Regret minimization and
applications to solving games



Focus of this lecture

* We focus on Nash equilibrium in two-player zero-sum
games

e But, these techniques apply to other problems as well,
e.g.:
— Best response computation
— Quantal response equilibrium

[Farina, Kroer, and Sandholm; “Online Convex Optimization for Sequential Decision Processes and Extensive-
Form Games, AAAI'17]

— Near-safe opponent exploitation

[same as above]

— Coarse-correlated equilibrium in multiplayer games
— Playing better than a given strategy, but like it

[Jacob, Wu, Farina, Lerer, Hu, Bakhtin, Andreas, Brown; Modeling Strong and Human-Like
Gameplay with KL-Regularized Search. ICML'22]



Part One

Nash Equilibria in Normal-Form
Games



Recap: Normal-Form Games
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3% SIMULTANEOUS

(No turns)

$% Strategy for a player
IS just a probability
distribution over actions



Regret Minimization

Regret
minimizer

Utility vector

(one utility per action) —* Strategy

X

Set of all possible strategies
(for now, a probability simplex)

"How well do we do against best, fixed strategy in hindsight?”

T T

T ._ t oy t .t

RT o= ) ) (2111 ) (2 ™
t=1 t=1

Maximum utility that was
achievable by the best fixed
action in hindsight

Utility that was actually accumulated

$% Goal: have RT grow sublinearly with respect to time T (e.g., RT < ¢VT)
No assumption available on future utilities!
Must handle adversarial environments



Relationship with Nash Equilibrium

Nash equilibrium in a
2-player 0-sum
normal-form game
with payoff matrix A:
max min x ' Ay
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RT := max z Ayt x )b
1 o (Ay*, X )
t=1 )
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RT = max z —ATxt, )}
2 Jean ( y)

t=1

3’% IDEA: Self-play
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T
vt xty <NT
t=1 Add these two lines and
T divide by T to get the average
xt, yty <NT
t=1
T 3% TAKEAWAY

The average strategies
converge to a Nash
equilibrium!



A Common Template for Regret
Minimizers

* Given utility vectors u?, ..., ut, we compute the
empirical regrets up to time t of each action:

t
t o— T _ T T
rtla] = E o la] — (u',x7)

 Then, intuitively the next strategy xt*! gives
mass to actions somewhat proportionally to how
much regret they have accumulated



A Common Template for Regret
Minimizers

* Given utility vectors u?, ..., ut, we compute the
empirical regrets up to time t of each action:

t
H t
rifal =) wila] - (uhxT) Qe

Multiplicative weights update (MWU) - exp{ny rt[al}
(aka Hedge, aka Randomized Weighted xa] = y expg{n . rt[al]}
al

Majority)
Regret matching (RM) +1]g] max{0, r¢[a]}
xt*1[a] =

Y, max{0,rt[a’']}

Note: MWU is a particular instance of a very general algorithm called “Online mirror descent”,
which can be applied to all convex strategy sets and guarantees sublinear regret



A Common Template for Regret
Minimizers
Empirical regret: rt[a] := X u®[a] — (u%, x7)
Simple modification:
rtla] == max{0, 7! " [a] + ut[a] — (ut, xt)}

Multiplicative weights update (MWU) +1]g] exp{n - rt[a]}
(aka Hedge, aka Randomized Weighted Majority) Zar exp{n - rt[a’]}

Regret matching (RM)

. _ max{0,7"[a]}
xt*ta] = S max{0,r'[a']}

max{0, 7t [a]}
> o max{0,7i[a']}

Regret matching plus (RM+) t+1[4]
x"a] =




State-of-the-art variant in practice:
Discounted RM (DRM)

* Linear RM (LRM)

— Weight iteration t by t (in regrets and averaging)
— RM+ floors regrets at 0. Can we combine this with linear RM?
Theory: Yes. Practice: No! Does very poorly.
« But less-aggressive combinations do well: Discounted RM
— On each iteration, multiply positive regrets by t* / t*+1
— On each iteration, multiply negative regrets by t# / tF+1
— Weight contributions toward average strategy by (t / (t+1))"

— Worst-case convergence bound only a small constant worse than
that of RM

— Fora=1.5, =0, y =2, consistently outperforms RM+ in practice

[Brown & Sandholm, Solving Imperfect-Information Games via Discounted Regret Minimization, AAAI’19]



A Common Template for Regret
Minimizers

All of these algorithms guarantee that after seeing any number T of utilities
ul, ..., u’, the regret cumulated by the algorithm satisfies

Remember:
T This holds without any
T < 12 assumption about the way the
R =c zllu I2 utilities are selected by the
t=1 environment!

X Constant that depends on number of actions

So, assuming that the utility vectors have bounded norms |[ut|| < B (this is always
the case when playing finite games), then RT < cBVT

Consequence: when using these algorithms in self-play
in 2-player 0-sum games, the average strategy

Reminder: self play

R
Ro

converges to a Nash equilibrium at a rate of g = \/if




What Regret Minimizers are Used In

Practice?
Multiplicative Weights Update Regret Matching (RM)
(MWU) & Regret Matching+ (RM+)
+/ Special case of OMD, that works X Only for simplex domains
for general convex sets
v Widely used & understood % Not as well studied
X Slow in practice for games + Tuned for game solving
X Hyperparameters (stepsize) « No hyperparameters
v Incredibly effective
3% Modern variants of this, such as DCFR, are
the standard in extensive-form game solving!
v/ Can incorporate optimism % Unknown... Until recently

about future losses to
converge faster in 2-player 0-sum
games

[Farina et al., Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent, AAAI 2021]



Optimistic regret minimizers

Standard (non-optimistic) Optimistitic (aka Predictive) rule
rule
MWU el exp(n - (r‘lal + ufa] — (u,x*))}
xt1a] = xtt1a] =
Yarexp{n -rtla']} Yarexp{n - (rt[a’] +u'[a’] — (uf,x"))}
RM ro1r  _ max{0,r*[a]} iir 4 max{0,r*[a] +u[a] — (u,x")}
xlal = Yo max{0,r¢[a']} < lal= Yo max{0,rt[a'] + ut[a'] — (ut, xt)}
RM+ +1fg] = max{0, r{[a]} +1g] = max{0, r{[a] + u'[a] — (u', x")}
= = Yo max{0,r{[a']} o= Yomax{0,rf[a'] + ut[a] — (ut, xt)}

Typically, one-line change in implementation

All of these algorithms guarantee that after seeing any number T of utilities u?, ..., u”, the
regret cumulated by the algorithm satisfies

Remember:
This holds without any assumption

RT <

T about the way the utilities are selected
t=

by the environment!
t _ 4, t—1]|2 t 4ty t—1 ,t—1})2
Il u ”2 + ((f,xf) = 1, %) Takeaway message: still ~ T regret, but much

2 smaller when there is little change to the
utilities over time



Green dashed: Linear RM
Violet dotted: Discounted RM

Nash gap / exploitability

Self-play iterations

(RM was omitted as it is typically much slower than RM+)

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI'21]



* |[n general, Discounted RM and Optimistic
RM+ are the fastest in practice
— For some games, like poker, Discounted RM is

empirically consistently faster than Optimistic
RM+

— For many other games, Optimistic RM+ is
significantly faster

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI'21]



Part Two

From Normal-Form to Extensive-Form

(Nash Equilibria in Extensive-Form
Games)



From Normal-Form to Extensive-
Form

» Can capture sequential and simultaneous moves

> Private information
» We assume perfect recall: no player forgets what the player knew earlier
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2) are not shown



https://emojipedia.org/warning/

Two Representations

Observation points

Start

®

Decision points

Jde Queen King —~
/N
Check Ralse Check Ra{ Check Raise

Check Rc}lﬁe Cl?ck chse Cf?c/k \quse
Fofd C‘all Foll’d C\all Fofd C\all
[\ I\ [\
Game tree Tree-Form (Sequential) Decision Problem
Each node belongs to a specific Represents the game from viewpoint of one player

player or chance
This is the representation in regret minimization



Strategies in Extensive-Form Games

- Jack Qu:ccn King —~

/ \ / \ / \
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X, X
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Fold Call Fold Call Fold Call

[\ [\ [\

3% First attempt:

Assign local probabilities at
each decision point

v/ Set of strategies is convex

X Expected utility of game is
not bilinear

Reason: prob. of reaching a
terminal state is product of

variables /

Products = non-convexity

S
v
@




Strategies in Extensive-Form Games

)
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/ AN / AN
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3% Second attempt:

Store probabilities for whole
sequences of actions

v/ Set of strategies is convex

v/ Expected utility of game is
bilinear

__________________

Children

“Sequence-form strategies”

3% Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

[Romanovskii, Reduction of a game with complete memory to a matrix game, 1961]
[Koller et al., Fast algorithms for finding randomized strategies in game trees, STOC 1994]




Sequence-Form Strategies

3% Consequence: a lot of results carry over
from normal form games when using
sequence-form strategies!

+/ Nash equilibrium is a bilinear saddle point problem

min max x ' Ay
X€Q1 YEQ2

v As long as we can construct regret minimizers for the sets of
sequence-form strategies, we can use them to converge to
Nash equilibrium in self play

t Ayt t+1
X X
— Ry Y

X =
— Ro Ro

l




Regret Minimizers for Sequence-
Form Strategy Spaces

3% IDEA: Sequence-form strategy
spaces have a strong combinatorial
Observation node ® StrUCtU re! Action node

AA

Any (4,1 —2,1q4, (1 — A)q,) is a valid
s.f. strategy

1 0
. 0 1
0 Q2

3% Convex Hulls

Any (q1,q>) is a valid s.f. strategy

Q = Q1 X0

|
|
|
|
|
|
|
|
|
|
3% Cartesian Products :
|



We can leverage this combinatorial structure
to construct compositionally a regret
minimizer for a player’s sequence-form
strategy set using any regret minimizers for
simplices

W

In other words: we can “reduce” regret

minimization for extensive-form games to
regret minimization for normal-form games

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



Regret Circuits: Cartesian Product
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[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



Regret Circuits: Convex Hull

3% IDEA

Extra regret minimizer

decides how to mix the
decisions on X and Y

--------- 3% Any will work!
RM, RM+, DRM,
Hedge, OMD,

At % Ma!+ Ny FTRL, ...

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



A generalized Counterfactual Regret
Minimization (CFR) algorithm

* So, by composing the constructions for Cartesian
product and convex hull, we obtain a regret
minimizer for extensive-form domains

« 3% IDEA: decomposes and bounds regret locally
at each decision point in the game

 This regret minimizer is called (generalized) CFR

$% This, with extensions discussed later, is the practical
state-of-the-art in extensive-form game solving

« CFR: [Zinkevich et al., Regret minimization in games with incomplete information, NeurlPS-07]
» Generalized CFR: [Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



CFR Viz: Regret Minimization Algorithm

* How does CFR end up updating strategies?

* Suppose the following local strategies were
output by the regret minimizers at each

decision point; it
Stfm
®
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/ A\ / A\ / A\
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0.8 0.2 0.4 0.6 0.1 0.9
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Fold Call Fold Call Fold Call
[\ [\ [\



CFR Viz: Regret Minimization Algorithm

An example utility vector ut shown in green is now received by the CFR regret minimizer

— Remember: in regret minimization we make no assumption as to how the environment picked the utility vector. So,
the green utilities may not actually be “real” payoffs in Kuhn

— Inthe special case of playing against an opponent to compute Nash, the green number =

leaf payoff * reach probability of opponent from root to that leaf *

zsubsequent game tree leaves in which this player can’t move again because game ends

reach probability of chance from root to that leaf

Xo Purple: last strategy output by each local regret minimizer
|
Start 1.0
1 -0.5
)
Jack Queen King
/ ' \
0.1 /N 0.9 /N /N
2.0 Check Raise 1.5 O'SCheck Raiseo's 0'75Check Raise 0.25
0 -1. 0.0/ \-0.4 1.0 / \0.0
/ N\ / N\ / \
Check Relise Ch/eck quse Ch/eck quse
X, X,
I\ I\ I\
08 to1d Can 02 0.4 old can®® 0.1 gog can®?
2 | '\ -0.6 05/ |\ 11 25 | |\ 1.6



CFR Viz: Regret Minimization Algorithm

King

|
®
Queen -
01 7 ~. 09 = g
Check Raise 05chedk  Raise” 975
207 15 007 04

/ A\ / A\ /A
Check quse Cl}%(:k Ra:ise Cl}:{:k Rgise
0.8 I\ 0.2 04_! 1\ 0.6

Fold Cgl Fold Call
12 TP o6 054Gl 4 25 10\ 16

Example:

Counterfactual utility = -0.6

Check Raise 0.25
\0.0

Step 1: Compute the counterfactual utilities
for each action

At leaves:
counterfactual utility = utility at leaf
Elsewhere:
counterfactual utility =
utility at sequence
+

expected utility in the subtree of the decision
problem (not game tree) under that sequence,
weighting actions according to latest strategy

Example:

Counterfactual utility

=1.0+(0.1x-2.5+0.9x1.6) = 2.19

Purple: last strategy output by each local regret minimizer

Green: utility vector given by environment



CFR Viz: Regret Minimization Algorithm

Xo
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Step 1: Compute the counterfactual utilities
for each action

At leaves:
counterfactual utility = utility at leaf
Elsewhere:
counterfactual utility =
utility at sequence
+

expected utility in the subtree of the decision
problem (not game tree) under that sequence,

weighting actions according to latest strategy

Purple: last strategy output by each local regret minimizer

Green: utility vector given by environment
: counterfactual utilities



CFR Viz: Regret Minimization Algorithm

:i; _1(;05 Step 2: Feed the counterfactual utilities
o011 to the regret minimizers at each
Jack /Quéeen\ King decision point
2:24 c/hec’k dlg\e ?1-?5 3‘25}1‘*&‘ l\iais\e?di ;‘ggC/hec/k ﬁais,\e 3.025 Note: Steps 1 & 2 can be done in a
& 15 %8 01 ® 0.0 single bottom-up pass
/7 \ / N\ / N\
Check Rr—.iise Check Ra:ise Check Rgise
/ / Remember: this will work no matter the
(1’-524 F(I){d C‘?” ?626 ?64513‘}{‘] é"{‘”g'i 02;15 F(I){d éa‘.”g-g choice of regret minimizers (MWU, RM,
1.2 0.6 05 11 S 16 RM+, Discounted RM, Optimistic RM+,
etc). We can also use different regret

Example: minimizers at different nodes, unlike
the original CFR paper, which used RM

Feed utilities to the regret minimizer that
selects the strategy for this decision point

Purple: last strategy output by each local regret minimizer
Green: utility vector given by environment
: counterfactual utilities



CFR Guarantees

* Theorem: the regret cumulated by CFR can
be bounded as

RCFR < E maX{O, R]}
JEJ
e Regret cumulated by local regret

Decision points minimizer for decision point j

» Consequence: if the local regret minimizers
guarantee sublinear regret, then CFR
cumulates sublinear regret

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML 2019]



Why is CFR Superior in Practice?

3% ... to second-order methods (which can offer
convergence rate 1/e')?

— Does not require solving large linear systems

— Second-order methods (interior point, ...) don't fit in
memory for large games

% ... to general-purpose regret minimizers (FTRL & OMD)?

— CFR uses an approach local to each decision point
(easler to parallelize, warm-start, etc.)

* [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games
via Pruning. ICML-17]

* [Brown & Sandholm, Strategy-based warm starting for regret minimization in games,
AAAI 2016]

— No need for expensive projections onto feasible
strategy polytope (think projected gradient descent)



http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf

Other approaches

e Offline first-order methods:
— e.g., mirror prox (MP) or excessive gap technique (EGT)
e O(1/T) convergence instead of CFR’s O(1 / VT)

— Regret minimization is decentralized, and with optimism
it matches the same theoretical rates. Also, it performs
better empirically

* Allin all, regret-based methods are today the
scalable state of the art



Nash gap
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CFR Framework + Predictivity
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Important Takeaways

$% You can construct a regret minimizer for
sequential decision making problems by
combining regret minimizers for individual
decision points

= Improvements on simplex domains carry over to
extensive-form domains!

$% Predictivity works well in extensive-form
domains



Techniques to Further Increase
Scalability of CFR

 Using utility estimators
— Similar idea as stochastic gradient descent vs gradient
descent

— Instead of exactly computing the green numbers
(gradients of the utility function), we use cheap
unbiased estimators

— Popular estimator: sample a trajectory in the game
tree and use importance sampling

— “Monte Carlo CFR"

[Monte Carlo Sampling for Regret Minimization in Extensive Games; Lanctot,
Waugh, Zinkevich, Bowling NIPS 2009]



Techniques to Further Increase
Scalability of CFR

« Temporary pruning

— ldea: During CFR traversals,
— Prune actions (and their subtrees) that have negative cumulative regret

— Project in how many iterations at the earliest the cumulative regret can turn
positive, and catch up that subtree’s iterates then

» Cath up as if we had played a best response throughout the CFR iterations
to the opponent’s average strategy in that subtree

» If the regret is still negative, re-project, etc.

— Can be implemented without storing the pruned subtrees => space
advantage

— Theorem. In a zero-sum game, if both players choose
strategies according to CFR with this kind of pruning, conducting T
iterations traverses only

)VSH + |Hwode3

All game paths (i.e., information sets)

Game paths that are part of some best response to some equilibrium

[Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]



http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf

Techniques to Further Increase
Scalability of CFR

* Sparsification
— ldea: compute a low-rank factorization of the
nayoff matrix of the game

— For some games, a low-rank factorization is
guaranteed to exist, and can dramatically
speed up the algorithms

[Zhang & Sandholm, Sparsified linear programming for zero-sum equilibrium finding. ICML 2020]
[Farina & Sandholm, Fast Payoff Matrix Sparsification Techniques for Structured Extensive-Form
Games. AAAI 2022]



