
CSD 15-784 - Cooperative AI

Homework 1 – Normal-form games

(due Oct. 3 11:59pm US Eastern time)

Instructions

Show all your work. You may work alone or discuss with one other person, but
you must follow the following rules or it will be considered cheating. If you dis-
cuss with another person, you must explicitly acknowledge that specific person
on your writeup. Also, the only way in which you may work with another person
is to work on a whiteboard together, and then when you are done discussing, to
erase the whiteboard, without taking any notes or other record with you, other
than what you remember. (Using the zoom whiteboard is allowed if you want
to meet remotely.) You should write up your code and your writeup alone.

(This homework will be updated later with instructions for how to submit.)

1

In this problem, you will code up an algorithm for computing, given a 2-player
game in normal form of arbitrary size, all of the following: (1) the best Nash
equilibrium, (2) the worst Nash equilibrium, (3) the best correlated equilibrium,
(4) the worst correlated equilibrium. We will take “best” to mean maximizing
social welfare (sum of expected utilities), and “worst” means minimizing that. In
general, there may be more than one optimal equilibrium and it does not matter
which one you return; but you should also return the value (social welfare) of
that equilibrium, for which there is a unique answer.

You will likely want to use the (mixed integer) linear programming formu-
lations from class.

Please write your algorithms in Python and submit a .py file containing
your code. We plan to test the code using Python 3.10 in particular. You are
allowed to use cvxpy with the GLPK MI solver to solve LPs and MIPs. (You
can install this by running pip install cvxopt.) You are not allowed to use
a library like nashpy that directly finds Nash equilibria.

Your code should define four functions named

1. best Nash

1

https://www.cvxpy.org/index.html


2. worst Nash

3. best correlated equilibrium

4. worst correlated equilibrium

that perform the four tasks specified above, respectively. (Obviously, you may
write further functions and define these four functions in terms of these further
functions.) Each of these functions should take as input a numpy array of shape
(n,m, 2) representing an n-by-m game specifying the payoff matrix of the game.
For example, the a Prisoner’s Dilemma would be defined as follows:

import numpy as np

pd = np.array([[[6,6] , [0,10]],

[[10,0] , [4,4]]])

Your best Nash and worst Nash methods should output a single 3-tuple, con-
sisting of

• the social welfare of the equilibrium;

• a numpy array with n entries representing the potentially mixed strategy
of Player 1;

• a numpy array with m entries representing the potentially mixed strategy
of Player 2.

For example, in the Prisoner’s Dilemma, the output should be (8, array([0,

1]), array([0, 1])) for both of these methods.
Your best correlated equilibrium and worst correlated equilibrium

functions should output a single 2-tuple consisting of

• the social welfare of the equilibrium;

• an n-by-m numpy array representing the correlated strategy of the two
players.

For example, in the Prisoner’s Dilemma, the output should be (8, array([[0,

0], [0, 1]])) for both of these methods.
Please include your own test cases in the Python file you submit.

2

Consider the following computational problem:
NEW-NASH. You are given a 2-player normal-form game G with at least 2

columns. Consider the game G′ that results from removing its rightmost column.
You are asked to determine whether there exists a Nash equilibrium of G′ that
is not an equilibrium of G.

a. Adapt the mixed integer linear program from class (for finding an optimal
Nash equilibrium) to solve this problem. (Refer to the rightmost column as c∗.)

2



Writing it in mathematical notation is fine; emphasize the “new” parts of the
program.

b. Prove the problem is NP-complete. Hints: To show membership, it
suffices to show that, given the supports of the new equilibrium, you could find
that new equilibrium and check that it is in fact new. To show hardness, you
may assume the following problem is NP-hard:

IN-SUPPORT. You are given a 2-player normal-form game G and a num-
ber p > 0. You are guaranteed that either there is no Nash equilibrium of G that
puts positive probability on the first row, or that there is a Nash equilibrium of
G that puts at least p probability on the first row. You are asked to determine
which of these two possibilities is the case for G.

As always, be careful about the direction in which you do the reduction.
That is, you have to show how an algorithm for NEW-NASH would allow you
to also solve IN-SUPPORT.

3

Consider the following n-player version of the Prisoner’s Dilemma. For each
player i, player i’s set of pure strategies is Ai = {C,D}. The payoffs are given
by

ui(a1, ..., an) = 1[ai = D] +
∑
j ̸=i

21[aj = C]/(n− 1).

(1[P ] evaluates to 1 if P is a true proposition, and to 0 if P is a false proposition.)
Intuitively, each player chooses between generating one unit of utility for herself
by defecting, and generating two units of utility to be distributed equally across
the other players by cooperating. The unique Nash equilibrium of this game is
(D, ...,D) for a utility of 1 for each player. Meanwhile, in (C, ..., C), everyone’s
utility is 2.

Consider the following two programs from class that achieve (C,C) in pro-
gram equilibrium in the case of n = 2: Cooperate with Copies and ϵ-grounded
Fair Bot. For each of these programs, for n > 2, give a version of the pro-
gram such that everyone using that program is an equilibrium, and the result
of everyone using that program is the outcome (C, ..., C). (Something counts
as a version of CwC if it only checks for program equality without doing more
sophisticated analysis of the program or simulating it. Something counts as a
version of ϵ-grounded Fair Bot if all it does is simulate other programs with
some probability, and it terminates in finite time with probability 1. You may
assume there is a commonly agreed upon indexing of the players (say, 1, 2, 3)
that is given as part of the input to the programs.)

3


	
	
	

