then we can give stronger bounds on the regret, and hence
reduce the number of calls even further. Details to come.

All these improvements will be crucial in the upcoming applications.

