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Abstract

We give a self-contained presentation of a recent interesting result (dis-
covered independently by Donoho, by Candes and Tao, and by Rudelson
and Vershynin), stating that if A is a random matrix of a suitable size,
then sparse solutions to the system of linear equations Ax = b can be
computed efficiently via linear programming. A part of the text is simi-
lar to a section in the book J. Matousek, B. Gartner: Understanding and
Using Linear programming, but there the result is just explained without
proof. Here we describe a proof by Baraniuk et al. based on the Johnson—
Lindenstrauss lemma (time permitting, I want to include a full proof of
the lemma as well in the future).

1 Preliminaries

Here we review tools needed in the sequel.

1.1 Dense sets in a sphere

Let S" ! = {x € R" : ||x|| = 1} denote the unit sphere in R” (note that S? is
the 2-dimensional sphere living in R3). We are given a number § > 0, and we
want to place a reasonably small finite set N of points on S”~! in such a way
that each x € S"~! has some point of N at distance no larger than §. Such an
N is called §-dense in S™1.

It is generally difficult to find good explicit constructions for arbitrary ¢
and n. The following simple but clever existential argument yields a §-dense
set whose size has essentially the best possible order of magnitude (for n large).

Lemma 1.1 (Small é-dense sets in the sphere) For each ¢ € (0,1], there
exists a §-dense set N C S"~1 that satisfies

IN| < (%)n

Proof. In order to construct a small §-dense set, we start with the empty set
and keep adding points one by one. The trick is that we do not worry about



0-density along the way, but we always keep the current set d-separated, which
means that every two points have distance at least d. Clearly, if no more points
can be added, the resulting set N must be J-dense.

For each x € N, consider the ball of radius % centered at x. Since N is
d-separated, these balls have disjoint interiors, and they are contained in the
ball B(0,1 4+ 6/2) C B(0,2). Therefore, vol(B(0,2)) > |N|v01(B(O,g)), and

since vol(B(0,r)) in R™ is proportional to 7", the lemma follows. O

1.2 Almost isometry and dense sets

Definition 1.2 Let F:R™ — R™ be a mapping, and let ¢ € (0,1) be a real
number. We call F a (Euclidean) e-almost isometry! if for every x € R
we have

(I =)lxll2 < IF&)[l2 < (1 +2)llxll2-

We will need a result telling us that if a linear map behaves like an almost-
isometry on a sufficiently dense set in the sphere, then it is already an almost-
isometry on all of R™, although with a worse ¢.

Lemma 1.3 Let ¢ € (0, %), let N C S™ 1 be e-dense, and let F:R™ — R™ be
a linear map satisfying 1 —e < [|[F(q)|l2 < 1+4¢€ for allq € N. Then F is a
3e-almost isometry.

Proof. First we note that since F' is a linear map, it suffices to prove the
almost-isometry property for all x € S™71; that is, 1 — 3e < ||[F(x)|]2 < 1+ 3¢
for all x € S*~ 1,

We begin with the upper bound—this is where the trick lies. Let M =
max{||F(x)|l2 : x € S"7!} and let xg € S~ ! be a point where M is attained.
Let qp be a point of N with [|[xg — qoll2 < e. Then by the linearity of F
and by triangle inequality M = [|[F(xo)ll2 < [|[F(qo)ll2 + ||F(x0 — qo)ll2 <
14+e+ M|xo—qoll2 <14+e+ Mg, and thus M < (1+4¢)/(1 —¢) <1+ 3¢
(the last inequality is valid for all £ € (0, 1)). Hence |[F(x)||2 < 1+ 3¢ for all
x € S L

It remains to bound ||F(x)||2 from below, which is routine. We choose
q € N with ||x—q]|2 < € and we calculate ||F(x)|]2 > [|F(q)|2 — | F'(x—q)ll2 >
l—e—(1+3)e=1-2—-32>1-3¢. O

1.3 A result from the proof of the Johnson—Lindenstrauss lemma

Let A be a random matrix with m rows and ¢t columns, where each entry
a;; has the standard normal distribution N(0,1) and all entries are mutually
independent. Let B = ﬁA, and let us regard B as a linear map B:R! — R™.

!This notion is closely related to distortion. An e-almost isometry has distortion at most
}fz, and on the other hand, any mapping F' between Euclidean spaces with distortion at most
lte
1—e¢

can be re-scaled so that the resulting map is an e-almost isometry.



Proposition 1.4 Let ¢ € [0, %) If B is the random linear map as above and

x € S is an arbitrary unit vector in R?, then
Pr[1—e < |Bx|l <1 +5] >1 - e,
where ¢ is a positive constant.

Let us note that this proposition does not claim that B is an e-isometry
with high probability; indeed, for ¢ > m it cannot be, since it is never injective.

Similar results can be established for many other models of random matrices,
for instance, matrices with independent random +1 entries (suitably scaled).
The main theorem (Theorem 3.2) discussed below then transfers accordingly.

2 Sparse solutions of linear systems

2.1 Motivation I: A coding problem

A cosmic probe wants to send the results of its measurements, represented by
a vector w € R¥, back to Earth. A fraction of coordinates can be corrupted
during the transmission. We admit gross errors; that is, if the number 3.1415
is sent and it gets corrupted, it can be received as 2152.66, or 3.1425, or —10'!,
or any other real number.

This problem belongs to the theory of error-correcting codes. Most of the
results of this theory deal with encoding messages over finite alphabets. Here
we will discuss a solution that deals directly with real numbers.

We choose a suitable integer n > k and a suitable nxk encoding matriz Q
of rank k, and instead of w we send the vector z = Qw € R". Because of the
errors, the received vector is not z but z = z+ x, where x € R" is a vector with
a small number of nonzero coordinates—we assume |supp(x)| < r, where r is
the allowed number of errors and where we denote supp(x) = {i : z; # 0}. We
ask, under what conditions can w be recovered from z?

Somewhat counterintuitively, we concentrate on the task of finding the “er-
ror vector” x (then w can be computed by solving a system of linear equations).
Let m = n — k and let A be an mxn matrix such that AQ = (0),,xx. That is,
considering the k-dimensional linear subspace of R™ generated by the columns
of @), the rows of A all lie in its orthogonal complement. The following picture
illustrates the dimensions of the matrices:

k m
n| Q AT
AQ =0
—_———

We have
Az = A(Qw + x) = 0w + Ax,



and thus x is a solution of the system of linear equations Ax = b with b =
Az. The system Ax = b has infinitely many solutions in general, but we
are searching for one with a small support. As we will see, under suitable
conditions relating n, m,r and A, such a sparse solution of Ax = b turns out
to be unique (and thus it has to be the desired error vector), and it can be
computed efficiently by linear programming!

This brings us to the following computational problem:

Sparse solution of a system of linear equations

Input: Ae R™" beR™ reN.
Task: Find an x € R™ such that Ax = b and |supp(x)| < r.

2.2 Motivation II: Removing noise from a signal

We have a screenshot from a TV with bad signal and the image is noisy. We
can represent the image in the form of a vector of reals f + g, where f stands
for the original image and g stands for the noise.

The task of extracting the original image is not quite well-defined; we must
make some assumption on how the image differs from the noise. One way is to

assume that
f= Zﬁz‘@‘ and g= Zajaja
el jeJ

where the ¢; are from some convenient fixed set of image generators, e.g., suit-
able smooth wavelets, while the o; are from some convenient fixed set of noise
generators, say some kind of “spike” functions. We want to find the coefficients
B; and oj. The trouble is that the set {¢; : i € I} U {0, : j € J} need not be
linear independent. A hope for solution: find the 3; and «; such that most of
them are zeros. Thus we again arrive at the quest for sparse solution.

2.3 A linear algebra view

Given a matrix A and a natural number r, we consider the question: When
does the system Ax = b have at most one solution x with |supp(x)| < r for
all b?

Observation 2.1 The answer is positive if and only if every at most 2r columns
of A are linearly independent.

Proof. We will prove only one direction: If every 2r columns are linearly
independent, then there is at most one sparse solution. Suppose that x and
x' are two different sparse solutions. Then y = x — x’ has at most 27 nonzero
components and satisfies Ay = Ax’ — Ax” = 0, and hence it defines a linear
dependence of at most 27 columns of A. O

Let us note that Observation 2.1 gives, in particular, m > 2r. On the
other hand, if we choose a “random” 2rxmn matrix A, we almost surely have



every 2r columns linearly independent. (We don’t want to assume or introduce
the knowledge required to state and prove this claim rigorously.) So in the
coding problem, if we set n so that n = k+ 2r, choose A randomly, and let the
columns of () form a basis of the orthogonal complement of the row space of A,
we seem to be done—a random A has almost surely every 2r columns linearly
independent, and in such case, assuming that no more than r errors occurred,
the sparse error vector x is always determined uniquely, and so is the original
message w.

Efficiency? But a major question remains—how can we find the unknown
sparse solution x? Unfortunately, it turns out that the problem of computing a
sparse solution of Ax = b is difficult (NP-hard) in general, even for A satisfying
the conditions of Observation 2.1.

Since the problem of finding a sparse solution of Ax = b is important
and computationally difficult, several heuristic methods have been proposed
for solving it at least approximately and at least in some cases. One of them,
described next, turned out to be considerably more powerful than the others.

3 Basis pursuit

A sparse solution x is “small” in the sense of having few nonzero components.
The idea is to look for x that is “small” in another sense that is easier to deal
with, namely, with small |x1|+ |x2| + - + |2, |. The last quantity is commonly
denoted by ||x||; and called the Li-norm of x (while ||x|2 = /22 + -+ + 22
is the usual Euclidean norm, which can also be called the Ly-norm). We thus
arrive at the following optimization problem (usually called basis pursuit in the
literature):

Minimize ||x||; subject to x € R" and Ax = b. (BP)

This problem can be reformulated as a linear program:

Minimize  uj +ug + -+ up

subject to Ax=Db
—u<<x<u
x,u€ceR” u>0.

(BP')

To check the equivalence of (BP) and (BP’), we just note that in an optimal
solution of (BP’) we have u; = |z;| for every i.

The basis pursuit approach to finding a sparse solution of Ax = b thus
consists in computing an optimal solution x* of (BP) by linear programming,
and hoping that, with some luck, this x* might also be the sparse solution or
at least close to it.

At first sight it is not clear why basis pursuit should have any chance of
finding a sparse solution. After all, the desired sparse solution might have a
few huge components, while x*, a minimizer of the ¢;-norm, might have all
components nonzero but tiny.

Surprisingly, experiments have revealed that basis pursuit actually performs
excellently, and it usually finds the sparse solution exactly even in conditions



that don’t look very favorable. (In contrast to this, while minimizing the Eu-
clidean norm of x instead of the L; norm is also computationally feasible, it
almost never finds a sparse solution.)

Let us try to formalize this situation.

Definition 3.1 A matriz A is BP-exact for sparsity r if for all b € R™
such that Ax = b has a unique sparse solution X with |supp(X)| < r, the problem
(BP) has X as the unique minimum.

Here is the main result we want to prove in this text:

Theorem 3.2 (Donoho; Candés and Tao; Rudelson and Vershynin)

There are real constants C and ¢y > 0 such that if n,m,r are integers with
1 <r <n/C and m > Crlog? and if A € R™*" is a random matriz with
entries drawn independently from the standard normal distribution N(0,1), then

Pr [A is BP-exact for sparsity r] >1—e 4™

Remark. The theorem is asymptotically optimal in the following sense: For
m = o(rlog ), no m x n matrix at all can be BP-exact for sparsity r. This
follows from a result of Linial and Novik, concerning certain convex polytopes,
by a reduction found by Donoho.

4 Restricted almost-isometry

Here, following Candes and Tao (with some simplification), we connect the
property of BP-exactness of a matrix A to another property of A:

Definition 4.1 A matriz A has the property of t-restricted e-almost isom-
etry if the corresponding linear mapping satisfies the condition of e-almost
isometry for every sparse x; that is, if

(1= e)llxll2 < [[Ax[l2 < (1 + &)[x]l2
for all x € R™ with |supp(x)| < t.

Lemma 4.2 There is a constant eg > 0 such that if a matriz A has the property
of 3r-restricted eg-almost isometry, then it is BP-exact for sparsity r.

Let us recall that Observation 2.1 shows that if every 2r columns of A are
linearly independent, then Ax = b has at most one sparse solution for every b.
The condition of 3r-restricted gp-almost isometry in the lemma can be viewed
as a strengthening of the assumption of Observation 2.1: Instead of every 2r
columns, we need to deal with every 3r columns, and more significantly, instead
of wanting the columns merely linearly independent, we want them almost
orthogonal (this is an alternative view of restricted almost-isometry).

Proof of Lemma 4.2. Let us suppose that A has the property of 3r-
restricted eg-almost isometry, and that x is a solution of Ax = b for some b
with [supp(X)| < 7.



For contradiction, we assume that X is not the unique minimum of (BP),
and so there is another solution of Ax = b with smaller or equal Li-norm. We
write this solution in the form X + A; so

AA =0, |x+ Al < [x|:-

We want to reach a contradiction assuming A # 0.

Let us note that if A were an almost-isometry, then A # 0 would imply
AA # 0 and we would have a contradiction immediately. Of course, we cannot
expect the whole A to be an almost-isometry—we have control only over small
blocks of A.

First we set S := supp(x) and we show that a substantial part of A, in
terms of the Li-norm, has to live on S. This is where we use the condition
%+ Al < (I

Claim. We have
[As]l > | Azl

where Ag denotes the vector consisting of the components of A indexed by S,
and S ={1,2,...,n}\S.

Proof.

1%lh > Ix+ Al
= [[(x+A)slh + I(x+ A)sl
= [xs +Asll +[|Azlh
> |Ix[l = [[As]l + [[Ag]h-

Comparing the first and last terms in this chain yields the inequality
in the claim.

Next, we want to show, roughly speaking, that S also accounts for most
of the Euclidean norm of A. To this end, we partition the index set S into
blocks Bi, Bs,... of size 2r each (except for the last block which may have
fewer elements). Namely, B; are the indices of the 2r largest coordinates of Ag
in absolute value, By are the indices of the next 2r largest coordinates, etc.

This choice of the blocks implies that for every i € B we have

|1AB; 1
Al < —2 -
Al < 2r
and consequently,
Ap.
IAp 1AB; 1

]+1H2 = \/2—7“

(notice that this inequality contains both the Euclidean norm and the Li-norm).
Then we can bound
|1AB; [l

ZHABJ'HHQ Z 2 = \/—HASHI

j>1 j>1

IN

[As]lr < —=[[As]l2,

\/_

7

f



where the last inequality uses that ||v||; < /s||v||2 for every s-element vector
v, and the previous one is the claim above.
Altogether we have proved

1
Yo lAp < EIIAS\Iz- (1)

Jj=1

Now we are ready for the final calculation leading to a contradiction, in which
we use the restricted almost-isometry property of A for T = S U B; and for
T= BQ,Bg,...I

0 = [[AA]2
> ||Asus, Asup, |2 — 2322 |AB; AB;|2 (triangle inequality)
> (I—co)llAsupill2 = (1 +€0) > ;52 [AB 2 (almost-isometry)

\Y

(1= <o)l Aslz — =55 Asll2 (by (1))

= JAsle (120 - 22).

For ¢¢ small, the part of the last expression in parentheses is positive, and since
the whole expression is nonpositive, we get ||Agl|le = 0. This is the desired
contradiction establishing the lemma. O

5 Proof of the main theorem

This part of the proof follows an idea of Baraniuk, Davenport, DeVore, and
Wakin; the original proofs were different.

In view of Lemma 4.2, it suffices to prove that if A is a random matrix as
in the main theorem and B := \/—%A is the appropriate re-scaling (re-scaling
obviously doesn’t affect BP-exactness), then B has the property of 3r-restricted
go-almost isometry with probability at least 1 — e™“" for a suitable positive
constant c;.

Let us write ¢ := 3r and suppose, as we may, that t < n. If B doesn’t have
the property of 3r-restricted ep-almost isometry, then there exists a t-element
set T C {1,2,...,n} such that By is not an ep-almost isometry in the sense
of Definition 1.2, where Br denotes the matrix consisting of the columns of B
indexed by T, as well as the corresponding linear map R? — R™.

Let us fix an (g0/3)-dense set N7 in S*=!. By Lemma 1.3, if By is not an
gp-almost isometry, then there exists q € N such that

1—¢e0/3 <|Brall2 <1+e0/3 (2)

does not hold. Since Br is a random ¢ X m matrix, Proposition 1.4 tells us that
for any fixed q € S*~!, the condition (2) fails with probability at most e=¢"™,
where ¢co > 0 is a constant depending on &g.



By Lemma 1.1, we may assume |N7| < K for a suitable constant K (again
depending on ¢g), and hence the probability of (2) failing for any q € N is at
most Ke=“™. Finally, there are (?) possible choices of T', and so we calculate

Pr [B does not have the t-restricted €p-almost isometry property} <

t
") Ktemem < (n_e) K'e™ ™ — exp <3r(ln % ot K)— 02m>.
t t 3r

Using the assumption m > Crlog(n/r) from the theorem, it is easy to check
that the last expression is bounded above by e~°"/2_ say, provided that C' is

sufficiently large. This concludes the proof of the main theorem.



