Max-Flow from Online Experts / Multiplicative Weight Update

Max Flow

Input: directed uncapacitated graph G=(V,E) and s,teV Output: (1-E)-approximate maximum s-t flow.

LP formulation: Let P denote all (simple) s-t paths.

Primal		Dual	
max Efp		min ∑le e∈E	
s.t. $\sum f_{\rho} \leq 1$	∀e∈E	s.t. $\leq l_e \leq 1$	YPEPP
f _p ≥ 0	YPEP	le ≥0	∀e∈E

Let F*≥1 be the LP optimum.

Goal: find feasible
$$\vec{f}$$
 s.t. $\leq f_p \geq (1-\epsilon)F^*$

Algorithm

- O Initialize lengths $l_e^{(0)}
 leq S = m^{-1/2}$
- 2 For iteration i=1,2,3,...
 - a Compute a shortest set path P(i) under lengths l
 - (b) Update lengths $l_e^{(i)} \leftarrow l_e^{(i-1)} \cdot (1+\epsilon)$ if $e \in P^{(i)}$ otherwise. $\ell_o^{(i)} \leftarrow \ell_o^{(i-1)}$

15-850-s24 Page 1

$$\ell_e^{(i)} \leftarrow \ell_e^{(i-1)}$$

© If
$$\leq l_e^{(i)} < 1$$
, route $\frac{1}{\log_{(1+E)}(1/8)}$ flow along path $P^{(i)}$

Else, terminate.

Analysis

Claim: the output flow is capacity-respecting.

Proof: Each time $e \in P^{(i)}$, we route $\frac{1}{\log_{(1+\epsilon)}(1/s)}$ flow and increase its length $l_e^{(i)}$ by factor $(1+\epsilon)$.

Since $\sum_{e \in E}^{(i)} \langle 1 \rangle$ we have $l_e^{(i)} \langle 1 \rangle$ in particular.

So the number of times $e \in P^{(i)}$ is $\leq \log_{(i+\epsilon)}(1/s)$.

the output flow has value ≥ (1-E) F*.

Proof:

Let $D(\vec{l}) = \sum_{e \in F} l_e$ be the value of the dual for (not necessarily feasible) \vec{l} .

Let $a(\hat{l}) = length of shortest s-t path under lengths l.$

Then, for any l, the scaled-down $\frac{1}{\alpha(l)}$ is feasible with value $\frac{D(l)}{\alpha(l)}$, so $\frac{D(\vec{l})}{a(\vec{l})} \geq F^*$ for all \vec{l} .

we replace F* by the dual optimum. Then the same proof below works.

Initially, D(P(0))=mS.

For each iz1,
$$D(\vec{l}^{(i)}) = \sum_{e \in E} l_e^{(i)}$$

= $\sum_{e \in E} l_e^{(i)} + \sum_{e \in E} l_e^{(i)}$

$$= \sum_{e \in P^{(i)}}^{(i)} + \sum_{e \notin P^{(i)}}^{(i)}$$

$$= \sum_{e \in P^{(i)}}^{(i-1)} (1+\xi) + \sum_{e \notin P^{(i)}}^{(i-1)}$$

$$= \sum_{e \in E}^{(i-1)} + \sum_{e \in P^{(i)}}^{(i-1)}$$

$$\leq \sum_{e \in E}^{(i-1)} + \sum_{e \in P^{(i)}}^{(i-1)} + \sum_{e \in P^{(i)}}^{(i-1)}$$

$$\leq \sum_{e \in E}^{(i-1)} + \sum_{e \in P^{(i)}}^{(i-1)} + \sum_{e \in P^{(i$$

$$\Rightarrow \frac{1-\varepsilon}{mS} \leq e^{\frac{\varepsilon}{F(1-\varepsilon)}(T-1)}$$

$$\Rightarrow \ln\left(\frac{1-\varepsilon}{C}\right) \leq \frac{\varepsilon}{F(1-\varepsilon)}(T-1)$$

If we replace F^* by the dual optimum, then we have constructed a flow of value \geq (1-O(ϵ))×(dual opt). Taking $\epsilon \rightarrow 0$, we have proved strong duality of the flow LP!