Wednesday, March 20
Last Tire: Abonithric Mechanism design, Sealed Bid Auction

Today: Algorithms for Mcitonism design wo money.
(HAP) House Allocation Problem [Shelley \& Scarf 1976]

- n agents, each owns a have
- every ages has a total (strict) ordering of the n haves
- 9: haw to reallocate houses so agents are better off

Top Trading Cycle Algorithm (TTCA):

1. Construct a graph G si. each aged is a vertex.
2. While no agent remains:
a) each remaining aget points at the owner of their favorite house
b) find all directed cycles in G.
C) reallocate houses as suggested by the directed cycles (each agent gives their louse to the aget pointing at $1 t$)
d) delete the gets whir houses were rebated an (c).

Claim: TJAC terminates in $O\left(n^{2}\right)$ tine.
Proof: Thee will be at least ore directed cycle at each raids remain ot least one gest. $O(1)$ itertias, OrA) tie per iteration to fred cycles.

Claim: TTCA is DSIC
By induction: Say N_{j} denote the agets whose house is relocated on iteration j.

- ic N_{1} : eveyore gots their fisst cloice
- i\& N_{2} : everyar gots their first doice in $N \backslash N_{1}$. Since no agest at N_{1} poids at i, i canst set a have from N_{2} by wisrepatis
- i\& $N_{j}: N_{0}$ aget in $N_{1} U-\cup N_{j-1}$ ever foits at i_{3} best i co do is to set ifs fovorite reacining touse.
Co A rectain that does rathiy is dso OSIc!
Definition: An alocetsa is a ceredlocatio if no subset of agots ca rotec all of its rabers strictly better off via internal reallocatias.

Llain: TJCA produres a coe allocation for the HAP.

Proof: Given any $S \in N$ song $l=\min \left\{i: N_{i} \cap S \neq \varnothing\right\}$. Tale $i \in S \cap N_{e}$,
since no aset in S beloys to $\mu_{1} \ldots N_{(-1)}$ no allocation fran S can mate $i \quad s t r i c t l y$ better off.

Mechaijs desisn wo rovery
Co Kidney exchayes

Figure 1: A kidney exchange
TTAC, whe ardes are doe accoding to compatibility polabilits

Chellenge 1:

- Altristic doners an donarters patiets 4 Change JTCA t_{0} include eppropite chains

Challense 2:

- Lary cycles rake sinultareas surgeles difficult. \rightarrow incetice pobless if nt sim.

Challege 3:

- Biney nare appropide
\Rightarrow Maving to motching (uneigtita)

\rightarrow undirated edege if intuolly carpotible
$G=(V, E)$ wher $V=\left\{\begin{array}{lc}i & f \text { oreal } \\ \left(P_{i}, D_{i}\right)\end{array}\right)$
$\Downarrow \quad(i, j) \in E \quad$ itt
Restrict to two
pair exchanges.

$$
\underset{\substack{P_{i} \\ P_{j} \rightarrow D_{j}}}{ }
$$

\rightarrow Each $i \in V$ has a "true set" E_{i} ad ca misreport an $F_{i} \leq E_{i} \rightarrow$ e.o. by rejects
\rightarrow Goal: Maxinal rutchis ubile netchings preservis DSIL.
(1) Collet F :
(2) Forn elge set $E=\left\{(i, j):(i, j) \in f_{i} r f_{j}\right\}$
(3) Return a rax-cardidity nontering of $G=(V, E) \rightarrow$ how;

Say \exists pronty are patied $1,2, \cdots, n$
L Then ruplent (3) as:

Losic edpeds a e. ${ }^{\square}$. Seed: bed
(3a) Let μ_{0} denate th sot ot maxim ratchys
(36) For $\imath=1,2, \ldots, n$:
$z_{i} \subseteq \mu_{i-1}$ that andel i
$\mu_{i}=\left\{\begin{array}{l}z_{i} \text { it } z_{i} \neq \varnothing \\ \mu_{i-1} \text { ot }\end{array}\right.$
(3.) Redurn a ratching from M_{n}

Lo Alongs auteres the soe sot of vetices

Thm $\forall\left\{E_{i}\right\}_{i=1}^{n}$ of edge sets and evey ardering of vetices, the atso above is Dslc.

What about incetives at the hospital level?
L Goal of tospstal: Maxinue its $\#$ of ratcled patiets

Underrepatis puts

H_{1} hes incetic to hide 263 uleces H_{2} hes incoms to hide 506
\longrightarrow Active research tepici matchivg potiets in a ly that approxindey, raxives the poters for strdeto.

Stable Matching \rightarrow wht if bots sides hove prefoces,
Tuo sets U and V
"nen" ad "wan" "horpatals and "residets"
$\forall u \in U \quad \exists$ total arbling of V and vice verca

Defintion A stable roteling is a bipatit rateling s.t. $\bar{\nexists}$ =bloding poir', i.e. if $u \in V \in v \in V$ are not ratcled, at least one prefer their match to the otler.
\rightarrow core allecation!

Gale-Stople, Also $[1962]$
while \exists unattached man $u \in U$ -u propose to ths faverite uoman who has at rojected him yot.
-each wore $v \in V$ ovy entetoins he best offer thus for

(D) $\begin{aligned} & A \\ & B \\ & C\end{aligned}$

(E) $\begin{aligned} & B \\ & C \\ & A\end{aligned}$
D
E
$F$$\square$

Figure 9: An instance of stable matching

Than GS terinates atter in itections wl a stde ately
Corroby \forall cellectian, \exists stable rady

Proof of The 11 Each ru at nost noters n proposels.
2) If a ra is cunted, all woren rejected ber \Rightarrow all woes retcled \Rightarrow all ven ruatched \Rightarrow perfet ratchy.
3) Stable, siven ang u,v it antcleds tuo coses: eith - never proposed or he did.
2) u proposed $\Rightarrow v$ evetually rejected/

Sin etter case, eith left ur for bou u or u h has a natch thy ar happee with.

Clain: G-S assigns each $u \in U$ their fav. $\cup \in V$ in an stoble ratching, and each $v \in V$, Heir least tav $u \in U$ in ay stable rotchij.

Corralan: G-S is DSle for U but not for V.

