Regret minimization and applications to solving games

Tuomas Sandholm

Focus of this lecture

- We focus on Nash equilibrium in two-player zero-sum games
- But, these techniques apply to other problems as well, e.g.:
 - Best response computation
 - Quantal response equilibrium
 [Farina, Kroer, and Sandholm; "Online Convex Optimization for Sequential Decision Processes and Extensive-Form Games, AAAI'17]
 - Near-safe opponent exploitation
 [same as above]
 - Coarse-correlated equilibrium in multiplayer games
 - Playing better than a given strategy, but like it
 [Jacob, Wu, Farina, Lerer, Hu, Bakhtin, Andreas, Brown; Modeling Strong and Human-Like Gameplay with KL-Regularized Search. ICML'22]

Part One

Nash Equilibria in Normal-Form Games

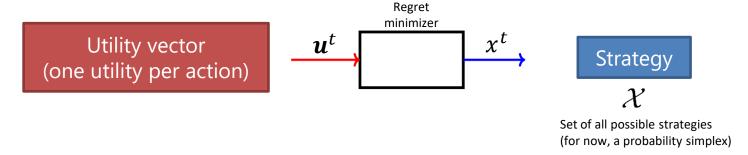
Recap: Normal-Form Games

	图		图
0.2	0	-1	+1
0.5	+1	0	-1
0.3	-1	+1	0

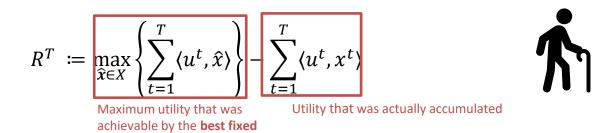
(No turns)

Strategy for a player is just a probability distribution over actions

Regret Minimization



"How well do we do against best, fixed strategy in hindsight?"



Goal: have R^T grow sublinearly with respect to time T (e.g., $R^T \le c\sqrt{T}$)

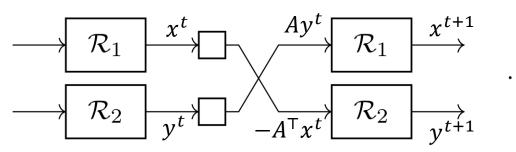
No assumption available on future utilities!

Must handle adversarial environments

action in hindsight

Relationship with Nash Equilibrium

Nash equilibrium in a 2-player 0-sum normal-form game with payoff matrix A: $\max_{x \in \Delta^m} \min_{y \in \Delta^n} x^\top Ay$



$$R_1^T \coloneqq \max_{\hat{x} \in \Delta^m} \left\{ \sum_{t=1}^T \langle Ay^t, \hat{x} \rangle \right\} - \sum_{t=1}^T \langle Ay^t, x^t \rangle \le \sqrt{T}$$

$$R_2^T \coloneqq \max_{\hat{y} \in \Delta^n} \left\{ \sum_{t=1}^T \langle -A^\mathsf{T} x^t, \hat{y} \rangle \right\} - \sum_{t=1}^T \langle -A^\mathsf{T} x^t, y^t \rangle \le \sqrt{T}$$

Add these two lines and divide by *T* to get the average

$$\max_{\hat{x} \in \Delta^m} \left\{ \hat{x}^\top A \left(\frac{1}{T} \sum_{t=1}^T y^t \right) \right\} - \min_{\hat{y} \in \Delta^n} \left\{ \left(\frac{1}{T} \sum_{t=1}^T x^t \right)^\top A \hat{y} \right\} \leq \frac{2}{\sqrt{T}}$$

****** TAKEAWAY

The average strategies converge to a Nash equilibrium!

• Given utility vectors $\mathbf{u}^1, \dots, \mathbf{u}^t$, we compute the empirical regrets up to time t of each action:

$$r^{t}[a] \coloneqq \sum_{\tau=1}^{t} u^{\tau}[a] - \langle u^{\tau}, x^{\tau} \rangle$$

• Then, intuitively the next strategy x^{t+1} gives mass to actions somewhat proportionally to how much regret they have accumulated

• Given utility vectors $u^1, ..., u^t$, we compute the empirical regrets up to time t of each action:

Note: MWU is a particular instance of a very general algorithm called "Online mirror descent", which can be applied to all convex strategy sets and guarantees sublinear regret

Empirical regret: $r^t[a] := \sum_{\tau=1}^t u^{\tau}[a] - \langle u^{\tau}, x^{\tau} \rangle$ Simple modification:

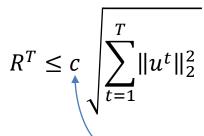
$$r_{+}^{t}[a] := \max\{0, r_{+}^{t-1}[a] + u^{t}[a] - \langle u^{t}, x^{t} \rangle\}$$

Algorithm	Rule
Multiplicative weights update (MWU) (aka Hedge, aka Randomized Weighted Majority)	$x^{t+1}[a] = \frac{\exp\{\eta \cdot r^t[a]\}}{\sum_{a'} \exp\{\eta \cdot r^t[a']\}}$
Regret matching (RM)	$x^{t+1}[a] = \frac{\max\{0, r^t[a]\}}{\sum_{a'} \max\{0, r^t[a']\}}$
Regret matching plus (RM+)	$x^{t+1}[a] = \frac{\max\{0, r_+^t[a]\}}{\sum_{a'} \max\{0, r_+^t[a']\}}$

State-of-the-art variant in practice: **Discounted RM (DRM)**

- Linear RM (LRM)
 - Weight iteration t by t (in regrets and averaging)
 - RM+ floors regrets at 0. Can we combine this with linear RM?
 Theory: Yes. Practice: No! Does very poorly.
- But less-aggressive combinations do well: Discounted RM
 - On each iteration, multiply positive regrets by t^{α} / t^{α} +1
 - On each iteration, multiply negative regrets by t^{β} / t^{β} +1
 - Weight contributions toward average strategy by $(t / (t+1))^{\gamma}$
 - Worst-case convergence bound only a small constant worse than that of RM
 - For α = 1.5, β = 0, γ = 2, consistently outperforms RM+ in practice

All of these algorithms guarantee that after seeing any number T of utilities $u^1, ..., u^T$, the regret cumulated by the algorithm satisfies



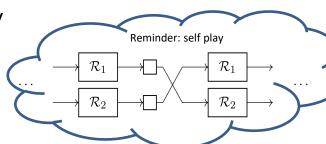
Remember:

This holds without any assumption about the way the utilities are selected by the environment!

Constant that depends on number of actions

So, assuming that the utility vectors have bounded norms $||u^t|| \le B$ (this is always the case when playing finite games), then $R^T \le cB\sqrt{T}$

Consequence: when using these algorithms in self-play in 2-player 0-sum games, the average strategy converges to a Nash equilibrium at a rate of $\frac{\sqrt{T}}{T} = \frac{1}{\sqrt{T}}$



What Regret Minimizers are Used in Practice?

Multiplicative Weights Update (MWU)

- ✓ Special case of OMD, that works for general convex sets
- ✓ Widely used & understood
- X Slow in practice for games
- X Hyperparameters (stepsize)

Can incorporate optimism about future losses to converge faster in 2-player 0-sum games Regret Matching (RM) & Regret Matching + (RM+)

- X Only for **simplex** domains
- X Not as well studied
- ✓ Tuned for game solving
- ✓ No hyperparameters
- ✓ Incredibly effective

Modern variants of this, such as DCFR, are the standard in extensive-form game solving!

Value of the second of the

Optimistic regret minimizers

Algorithm	Standard (non-optimistic) rule	Optimistitic (aka Predictive) rule
MWU	$x^{t+1}[a] = \frac{\exp\{\eta \cdot r^t[a]\}}{\sum_{a'} \exp\{\eta \cdot r^t[a']\}}$	$x^{t+1}[a] = \frac{\exp\{\eta \cdot (r^t[a] + u^t[a] - \langle u^t, x^t \rangle)\}}{\sum_{a'} \exp\{\eta \cdot (r^t[a'] + u^t[a'] - \langle u^t, x^t \rangle)\}}$
RM	$x^{t+1}[a] = \frac{\max\{0, r^t[a]\}}{\sum_{a'} \max\{0, r^t[a']\}}$	$x^{t+1}[a] = \frac{\max\{0, r^t[a] + u^t[a] - \langle u^t, x^t \rangle\}}{\sum_{a'} \max\{0, r^t[a'] + u^t[a'] - \langle u^t, x^t \rangle\}}$
RM+	$x^{t+1}[a] = \frac{\max\{0, r_+^t[a]\}}{\sum_{a'} \max\{0, r_+^t[a']\}}$	$x^{t+1}[a] = \frac{\max\{0, r_+^t[a] + u^t[a] - \langle u^t, x^t \rangle\}}{\sum_{a'} \max\{0, r_+^t[a'] + u^t[a] - \langle u^t, x^t \rangle\}}$

Typically, one-line change in implementation

All of these algorithms guarantee that after seeing any number T of utilities u^1, \dots, u^T , the

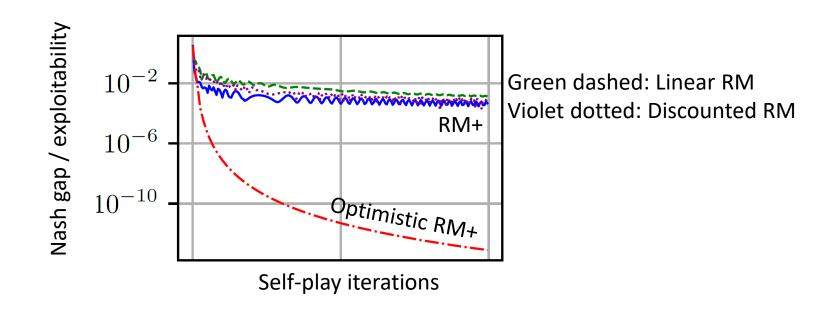
regret cumulated by the algorithm satisfies

$$R^{T} \leq c \sqrt{\sum_{t=2}^{T} ||u^{t} - u^{t-1}||_{2}^{2} + (\langle u^{t}, x^{t} \rangle - \langle u^{t-1}, x^{t-1} \rangle)^{2}}$$

Remember:

This holds without any assumption about the way the utilities are selected by the environment!

Takeaway message: still $\approx \sqrt{T}$ regret, but much smaller when there is little change to the utilities over time



(RM was omitted as it is typically much slower than RM+)

[Farina, Kroer, and Sandholm; Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent, AAAI'21]

- In general, Discounted RM and Optimistic RM+ are the fastest in practice
 - For some games, like poker, Discounted RM is empirically consistently faster than Optimistic RM+
 - For many other games, Optimistic RM+ is significantly faster

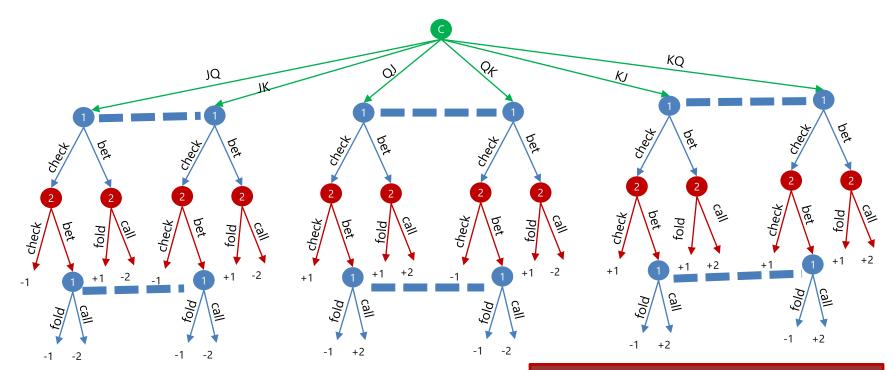
Part Two

From Normal-Form to Extensive-Form

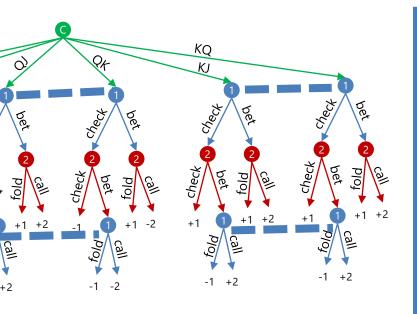
(Nash Equilibria in Extensive-Form Games)

From Normal-Form to Extensive-Form

- Can capture sequential and simultaneous moves
- Private information
- We assume perfect recall: no player forgets what the player knew earlier

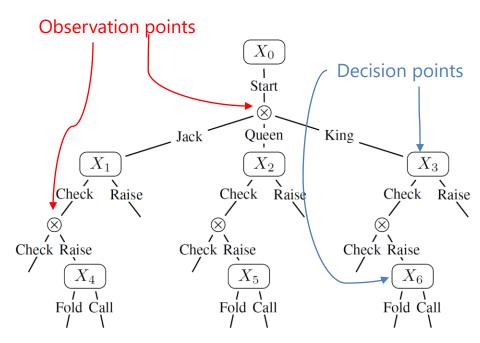


Two Representations



Game tree

Each node belongs to a specific player or chance

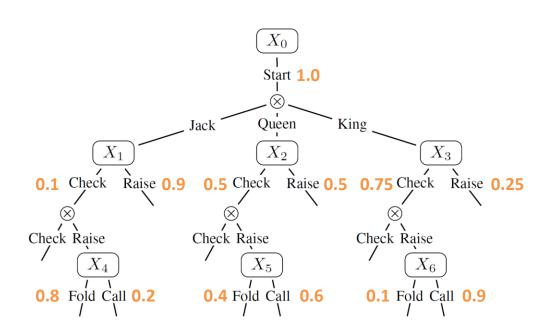


Tree-Form (Sequential) Decision Problem

Represents the game from viewpoint of one player

This is the representation in regret minimization

Strategies in Extensive-Form Games



"Behavioral strategies"

First attempt:

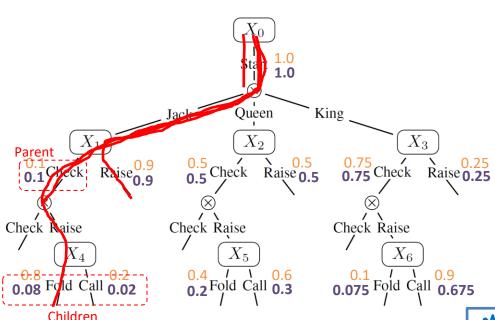
Assign local probabilities at each decision point

- ✓ Set of strategies is convex
- Expected utility of game is not bilinear

Reason: prob. of reaching a terminal state is product of variables

Products = non-convexity

Strategies in Extensive-Form Games



Second attempt:

Store probabilities for whole sequences of actions

- Set of strategies is convex
- Expected utility of game is bilinear

``Sequence-form strategies"

Consistency constraints

- 1. Entries all non-negative
- 2. Root sequence has probability 1.0
- 3. Probability mass conservation

[Romanovskii, Reduction of a game with complete memory to a matrix game, 1961] [Koller et al., Fast algorithms for finding randomized strategies in game trees, STOC 1994]

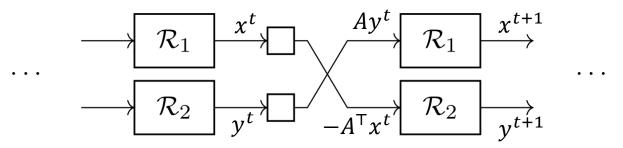
Sequence-Form Strategies

Consequence: a lot of results carry over from normal form games when using sequence-form strategies!

✓ Nash equilibrium is a bilinear saddle point problem.

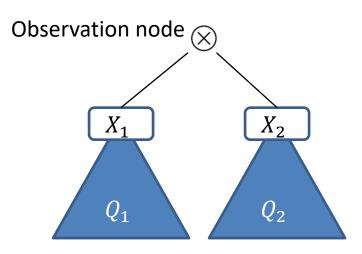
$$\min_{x \in Q_1} \max_{y \in Q_2} x^{\mathsf{T}} A y$$

As long as we can construct regret minimizers for the sets of sequence-form strategies, we can use them to converge to Nash equilibrium in self play



Regret Minimizers for Sequence-Form Strategy Spaces

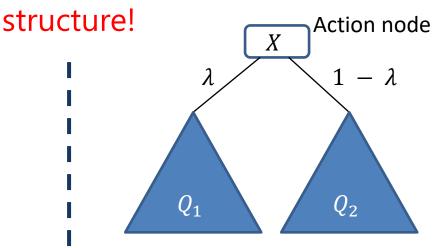
IDEA: Sequence-form strategy spaces have a strong combinatorial



Any (q_1, q_2) is a valid s.f. strategy

$$Q = Q_1 \times Q_2$$

****** Cartesian Products



Any $(\lambda, 1 - \lambda, \lambda q_1, (1 - \lambda)q_2)$ is a valid s.f. strategy

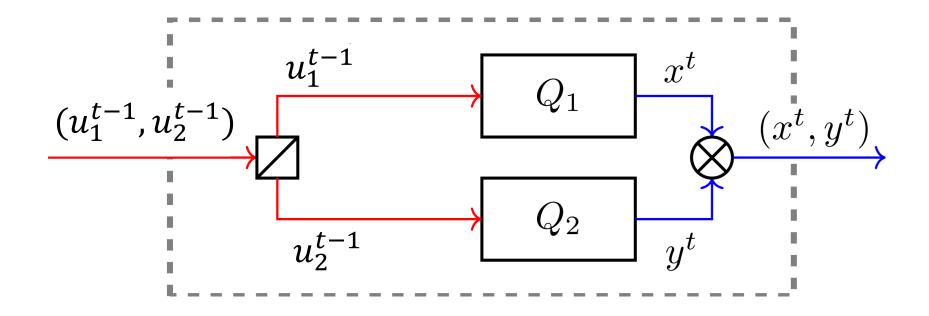
$$Q = \operatorname{conv}\left(\begin{pmatrix} 1\\0\\Q_1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\Q_2 \end{pmatrix}\right)$$

Convex Hulls

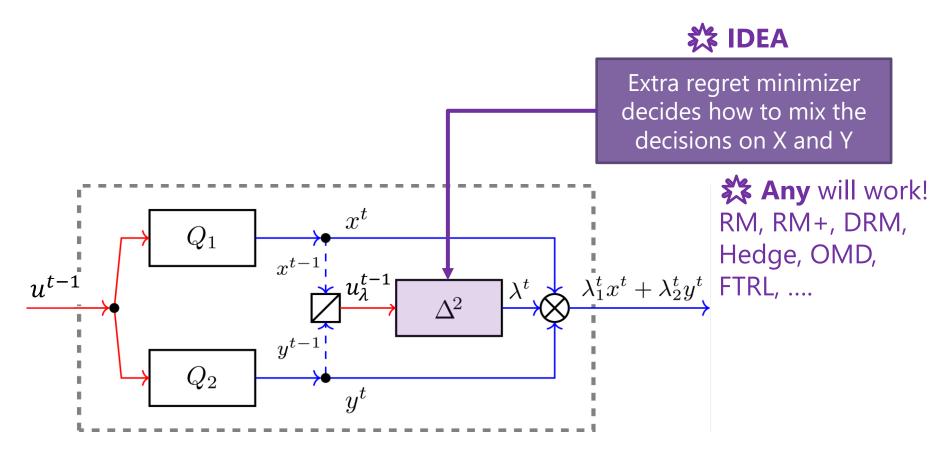
We can leverage this combinatorial structure to construct compositionally a regret minimizer for a player's sequence-form strategy set using any regret minimizers for simplices

In other words: we can "reduce" regret minimization for extensive-form games to regret minimization for normal-form games

Regret Circuits: Cartesian Product



Regret Circuits: Convex Hull

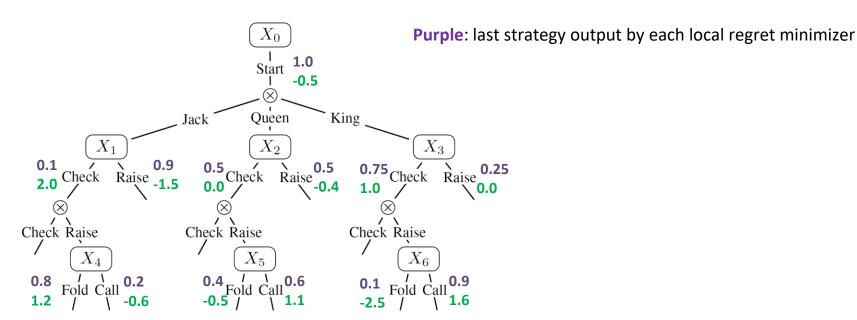


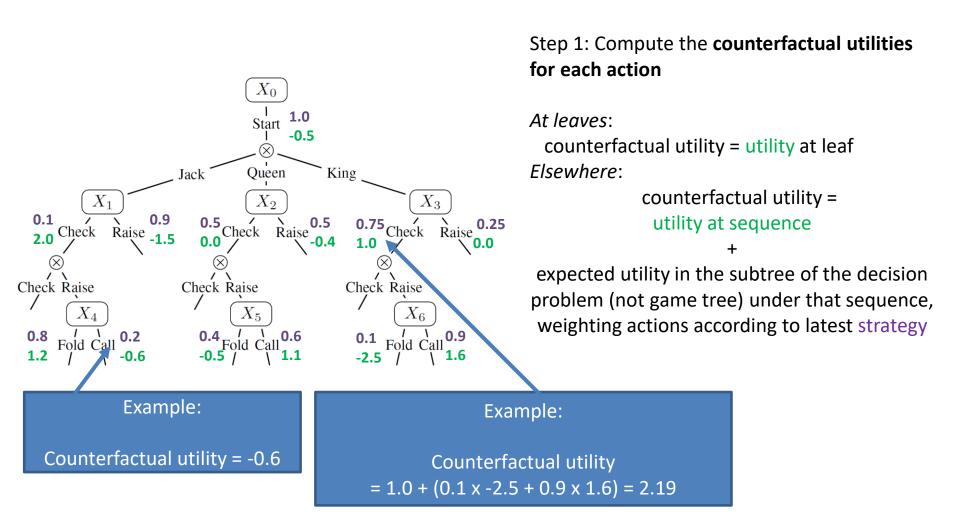
A generalized Counterfactual Regret Minimization (CFR) algorithm

- So, by composing the constructions for Cartesian product and convex hull, we obtain a regret minimizer for extensive-form domains
- **X IDEA:** decomposes and bounds regret locally at each decision point in the game
- This regret minimizer is called (generalized) CFR
 - This, with extensions discussed later, is the practical state-of-the-art in extensive-form game solving
- CFR: [Zinkevich et al., Regret minimization in games with incomplete information, NeurIPS-07]
- Generalized CFR: [Farina, Kroer & Sandholm, Regret Circuits: Composability of Regret Minimizers, ICML-19]

- How does CFR end up updating strategies?
- Suppose the following local strategies were output by the regret minimizers at each decision point:

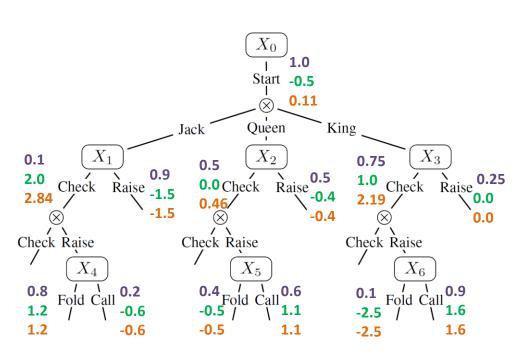
- An example utility vector u^t shown in green is now received by the CFR regret minimizer
 - Remember: in regret minimization we make no assumption as to how the environment picked the utility vector. So, the green utilities may not actually be "real" payoffs in Kuhn
 - In the special case of playing against an opponent to compute Nash, the green number = $\sum_{\text{Subsequent game tree leaves in which this player can't move again because game ends}} \text{leaf payoff * reach probability of opponent from root to that leaf * reach probability of chance from root to that leaf}$





Purple: last strategy output by each local regret minimizer

Green: utility vector given by environment



Step 1: Compute the **counterfactual utilities** for each action

At leaves:

counterfactual utility = utility at leaf Elsewhere:

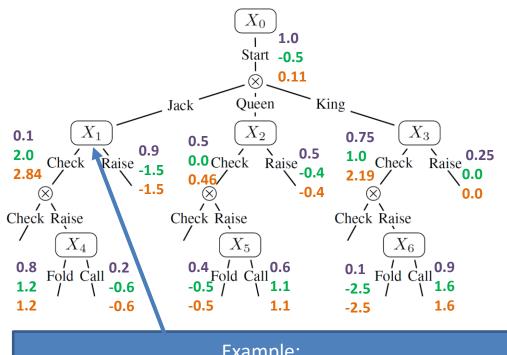
counterfactual utility = utility at sequence

expected utility in the subtree of the decision problem (not game tree) under that sequence, weighting actions according to latest strategy

Purple: last strategy output by each local regret minimizer

Green: utility vector given by environment

Orange: counterfactual utilities



Example:

Feed utilities (2.84, -1.5) to the regret minimizer that selects the strategy for this decision point

Step 2: Feed the counterfactual utilities to the regret minimizers at each decision point

Note: Steps 1 & 2 can be done in a single bottom-up pass

Remember: this will work *no matter the* choice of regret minimizers (MWU, RM, RM+, Discounted RM, Optimistic RM+, etc). We can also use different regret minimizers at different nodes, unlike the original CFR paper, which used RM

Purple: last strategy output by each local regret minimizer

Green: utility vector given by environment

Orange: counterfactual utilities

CFR Guarantees

 Theorem: the regret cumulated by CFR can be bounded as

$$R_{CFR} \leq \sum_{j \in J} \max\{0, R_j\}$$
 Regret cumulated by local regret minimizer for decision point j

 Consequence: if the local regret minimizers guarantee sublinear regret, then CFR cumulates sublinear regret

Why is CFR Superior in Practice?

3% ... to second-order methods (which can offer convergence rate $1/e^{T}$)?

- Does not require solving large linear systems
- Second-order methods (interior point, ...) don't fit in memory for large games

... to general-purpose regret minimizers (FTRL & OMD)?

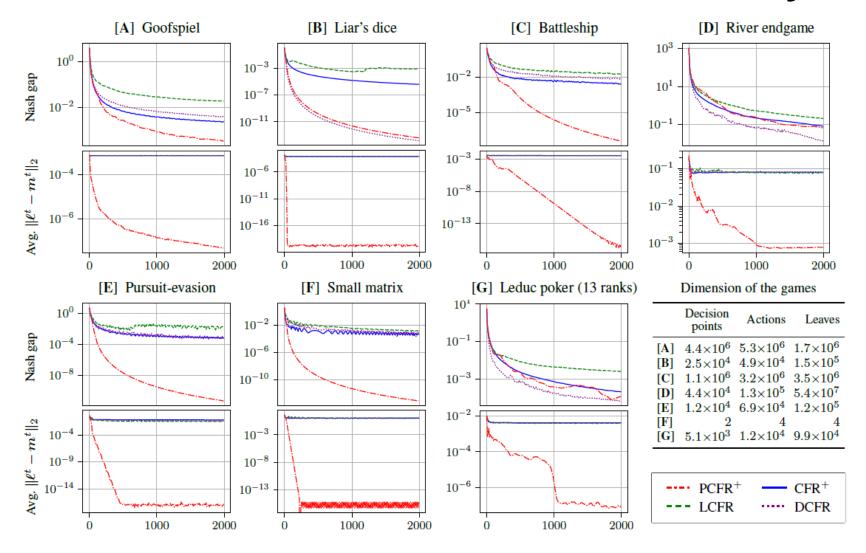
- CFR uses an approach local to each decision point (easier to parallelize, warm-start, etc.)
 - [Brown & Sandholm, <u>Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning.</u> ICML-17]
 - [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]
- No need for expensive projections onto feasible strategy polytope (think projected gradient descent)

Other approaches

- Offline first-order methods:
 - e.g., mirror prox (MP) or excessive gap technique (EGT)
 - O(1/T) convergence instead of CFR's O(1 / \sqrt{T})
 - Regret minimization is decentralized, and with optimism it matches the same theoretical rates. Also, it performs better empirically

 All in all, regret-based methods are today the scalable state of the art

CFR Framework + Predictivity



Important Takeaways

- You can construct a regret minimizer for **sequential** decision making problems by combining regret minimizers for individual decision points
 - ⇒ Improvements on simplex domains carry over to extensive-form domains!
- Predictivity works well in extensive-form domains

Techniques to Further Increase Scalability of CFR

- Using utility estimators
 - Similar idea as stochastic gradient descent vs gradient descent
 - Instead of exactly computing the green numbers (gradients of the utility function), we use cheap unbiased estimators
 - Popular estimator: sample a trajectory in the game tree and use importance sampling
 - "Monte Carlo CFR"

[Monte Carlo Sampling for Regret Minimization in Extensive Games; Lanctot, Waugh, Zinkevich, Bowling NIPS 2009]

Techniques to Further Increase Scalability of CFR

- Temporary pruning
 - Idea: During CFR traversals,
 - Prune actions (and their subtrees) that have negative cumulative regret
 - Project in how many iterations at the earliest the cumulative regret can turn positive, and catch up that subtree's iterates then
 - » Cath up as if we had played a best response throughout the CFR iterations to the opponent's average strategy in that subtree
 - » If the regret is still negative, re-project, etc.
 - Can be implemented without storing the pruned subtrees => space advantage
 - Theorem. In a zero-sum game, if both players choose strategies according to CFR with this kind of pruning, conducting T iterations traverses only

All game paths (i.e., information sets)

Game paths that are part of some best response to some equilibrium

Techniques to Further Increase Scalability of CFR

- Sparsification
 - Idea: compute a low-rank factorization of the payoff matrix of the game
 - For some games, a low-rank factorization is guaranteed to exist, and can dramatically speed up the algorithms