
14
Online Learning: Experts and Bandits

In this set of chapters, we consider a basic problem in online algo-
rithms and online learning: how to dynamically choose from among
a set of “experts” in a way that compares favorably to any fixed ex-
pert. Both this abstract problem, and the techniques behind the solu-
tion, are important parts of the algorithm designer’s toolkit.

14.1 The Mistake-Bound Model
The term expert just refers to a person
who has an opinion, and does not
reflect whether they are good or bad at
the prediction task at hand.

Suppose there are N experts who make predictions about a certain
event every day—for example, whether it rains today or not, or
whether the stock market goes up or not. Let U be the set of pos-
sible choices. The process in the experts setting goes as follows:

1. At the beginning of each time step t, each expert makes a predic-
tion. Let E t ∈ UN be the vector of predictions. Note the order of events: the experts

predictions come first, then the algo-
rithm chooses an expert at the same
time as the reality being revealed.

2. The algorithm makes a prediction at, and simultaneously, the
actual outcome ot is revealed.

The goal is to minimize the number of mistakes, i.e., the number of
times our prediction at differs from the outcome ot. Suppose we have 8 experts, and E t =

(0, 1, 0, 0, 0, 1, 1, 0). If we follow the third
expert and predict at = 0, but the actual
outcome is ot = 1, we make a mistake;
if we would have picked the second
expert, we would have been correct.

Fact 14.1. There exists an algorithm that makes at most ⌈log2 N⌉
mistakes, if there is a perfect expert.

Proof. The algorithm just considers all the experts who have made
no mistakes so far, and predicts what the majority of them predict.
Note that every time we make a mistake, the number of experts who
have not been wrong yet reduces by a factor of 2 or more. (And when
we do not make a mistake, this number does not increase.) Since
there is at least one perfect expert, we can make at most ⌈log2 N⌉
mistakes.

Show that any algorithm must make at least ⌈log2 N⌉ mistakes in
the worst case.

174 the weighted majority algorithm

Fact 14.2. There is an algorithm that, on any sequence, makes at most
M ≤ m∗(⌈log2 N⌉+ 1) + ⌈log2 N⌉ mistakes, where m∗ is the number
of mistakes made by the best of these experts on this sequence.

Proof. Think of time as being divided into “epochs”. In each epoch,
we proceed as in the perfect expert scenario as in Fact 14.1: we keep
track of all experts who have not yet made a mistake in that epoch,
and predict the majority opinion. The set of experts halves (at least)
with every mistake the algorithm makes. When the set becomes
empty, we end the epoch, and start a new epoch with all the N ex-
perts.

Note that in each epoch, every expert makes at least one mistake.
Therefore the number of completed epochs is at most m∗. Moreover,
we make at most ⌈log2 N⌉+ 1 mistakes in each completed epoch, and
at most ⌈log2 N⌉ mistakes the last epoch, giving the result.

However, this algorithm is very harsh and very myopic. Firstly, it
penalizes even a single mistake by immediately discarding the expert.
But then, at the end of an epoch, it wipes the slate clean and forgets
the past performance of the experts. Maybe we should be gentler, but
have a better memory?

14.2 The Weighted Majority Algorithm

This algorithm, due to Littlestone and Warmuth, is remarkable for
its simplicity. We assign a weight wi to each expert i ∈ [N]. Let w(t)

i
denote the weight of expert i at the beginning of round t. Initially, all
weights are 1, i.e., w(1)

i = 1.

1. In round t, predict according to the weighted majority of experts.
In other words, choose the outcome that maximizes the sum of
weights of experts that predicted it. I.e.,

at ← arg max
u∈U

∑
i:expert i predicts u

w(t)
i .

We break ties arbitrarily, say, by picking
the first of the options that achieve the
maximum.2. Upon seeing the outcome, set

w(t+1)
i = w(t)

i ·





1 if i was correct
1
2 if i was incorrect

.

Theorem 14.3. For any sequence of predictions, the number of mistakes
made by the weighted majority algorithm (WM) is at most

2.41(mi + log2 N),

where mi is the number of mistakes made by expert i.

online learning: experts and bandits 175

Proof. The proof uses a potential-function argument. Let

Φt := ∑
i∈[N]

w(t)
i .

Note that

1. Φ1 = N, since the weights start off at 1,

2. Φt+1 ≤ Φt for all t, and

3. if Algorithm WM makes a mistake in round t, the sum of weights
of the wrong experts is higher than the sum of the weights of the
correct experts, so

Φt+1 = ∑
i wrong

w(t+1)
i + ∑

i correct
w(t+1)

i

=
1
2 ∑

i wrong
w(t)

i + ∑
i correct

w(t)
i

= Φt − 1
2 ∑

i wrong
w(t)

i

≤ 3
4

Φt

If after T rounds, expert i has made mi mistakes and WM has made
M mistakes, then

(
1
2

)mi

= w(T+1)
i ≤ ΦT+1 ≤ Φ1

(
3
4

)M
= N

(
3
4

)M
.

Now taking logs, and rearranging,

M ≤ mi + log2 N
log2

4
3

≤ 2.41(mi + log2 N).

We cannot hope to compare ourselves
to the best way of dynamically choosing
experts to follow. This result says
that at least we do not much worse to
the best static policy of choosing an
expert—in fact, choosing the best expert
in hindsight—and sticking with them.
We’ll improve our performance soon,
but all our results will still compare to
the best static policy for now.

In other words, if the best of the N experts on this sequence was
wrong m∗ times, we would be wrong at most 2.41(m∗ + log2 n) times.
Note that we are much better on the multiplier in front of the m∗

term than Fact 14.2 was, at the expense of being slightly worse on the
multiplier in front of the log2 N term.

14.2.1 A Gentler Penalization

Instead of penalizing each wrong expert by a factor of 1/2, we could
penalize the experts by a factor of (1− ε). This allows us to trade off
the multipliers on the m∗ term and the logarithmic term.

Theorem 14.4. For ε ∈ (0, 1/2), penalizing each incorrect expert by a factor
of (1− ε) guarantees that the number of mistakes made by MW is at most

2(1 + ε)mi + O
(

log N
ε

)
.

176 randomized weighted majority

Proof. Using an analysis identical to Theorem 14.3, we get that
Φt+1 ≤ (1− ε

2)Φ
t and therefore

(1− ε)mi ≤ ΦT+1 ≤ Φ1
(

1− ε

2

)M
= N

(
1− ε

2

)M
≤ N exp

(
− εM/2

)
.

Now taking logs, and simplifying,

M ≤ −mi log(1− ε) + ln N
ε/2

≤ 2
mi(ε + ε2)

ε
+ O

(
log N

ε

)
,

because − ln(1− ε) = ε + ε2

2 + ε3

3 + · · · ≤ ε + ε2 for ε ∈ [0, 1].

This shows that we can make our mistakes bound as close to 2m∗

as we want, but this approach seems to have this inherent loss of
a factor of 2. In fact, no deterministic strategy can do better than a
factor of 2, as we show next.

Proposition 14.5. No deterministic algorithm A can do better than a factor
of 2, compared to the best expert.

Proof. Note that if the algorithm is deterministic, its predictions are
completely determined by the sequence seen thus far (and hence can
also be computed by the adversary). Consider a scenario with two
experts A,B, the first always predicts 1 and the second always pre-
dicts 0. Since A is deterministic, an adversary can fix the outcomes
such that A’s predictions are always wrong. Hence at least one of A
and B will have an error rate of ≤ 1/2, while A’s error rate will be
1.

14.3 Randomized Weighted Majority

Consider the proof of Proposition 14.5, but applied to the WM algo-
rithm: the algorithm alternates between predicting 0 and 1, whereas
the actual outcome is the opposite. The weights of the two experts
remain approximately the same, but because we are deterministic, we
choose the wrong one. What if we interpret the weights being equal
as a signal that we should choose one of the two options with equal
probability?

This is the idea behind the Randomized Weighted Majority algorithm
(RMW) of Littlestone and Warmuth: the weights evolve in exactly the
same way as in Theorem 14.4, but now the prediction at each time is
drawn randomly proportional to the current weights of the experts.
I.e., instead of Step 1 in that algorithm, we do the following:

Pr[action u is picked] =
∑i:expert i predicts u w(t)

i

∑i w(t)
i

.

online learning: experts and bandits 177

Note that the update of the weights proceeds exactly the same as
previously.

Theorem 14.6. Fix ε ≤ 1/2. For any fixed sequence of predictions, the ex-
pected number of mistakes made by randomized weighted majority (RWM)
is at most

E[M] ≤ (1 + ε)mi + O
(

log N
ε

)

The quantity εmi + O
(log N

ε

)
gap

between the algorithm’s performance
and that of the best expert is called the
regret with respect to expert i.

Proof. The proof is an analysis of the weight evolution that is more
careful than in Theorem 14.4. Again, the potential is Φt = ∑i w(t)

i .
Define

Ft :=
∑i incorrect w(t)

i

∑i w(t)
i

to be the fraction of weight on incorrect experts at time t. Note that

E[M] = ∑
t∈[T]

Ft.

Indeed, we make a mistake at step t precisely with the probability Ft,
since the adversary does not see our random choice when deciding
on the actual outcome at. By our re-weighting rules,

Φt+1 = Φt ((1− Ft) + Ft(1− ε)) = Φt(1− εFt)

Bounding the size of the potential after T steps,

(1− ε)mi ≤ ΦT+1 = Φ1
T

∏
t=1

(1− εFt) ≤ Ne−ε ∑ Ft = Ne−εE[M]

Now taking logs, we get mi ln(1 − ε) ≤ ln N − εE[M], using the
approximation − log(1− ε) ≤ ε + ε2 gives us

E[M] ≤ mi(1 + ε) +
ln N

ε
.

14.3.1 Classifying Adversaries for Randomized Algorithms

In the above analysis, it was important that the actual random out-
come was independent of the prediction of the algorithm. Let us
formalize the power of the adversary:

Oblivious Adversary. Constructs entire sequence E1, o1, E2, o2, · · · up-
front.

Adaptive Adversary. Sees the previous choices of the algorithm, but
must choose ot independently of our actual prediction at in round
t. Hence, ot can be a function of E1, o1, . . . , E t−1, ot−1, E t, as well as
of a1, . . . , at−1, but not of at.

178 the hedge algorithm, and a change in perspective

The adversaries are equivalent on deterministic algorithms, because
such an algorithm always outputs the same prediction and the obliv-
ious adversary could have calculated at in advance when creating
E t+1. They may be different for randomized algorithms. However, it
turns out that RWM works in both models, because our predictions
do not affect the weight updates and hence the future.

14.4 The Hedge Algorithm, and a Change in Perspective

Let’s broaden the setting slightly, and consider the following dot-
product game. In each round, Define the probability simplex as

∆N :=
{

x ∈ [0, 1]N |∑
i

xi = 1
}

.
1. The algorithm produces a vector of probabilities

pt = (pt
1, pt

2, · · · , pt
N) ∈ ∆N .

2. The adversary produces

ℓt = (ℓt
1, ℓt

2, · · · , ℓt
N) ∈ [−1, 1]N .

3. The loss of the algorithm in this round is
〈
ℓt, pt〉.

This equivalence between randomized
and fractional algorithms is a common
theme in algorithm design, especially in
approximation and online algorithms.

We can move between this “fractional” model where we play a
point in the probability simplex ∆N , and the randomized model of
the previous section (with an adaptive adversary), where we must
play a single expert (which is a vertex of the simplex ∆N . Indeed,
setting ℓt to be a vector of 0s and 1s can capture whether an expert is
correct or not, and we can set

pt
i = Pr[algorithm plays expert i at time t]

to deduce that
Pr[mistake at time t] =

〈
ℓt, pt〉 .

14.4.1 The Hedge Algorithm

The Hedge algorithm starts with weights w1
i = 1 for all experts i. In

each round t, it defines pt ∈ ∆N using:

pt
i ←

wt
i

∑j wt
j
, (14.1)

and updates weights as follows:

wt+1
i ← wt

i · exp(−εℓt
i). (14.2)

Theorem 14.7. Consider a fixed ε ≤ 1/2. For any sequences of loss vectors
in [−1, 1]N and for all indices i ∈ [N], the Hedge algorithm guarantees:

T

∑
i=1
⟨pt, ℓt⟩ ≤

T

∑
t=1

ℓt
i + εT +

ln N
ε

online learning: experts and bandits 179

Proof. As in previous proofs, let Φt = ∑j wt
j , so that Φ1 = N, and

Φt+1 = ∑ wt+1
i = ∑

i
wt

i e
−εℓt

i

≤∑
i

wt
i
(
1− εℓt

i + ε2(ℓt
i)

2)) (using ex ≤ 1 + x + x2 ∀x ∈ [−1, 1])

≤∑ wt
i (1 + ε2)− ε ∑ wt

iℓ
t
i (because |ℓt

i | ≤ 1)

= (1 + ε2)Φt − εΦt ⟨pt, ℓt⟩ (because wt
i = pt

i ·Φt)

= Φt (1 + ε2 − ε⟨pt, ℓt⟩
)

≤ Φt eε2−ε⟨pt ,ℓt⟩ (using 1 + x ≤ ex)

Again, comparing to the final weight of the ith coordinate,

e−ε ∑ ℓt
i = w(t+1)

i ≤ ΦT+1 ≤ Φ1 e ε2T−ε ∑⟨pt ,ℓt
i ⟩;

now using Φ1 = N and taking logs proves the claim.

Moreover, choosing ε =
√

ln N
T gives εT + ln N

ε = 2
√

T ln N, and the
regret term is concave and sublinear in time T. This suggests that the
further we run the algorithm, the quicker the average regret goes to
zero, which suggests the algorithm is in some sense “learning".

14.4.2 Two Useful Corollaries

The following corollary will be useful in many contexts: it just flips
Theorem 14.7 on its head, and shows that the average regret is small
after sufficiently many steps.

Corollary 14.8. For T ≥ 4 log N
ε2 , the average loss of the Hedge algorithm is

1
T ∑

t
⟨pt, ℓt⟩ ≤ min

i

1
T ∑

t
ℓt

i + ε

= min
p∗∈∆N

1
T ∑

t

〈
ℓt, p∗

〉
+ ε.

The viewpoint of the last expression is useful, since it indicates
that the dynamic strategy given by Hedge for the dot-product game
is comparable (in the sense of having tiny regret) against any fixed
strategy p∗ in the probability simplex.

Finally, we state a further corollary that is useful in future lectures.
It can be proved by running Corollary 14.8 with losses ℓt = −gt/ρ.

Corollary 14.9 (Average Gain). Let ρ ≥ 1 and ε ∈ (0, 1/2). For any

sequence of gain vectors g1, . . . , gT ∈ [−ρ, ρ]N with T ≥ 4ρ2 ln N
ε2 , the gains

version of the Hedge algorithm produces probability vectors pt ∈ ∆N such
that

1
T

T

∑
t=1

〈
gt, pt〉 ≥ max

i∈[N]

1
T

T

∑
t=1

〈
gt, ei

〉
− ε.

180 optional: the bandit setting

In passing we mention that if the gains or losses lie in the range
[−γ, ρ], then we can get an asymmetric guarantee of T ≥ 4γρ ln N

ε2 .

14.5 Optional: The Bandit Setting

The model of experts or the dot-product problem is often called the
full-information model, because the algorithm gets to see the entire
loss vector ℓt at each step. (Recall that we view the entries of the
probability vector pt played by the algorithm as the probability of
playing each of the actions, and hence

〈
ℓt, pt〉 is just the expected

loss incurred by the algorithm. Now we consider a different model,
where the algorithm only gets to see the loss of the action it plays.
Specifically, in each round,

1. The algorithm again produces a vector of probabilities

pt = (pt
1, pt

2, · · · , pt
N) ∈ ∆N .

It then chooses an action at ∈ [N] with these marginal probabili-
ties.

2. In parallel, the adversary produces

ℓt = (ℓt
1, ℓt

2, · · · , ℓt
N) ∈ [−1, 1]N .

However, now the algorithm only gets to see the loss ℓt
at corre-

sponding to the action chosen by the algorithm, and not the entire
loss vector.

This limited-information setting is called the bandit setting. The name comes from the analysis of
slot machines, which are affectionately
known as “one-armed bandits”.

14.5.1 The Exp3 Algorithm

Surprisingly, we can obtain algorithms for the bandit setting from
algorithms for the experts setting, by simply “hallucinating” the
cost vector, using an idea called importance sampling. This causes the
parameters to degrade, however.

Indeed, consider the following algorithm: we run an instance A
of the RWM algorithm, which is in the full information model. So at
each timestep,

1. A produces a probability vector pt ∈ ∆N .

2. We choose an expert It ∈ [N], where

Pr[It = i] = qt
i := γ · 1

N
+ (1− γ) · pt

i .

I.e., with probability γ we pick a uniformly random expert, else we
follow the suggestion given by pt.

online learning: experts and bandits 181

3. We get back the loss value ℓt
It for this chosen expert.

4. We construct an “estimated loss” ℓ̂t ∈ [0, 1]N by setting

ℓ̃t
j =





ℓt
j

qt
j

if j = It

0 if j ̸= It
.

We now feed ℓ̃t to the RWM instance A, and go back to Step 1.

We now show this algorithm achieves low regret. The first obser-
vation is that the estimated loss vector is an unbiased estimate of the
actual loss, just because of the way we reweighted the answer by the
inverse of the probability of picking it. Indeed,

E[ℓ̃t
i] =

ℓt
i

qt
i
· qt

i + 0 · (1− qt
i) = ℓt

i . (14.3)

Since each true loss value lies in [−1, 1], and each probability value
is at least γ/N, the absolute value of each entry in the ℓ̃ vectors is at
most N/γ. Now, since we run RWM on these estimated loss vectors
belonging to [0, N/γ]N , we know that

∑
t

〈
pt, ℓ̃t〉 ≤∑

t
ℓ̃t

i +
N
γ

(
εT +

log N
ε

)
.

Taking expectations over both sides, and using (14.3),

∑
t

〈
pt, ℓt〉 ≤∑

t
ℓt

i +
N
γ

(
εT +

log N
ε

)
.

However, the LHS is not our real loss, since we chose It according to
qt and not pt. This means our expected total loss is really

∑
t

〈
qt, ℓt〉 = (1− γ) ∑

t

〈
pt, ℓt〉+ γ

N ∑
t

〈
1, ℓt〉

≤∑
t
ℓt

i +
N
γ

(
εT +

log N
ε

)
+ γT.

Now choosing ε =
√

log N
T and γ =

√
N
(

log N
T

)1/4
gives us a regret

of ≈ N1/2T3/4. The interesting fact here is that the regret is again
sub-linear in T, the number of timesteps: this means that as T → ∞,
the per-step regret tends to zero.

The dependence on N, the number of experts/options, is now
polynomial, instead of being logarithmic as in the full-information
case. This is necessary: there is a lower bound of Ω(

√
NT) in the

bandit setting. And indeed, the Exp3 algorithm itself achieves a near-
optimal regret bound of O(

√
NT log N); we can show this by using a

finer analysis of Hedge that makes more careful approximations. We
defer these improvements for now, and instead give an application of
this bandit setting to a problem in item pricing.

182 optional: the bandit setting

14.5.2 Item Pricing via Bandits

To be added in.

