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Focus of this lecture

• We focus on Nash equilibrium in two-player zero-sum 
games

• But, these techniques apply to other problems as well, 
e.g.:
– Best response computation
– Quantal response equilibrium

[Farina, Kroer, and Sandholm; “Online Convex Optimization for Sequential Decision Processes and Extensive-
Form Games, AAAI’17]

– Near-safe opponent exploitation
[same as above]

– Coarse-correlated equilibrium in multiplayer games
– Playing better than a given strategy, but like it

[Jacob, Wu, Farina, Lerer, Hu, Bakhtin, Andreas, Brown; Modeling Strong and Human-Like 
Gameplay with KL-Regularized Search. ICML’22]



Part One

Nash Equilibria in Normal-Form 

Games



Recap: Normal-Form Games

0 -1 +1

+1 0 -1

-1 +1 0

🌟 SIMULTANEOUS

(No turns)

🌟 Strategy for a player 

is just a probability 

distribution over actions

0.2

0.5

0.3



Regret Minimization

No assumption available on future utilities!

Must handle adversarial environments

Strategy
Utility vector

(one utility per action)

Regret 
minimizer

Set of all possible strategies
(for now, a probability simplex)

“How well do we do against best, fixed strategy in hindsight?”

𝑅𝑇 ≔ max
ෝ𝒙∈𝑋

෍

𝑡=1

𝑇

〈𝑢𝑡 , ො𝑥〉 −෍

𝑡=1

𝑇

〈𝑢𝑡 , 𝑥𝑡〉

🌟 Goal: have 𝑅𝑇 grow sublinearly with respect to time T (e.g., 𝑅𝑇 ≤ 𝑐 𝑇)

Utility that was actually accumulatedMaximum utility that was
achievable by the best fixed
action in hindsight

𝒖𝑡 𝑥𝑡



Relationship with Nash Equilibrium
🌟 IDEA: Self-play

𝑅1
𝑇 ≔ max

ො𝑥∈Δ𝑚
෍

𝑡=1

𝑇

〈𝐴𝑦𝑡, ො𝑥 〉 −෍

𝑡=1

𝑇

〈𝐴𝑦𝑡, 𝑥𝑡〉 ≤ 𝑇

Nash equilibrium in a 

2-player 0-sum 

normal-form game 

with payoff matrix A:

max
𝑥∈Δ𝑚

min
𝑦∈Δ𝑛

𝑥⊤𝐴𝑦

𝐴𝑦𝑡

−𝐴⊤𝑥𝑡

𝑥𝑡

𝑦𝑡

𝑅2
𝑇 ≔ max

ො𝑦∈Δ𝑛
෍

𝑡=1

𝑇

−𝐴⊤𝑥𝑡, ො𝑦 −෍

𝑡=1

𝑇

〈−𝐴⊤𝑥𝑡, 𝑦𝑡〉 ≤ 𝑇

𝑥𝑡+1

𝑦𝑡+1

max
ො𝑥∈Δ𝑚

ො𝑥⊤𝐴
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡 − min
ො𝑦∈Δ𝑛

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡

⊤

𝐴ො𝑦 ≤
2

𝑇

🌟 TAKEAWAY

The average strategies 
converge to a Nash 

equilibrium!

Add these two lines and 
divide by T to get the average



A Common Template for Regret 

Minimizers

• Given utility vectors u1, … , 𝑢𝑡, we compute the 

empirical regrets up to time t of each action:

𝑟𝑡 𝑎 ≔෍
𝜏=1

𝑡

𝑢𝜏 𝑎 − ⟨𝑢𝜏 , 𝑥𝜏⟩

• Then, intuitively the next strategy 𝑥𝑡+1 gives 

mass to actions somewhat proportionally to how 

much regret they have accumulated



A Common Template for Regret 

Minimizers

• Given utility vectors u1, … , 𝑢𝑡, we compute the 

empirical regrets up to time t of each action:

𝑟𝑡 𝑎 ≔෍
𝜏=1

𝑡

𝑢𝜏 𝑎 − ⟨𝑢𝜏 , 𝑥𝜏⟩

• Then, intuitively the next strategy 𝑥𝑡+1 gives 

mass to actions somewhat proportionally to how 

much regret they have accumulated

Algorithm Rule

Multiplicative weights update (MWU)
(aka Hedge, aka Randomized Weighted 

Majority)

𝑥𝑡+1 𝑎 =
exp{𝜂 ⋅ 𝑟𝑡[𝑎]}

σ𝑎′ exp{𝜂 ⋅ 𝑟
𝑡[𝑎′]}

Regret matching (RM) 
𝑥𝑡+1 𝑎 =

max{0, 𝑟𝑡 𝑎 }

σ𝑎′max{0, 𝑟
𝑡[𝑎′]}

Note: MWU is a particular instance of a very general algorithm called “Online mirror descent”, 

which can be applied to all convex strategy sets and guarantees sublinear regret

Hyperparameter
(“learning rate”)



A Common Template for Regret 

Minimizers
Empirical regret: 𝑟𝑡 𝑎 ≔ σ𝜏=1

𝑡 𝑢𝜏 𝑎 − 𝑢𝜏, 𝑥𝜏

Simple modification:

𝑟+
𝑡 𝑎 ≔ max{0, 𝑟+

𝑡−1 𝑎 + 𝑢𝑡 𝑎 − 𝑢𝑡 , 𝑥𝑡 }

Algorithm Rule

Multiplicative weights update (MWU)
(aka Hedge, aka Randomized Weighted Majority) 𝑥𝑡+1 𝑎 =

exp{𝜂 ⋅ 𝑟𝑡[𝑎]}

σ𝑎′ exp{𝜂 ⋅ 𝑟
𝑡[𝑎′]}

Regret matching (RM) 
𝑥𝑡+1 𝑎 =

max{0, 𝑟𝑡 𝑎 }

σ𝑎′max{0, 𝑟
𝑡[𝑎′]}

Regret matching plus (RM+)
𝑥𝑡+1 𝑎 =

max{0, 𝑟+
𝑡 𝑎 }

σ𝑎′max{0, 𝑟+
𝑡[𝑎′]}



State-of-the-art variant in practice: 
Discounted RM (DRM)

• Linear RM (LRM)

– Weight iteration t by t (in regrets and averaging)

– RM+ floors regrets at 0. Can we combine this with linear RM? 

Theory: Yes. Practice: No! Does very poorly.

• But less-aggressive combinations do well: Discounted RM

– On each iteration, multiply positive regrets by 𝑡𝛼 / 𝑡𝛼+1

– On each iteration, multiply negative regrets by 𝑡𝛽 / 𝑡𝛽+1

– Weight contributions toward average strategy by (𝑡 / (𝑡+1))𝛾

– Worst-case convergence bound only a small constant worse than 

that of RM

– For 𝛼 = 1.5, 𝛽 = 0, 𝛾 = 2, consistently outperforms RM+ in practice

[Brown & Sandholm, Solving Imperfect-Information Games via Discounted Regret Minimization, AAAI’19]



A Common Template for Regret 

Minimizers
All of these algorithms guarantee that after seeing any number T of utilities 

𝑢1, … , 𝑢𝑇, the regret cumulated by the algorithm satisfies

Constant that depends on number of actions

𝑅𝑇 ≤ 𝑐 ෍

𝑡=1

𝑇

𝑢𝑡 2
2

So, assuming that the utility vectors have bounded norms 𝑢𝑡 ≤ 𝐵 (this is always 

the case when playing finite games), then 𝑅𝑇 ≤ 𝑐𝐵 𝑇

Consequence: when using these algorithms in self-play 

in 2-player 0-sum games, the average strategy 

converges to a Nash equilibrium at a rate of 
𝑇

𝑇
=

1

𝑇

Reminder: self play

Remember:

This holds without any 

assumption about the way the 

utilities are selected by the 

environment!



What Regret Minimizers are Used in 

Practice?

Multiplicative Weights Update 
(MWU)

✔ Special case of OMD, that works 
for general convex sets

✔Widely used & understood

❌ Slow in practice for games

❌ Hyperparameters (stepsize)

✔ Can incorporate optimism 
about future losses to 
converge faster in 2-player 0-sum
games

❌ Only for simplex domains

❌ Not as well studied

✔ Tuned for game solving

✔ No hyperparameters

✔ Incredibly effective 

❓ Unknown… Until recently

✔

Regret Matching (RM)
& Regret Matching+ (RM+)

🌟Modern variants of this, such as DCFR, are 

the standard in extensive-form game solving!

[Farina et al., Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent, AAAI 2021]



Algorithm Standard (non-optimistic) 

rule

Optimistitic (aka Predictive) rule

MWU
𝑥𝑡+1 𝑎 =

exp{𝜂 ⋅ 𝑟𝑡[𝑎]}

σ𝑎′ exp{𝜂 ⋅ 𝑟
𝑡[𝑎′]}

𝑥𝑡+1 𝑎 =
exp{𝜂 ⋅ (𝑟𝑡 𝑎 + 𝑢𝑡[𝑎] − ⟨𝑢𝑡 , 𝑥𝑡⟩)}

σ𝑎′ exp{𝜂 ⋅ (𝑟
𝑡[𝑎′] + 𝑢𝑡[𝑎′] − ⟨𝑢𝑡 , 𝑥𝑡⟩)}

RM 
𝑥𝑡+1 𝑎 =

max{0, 𝑟𝑡 𝑎 }

σ𝑎′max{0, 𝑟
𝑡[𝑎′]}

𝑥𝑡+1 𝑎 =
max{0, 𝑟𝑡 𝑎 + 𝑢𝑡[𝑎] − ⟨𝑢𝑡 , 𝑥𝑡⟩}

σ𝑎′max{0, 𝑟
𝑡[𝑎′] + 𝑢𝑡[𝑎′] − ⟨𝑢𝑡 , 𝑥𝑡⟩}

RM+
𝑥𝑡+1 𝑎 =

max{0, 𝑟+
𝑡 𝑎 }

σ𝑎′max{0, 𝑟+
𝑡[𝑎′]}

𝑥𝑡+1 𝑎 =
max{0, 𝑟+

𝑡 𝑎 + 𝑢𝑡[𝑎] − ⟨𝑢𝑡 , 𝑥𝑡⟩}

σ𝑎′max{0, 𝑟+
𝑡[𝑎′] + 𝑢𝑡[𝑎] − ⟨𝑢𝑡 , 𝑥𝑡⟩}

Optimistic regret minimizers

All of these algorithms guarantee that after seeing any number T of utilities 𝑢1, … , 𝑢𝑇, the 

regret cumulated by the algorithm satisfies

Takeaway message: still ≈ 𝑇 regret, but much 

smaller when there is little change to the 

utilities over time

𝑅𝑇 ≤ 𝑐 ෍

𝑡=2

𝑇

𝑢𝑡 − 𝑢𝑡−1 2
2 + 𝑢𝑡 , 𝑥𝑡 − 𝑢𝑡−1, 𝑥𝑡−1 2

Typically, one-line change in implementation

Remember:

This holds without any assumption 

about the way the utilities are selected 

by the environment!
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RM+

Self-play iterations

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI’21]

Green dashed: Linear RM
Violet dotted: Discounted RM

(RM was omitted as it is typically much slower than RM+)



• In general, Discounted RM and Optimistic 
RM+ are the fastest in practice

– For some games, like poker, Discounted RM is 
empirically consistently faster than Optimistic 
RM+

– For many other games, Optimistic RM+ is 
significantly faster

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability:
Connecting Regret Matching and Mirror Descent, AAAI’21]



Part Two

From Normal-Form to Extensive-Form

(Nash Equilibria in Extensive-Form 

Games)



From Normal-Form to Extensive-

Form
▸ Can capture sequential and simultaneous moves

▸ Private information

▸ We assume perfect recall: no player forgets what the player knew earlier

C

1

2 2

1

-1 -2

-1 +1 -2

1

2 2

1

-1 -2

-1 +1 -2

1

2 2

1

-1 +2

+1 +1 +2

1

2 2

1

-1 -2

-1 +1 -2

1

2 2

1

-1 +2

+1 +1 +2

1

2 2

1

-1 +2

+1 +1 +2

⚠️ Information sets for red player (Player 
2) are not shown

https://emojipedia.org/warning/


Two Representations
Observation points

Decision points

Tree-Form (Sequential) Decision Problem

Represents the game from viewpoint of one player

This is the representation in regret minimization

Game tree

Each node belongs to a specific 

player or chance

C

1

2

1

+2

+1 +2

1

2 2

1

-1 -2

-1 +1 -2

1

2 2

1

-1 +2

+1 +1 +2

1

2 2

1

-1 +2

+1 +1 +2



Strategies in Extensive-Form Games

🌟 First attempt:

Assign local probabilities at 

each decision point1.0

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

✔ Set of strategies is convex

❌ Expected utility of game is

not bilinear

Reason: prob. of reaching a 

terminal state is product of     

variables

Products = non-convexity 

😪

``Behavioral strategies’’



Strategies in Extensive-Form Games

🌟 Second attempt:

Store  probabilities for whole 

sequences of actions

✔ Set of strategies is convex

✔ Expected utility of game is 

bilinear

``Sequence-form strategies’’

1.0

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

1.0

0.1 0.9

0.08 0.02

0.5 0.5

0.2 0.3

0.75 0.25

0.075 0.675

🌟 Consistency constraints

1. Entries all non-negative

2. Root sequence has probability 1.0

3. Probability mass conservation

Children

Parent

[Romanovskii, Reduction of a game with complete memory to a matrix game, 1961]
[Koller et al., Fast algorithms for finding randomized strategies in game trees, STOC 1994]



Sequence-Form Strategies

🌟 Consequence: a lot of results carry over 

from normal form games when using 

sequence-form strategies!

✔ Nash equilibrium is a bilinear saddle point problem

min
𝑥∈𝑄1

max
𝑦∈𝑄2

𝑥⊤𝐴𝑦

𝐴𝑦𝑡

−𝐴⊤𝑥𝑡

𝑥𝑡

𝑦𝑡

𝑥𝑡+1

𝑦𝑡+1

✔ As long as we can construct regret minimizers for the sets of

sequence-form strategies, we can use them to converge to

Nash equilibrium in self play



Regret Minimizers for Sequence-

Form Strategy Spaces

🌟 IDEA: Sequence-form strategy 

spaces have a strong combinatorial 

structure!

𝑄1

𝑋1

𝑄2

𝑋2

𝑄 = 𝑄1 × 𝑄2

Any 𝑞1, 𝑞2 is a valid s.f. strategy

🌟 Cartesian Products

𝑋

𝑄1 𝑄2

𝜆 1 − 𝜆

Any 𝜆, 1 − 𝜆, 𝜆𝑞1, (1 − 𝜆)𝑞2 is a valid

s.f. strategy

𝑄 = conv

1
0
𝑄1
0

,

0
1
0
𝑄2

🌟 Convex Hulls

Observation node Action node



We can leverage this combinatorial structure 
to construct compositionally a regret 

minimizer for a player’s sequence-form 
strategy set using any regret minimizers for 

simplices

⭐️

In other words: we can “reduce” regret 

minimization for extensive-form games to 

regret minimization for normal-form games

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



Regret Circuits: Cartesian Product

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]

(𝑢1
𝑡−1, 𝑢2

𝑡−1)

𝑢1
𝑡−1

𝑢2
𝑡−1



Regret Circuits: Convex Hull

Extra regret minimizer 

decides how to mix the 

decisions on X and Y

🌟 IDEA

🌟 Any will work!

RM, RM+, DRM, 

Hedge, OMD, 

FTRL, ….

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]

𝑢𝑡−1 𝑢𝜆
𝑡−1



A generalized Counterfactual Regret 

Minimization (CFR) algorithm

• So, by composing the constructions for Cartesian 

product and convex hull, we obtain a regret 

minimizer for extensive-form domains

• 🌟 IDEA: decomposes and bounds regret locally 

at each decision point in the game

• This regret minimizer is called (generalized) CFR

🌟 This, with extensions discussed later, is the practical 

state-of-the-art in extensive-form game solving

• CFR: [Zinkevich et al., Regret minimization in games with incomplete information, NeurIPS-07]

• Generalized CFR: [Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]



CFR Viz: Regret Minimization Algorithm

• How does CFR end up updating strategies?

• Suppose the following local strategies were 
output by the regret minimizers at each 
decision point:

1.0

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75

0.1 0.9

0.25



CFR Viz: Regret Minimization Algorithm
• An example utility vector 𝑢𝑡 shown in green is now received by the CFR regret minimizer

– Remember: in regret minimization we make no assumption as to how the environment picked the utility vector. So, 
the green utilities may not actually be “real” payoffs in Kuhn

– In the special case of playing against an opponent to compute Nash, the green number = 
∑subsequent game tree leaves in which this player can’t move again because game ends leaf payoff * reach probability of opponent from root to that leaf * 
reach probability of chance from root to that leaf

1.0
-0.5

0.1
2.0

0.9
-1.5

0.8
1.2

0.2
-0.6

0.5
0.0

0.5
-0.4

0.4
-0.5

0.6
1.1

0.75
1.0

0.1
-2.5

0.9
1.6

0.25
0.0

Purple: last strategy output by each local regret minimizer



CFR Viz: Regret Minimization Algorithm

Example:

Counterfactual utility = -0.6

1.0
-0.5

0.1
2.0

0.9
-1.5

0.8
1.2

0.2
-0.6

0.5
0.0

0.5
-0.4

0.4
-0.5

0.6
1.1

0.75
1.0

0.1
-2.5

0.9
1.6

0.25
0.0

Example:

Counterfactual utility
= 1.0 + (0.1 x -2.5 + 0.9 x 1.6) = 2.19

Purple: last strategy output by each local regret minimizer
Green: utility vector given by environment

Step 1: Compute the counterfactual utilities 
for each action

At leaves: 
counterfactual utility = utility at leaf

Elsewhere:
counterfactual utility =

utility at sequence
+

expected utility in the subtree of the decision 
problem (not game tree) under that sequence, 
weighting actions according to latest strategy



CFR Viz: Regret Minimization Algorithm

1.0
-0.5
0.11

0.1
2.0
2.84

0.9
-1.5
-1.5

0.8
1.2
1.2

0.2
-0.6
-0.6

0.5
0.0
0.46

0.5
-0.4
-0.4

0.4
-0.5
-0.5

0.6
1.1
1.1

0.75
1.0
2.19

0.1
-2.5
-2.5

0.9
1.6
1.6

0.25
0.0
0.0

Purple: last strategy output by each local regret minimizer
Green: utility vector given by environment 
Orange: counterfactual utilities

Step 1: Compute the counterfactual utilities 
for each action

At leaves: 
counterfactual utility = utility at leaf

Elsewhere:
counterfactual utility =

utility at sequence
+

expected utility in the subtree of the decision 
problem (not game tree) under that sequence, 
weighting actions according to latest strategy



CFR Viz: Regret Minimization Algorithm

Step 2: Feed the counterfactual utilities 
to the regret minimizers at each 
decision point

Note: Steps 1 & 2 can be done in a 
single bottom-up pass

Remember: this will work no matter the 
choice of regret minimizers (MWU, RM, 
RM+, Discounted RM, Optimistic RM+, 
etc). We can also use different regret 
minimizers at different nodes, unlike 
the original CFR paper, which used RM

0.1
2.0
2.84

0.9
-1.5
-1.5

0.8
1.2
1.2

0.2
-0.6
-0.6

0.5
-0.4
-0.4

0.4
-0.5
-0.5

0.6
1.1
1.1

0.1
-2.5
-2.5

0.9
1.6
1.6

0.25
0.0
0.0

Example:

Feed utilities (2.84, -1.5) to the regret minimizer that 
selects the strategy for this decision point

0.5
0.0
0.46

0.75
1.0
2.19

Purple: last strategy output by each local regret minimizer
Green: utility vector given by environment 
Orange: counterfactual utilities

1.0
-0.5
0.11



CFR Guarantees

• Theorem: the regret cumulated by CFR can 
be bounded as

• Consequence:  if the local regret minimizers 
guarantee sublinear regret, then CFR 
cumulates sublinear regret

𝑅𝐶𝐹𝑅 ≤෍

𝑗∈𝐽

max{0, 𝑅𝑗}

Decision points
Regret cumulated by local regret
minimizer for decision point j

[Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML 2019]



Why is CFR Superior in Practice?

🌟 … to second-order methods (which can offer 
convergence rate 1/eT )?

– Does not require solving large linear systems

– Second-order methods (interior point, …) don’t fit in 
memory for large games

🌟 … to general-purpose regret minimizers (FTRL & OMD)?

– CFR uses an approach local to each decision point 
(easier to parallelize, warm-start, etc.)

• [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games 
via Pruning. ICML-17]

• [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, 
AAAI 2016]

– No need for expensive projections onto feasible 
strategy polytope (think projected gradient descent)

http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf


Other approaches

• Offline first-order methods:

– e.g., mirror prox (MP) or excessive gap technique (EGT)

• O(1/T) convergence instead of CFR’s O(1 / 𝑇)

– Regret minimization is decentralized, and with optimism 
it matches the same theoretical rates. Also, it performs 
better empirically

• All in all, regret-based methods are today the 
scalable state of the art



CFR Framework + Predictivity



Important Takeaways

🌟 You can construct a regret minimizer for

sequential decision making problems by

combining regret minimizers for individual

decision points

⇒ Improvements on simplex domains carry over to   

extensive-form domains!

🌟 Predictivity works well in extensive-form

domains



Techniques to Further Increase 

Scalability of CFR

• Using utility estimators

– Similar idea as stochastic gradient descent vs gradient 

descent

– Instead of exactly computing the green numbers 

(gradients of the utility function), we use cheap 

unbiased estimators

– Popular estimator: sample a trajectory in the game 

tree and use importance sampling

– “Monte Carlo CFR”

[Monte Carlo Sampling for Regret Minimization in Extensive Games; Lanctot, 

Waugh, Zinkevich, Bowling NIPS 2009]



Techniques to Further Increase 

Scalability of CFR
• Temporary pruning

– Idea: During CFR traversals, 

– Prune actions (and their subtrees) that have negative cumulative regret

– Project in how many iterations at the earliest the cumulative regret can turn 

positive, and catch up that subtree’s iterates then 

» Cath up as if we had played a best response throughout the CFR iterations 

to the opponent’s average strategy in that subtree

» If the regret is still negative, re-project, etc.

– Can be implemented without storing the pruned subtrees => space 

advantage

– Theorem. In a zero-sum game, if both players choose

strategies according to CFR with this kind of pruning, conducting T 

iterations traverses only 

O(|S|T + |H| ln(T)) nodes

[Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]

Game paths that are part of some best response to some equilibrium

All game paths (i.e., information sets)

http://www.cs.cmu.edu/~sandholm/reducedSpace.icml17.pdf


Techniques to Further Increase 

Scalability of CFR

• Sparsification

– Idea: compute a low-rank factorization of the 

payoff matrix of the game

– For some games, a low-rank factorization is 

guaranteed to exist, and can dramatically 

speed up the algorithms

[Zhang & Sandholm, Sparsified linear programming for zero-sum equilibrium finding. ICML 2020]

[Farina & Sandholm, Fast Payoff Matrix Sparsification Techniques for Structured Extensive-Form 

Games. AAAI 2022]


