
15-850: Advanced Algorithms CMU, Spring 2024
HW #3 (out Monday March 4, 2023) Due: Monday Mar 25, 2023

Same as HW2: Collaboration in a group of 2-3 is encouraged. Please solve two of the four problems.

1. Nearly Orthonormal Vectors. Call a set of unit vectors “near-orthonormal” if the inner
product of any two of them is close to zero. In this problem we will show that while there
are at most d orthonormal vectors in Rd, there can be exponentially more near-orthonormal
vectors. For vectors x, y ∈ Rd, we use 〈x, y〉 =

∑d
i=1 xiyi to denote the inner product.

(a) Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two independently and uniformly
chosen vectors in {−1, 1}d. (I.e., each bit xi and yi in each vector is independently and
uniformly chosen from {−1, 1}.) Show that

Pr[|〈x, y〉| ≥ εd] ≤ 2 exp
(
−ε2d/6

)
(b) Given any constant ε > 0, a set S of unit vectors is called ε-orthonormal if for all

~x, ~y ∈ S,
|〈~x, ~y〉| ≤ ε.

Show that there exist constants c, d0 > 0 (possibly depending on ε) such that for any
d ≥ d0, if you sample N := exp(cε2d) random vectors independently and uniformly from
the set {− 1√

d
,+ 1√

d
}d, this sampled set is ε-orthonormal with probability at least 1/2.

2. An Approximate Counter, and the Median-of-Means Estimator. Here is a way of
maintaining an approximate counter. (Call this the basic counter.)

Start with X ← 0. When an element arrives, increment X by 1 with probability
2−X . When queried, return N := 2X − 1.

(a) Suppose the actual count is n, show that E[N ] = n, and Var(N) = n(n−1)
2 .

Since its variance is large, average k independent basic counters N1, N2, . . . , Nk, and output
the sample average N̂ := 1

k

∑
iNi. Call this the k-mean counter.

(b) (Do not submit) Show that Pr[N̂ 6∈ (1± ε)n] ≤ 1
2ε2k

.

Hence using k = 1
2ε2δ

counters can make the failure probability at most δ. (I.e., your error is
less than εn with “confidence” 1− δ.) Here’s a way to use only K = O( 1

ε2
log 1

δ ) counters to
get the same answer (and the approach is useful in many different contexts beyond this one).
We call this counter the median-of-means counter.

(c) Suppose Y is a real-valued random variable and let I ⊆ R denote an interval. Suppose
Pr[Y /∈ I] ≤ 1/4.

Now, take a collection of `-many independent copies of Y and let M denote the median
of Y1, . . . , Y`. Show that by taking ` = Θ(log(1/δ)), we get Pr[M /∈ I] ≤ δ. Hint: what
must happen if the median is too high? What is the chance of that?

(d) Using (c), conclude that by taking Y to be the k0-mean counter from part (b) with
k0 = Θ(1/ε2), we have Pr[M /∈ (1± ε)n] ≤ δ.
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3. (The Fast and The Calm.) We want to give a fast implementation of the Johnson-
Lindenstrauss transform from R

D → R
k. Assume for simplicity that D is a power of 2. All

norms in this section are `2-norms, unless otherwise specified.

(a) (Do not submit.) If a randomized algorithm produces A such that Pr[‖Ax‖2 ∈ (1 ±
ε)‖x‖] ≥ 1 − 1/n for any fixed unit vector x, then A has 1 − 1/n non-zero columns in
expectation. (Hint: what happens for sparse vectors x?)

(b) (Do not submit.) Define the Walsh-Hadamard matrices Ht as follows: H0 = (1), and

Ht =
( Ht/2 Ht/2

−Ht/2 Ht/2

)
. Show that the rows and columns of HD are orthogonal, and have

`2-length
√
D.

(c) Spreading the mass around. Define the “flip” matrix F , which is diagonal with each
diagonal entry being an independent Rademacher (±1 with probability half each). For
any unit vector x ∈ RD, define y := 1√

D
HFx. Show that ‖y‖ = 1. Moreover, use a

Chernoff bound to show that there exists some constant c > 0 such that

Pr
[
∃i ∈ [D] s.t. yi ≥ c

√
log(nD)

D

]
≤ 1/n2.

(d) Flattening “spread” vectors. Suppose y ∈ RD has ‖y‖2 = 1 and ‖y‖∞ = maxi |yi| ≤ a
for some a > 0. Define

q = min(1,Θ(a log n)),

and k = Θ(log n/ε2), as in the JL theorem. Construct matrix M ∈ RD×k with each
entry being an independent N(0, 1/q) with probability q, and zero otherwise. Define
Ay = 1√

k
My. Show that ‖Ay‖2 ∈ (1± ε) with high probability.

(e) (Do not submit.) Combine the above two parts to show that the linear transformation

Φ(x) :=
1√
D
AHFx

is map RD → R
k which preserves distances with high probability. Moreover, A has

O(k log n) non-zero entries, with high probability.

Finally, using the fact that multiplying by H can be done in O(D logD) time (you don’t
have to prove this, of course), and that multiplying a vector y by a sparse matrix can
be done fast too, show that Φ(x) can be computed in O(d log d+ k log n) time.

4. (Chernoff meets Matrices.) In Lecture 13 we mentioned a very general theorem about
matrix-valued Chernoff bounds for symmetric matrices. In this problem we’ll take the first
steps towards it. Assume eigenvalues are numbered so that λ1 ≥ . . . ≥ λn. Given a symmetric
matrix X, define the matrix exponential eX by its Taylor series expansion eX = I + X +
1
2!X

2 + 1
3!X

3 + · · · , which you may assume always converges. We’ll prove:

Theorem 1. Let X1, X2, . . . , Xn be independent symmetric d×d matrices. Let Sn =
∑n

i=1Xi.
Then for any t ≥ 0 and any ` ∈ R,

Pr [λ1(Sn) ≥ `] ≤ d · e−t` ·
n∏
i=1

λ1(E[etXi ]). (1)

Pr [λd(Sn) ≤ −`] ≤ d · e−t` ·
n∏
i=1

λ1(E[e−tXi ]). (2)
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Recall: the trace of A is tr(A) :=
∑n

i=1 aii. You may use the following facts without proof.

(i) tr(A) =
∑n
i=1 λi(A).

(ii) λi(e
A) = eλi(A).

(iii) The Golden-Thompson inequality: tr(eA+B) ≤ tr(eA · eB).

(iv) For positive semi-definite (psd) matrices A,B, tr(AB) ≤ tr(A) · λ1(B). (Recall that a
symmetric matrix is psd iff all its eigenvalues are nonnegative.)

(v) Expectations and trace commute: i.e., E[tr(X)] = tr(E[X]).

Let us prove Theorem 1.

(a) Show that for any t ≥ 0,

Pr [λ1(Sn) ≥ `] ≤ Pr
[
tr(etSn) ≥ et`

]
≤ e−t` ·E[tr(etSn)].

(b) Show that
E

X1,...,Xn

[
tr(etSn)

]
≤ E

X1,...,Xn−1

[
tr(etSn−1)

]
· λ1

(
E[etXn ]

)
.

(Hint: why can you use (iv) above even if Xn is not psd?)

(c) Use (a)-(b) to prove (1).

(d) Use the same arguments on (−Sn) =
∑

i(−Xi) to prove (2).

Note that Theorem 1 is the “Markov inequality” part of showing a Chernoff bound. The rest
of the proof requires understanding E[etXn ], which requires linear algebra beyond the scope of
this course. If you are curious, see the reference: Introduction to Random Matrix Theory.
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https://terrytao.wordpress.com/2010/07/15/the-golden-thompson-inequality/
https://arxiv.org/abs/1011.3027

