
15-780 HW6

Due 4/1

This homework will build upon the same code you used for HW5. We are not releasing separate starter
code, but instead you should make a copy of the same notebook and Python file that you used for that
assignment and write your solutions there.

Adam

Implement the Adam solver to train the language model you developed in HW5. Recall that the Adam
updates in the notation we used in class are given by

u := βu+ (1− β)∇f(θ) (1)

v := γv + (1− γ)∇f(θ)2 (2)

û = u/(1− βt) (3)

v̂ = v/(1− γt) (4)

θ := θ − lr · û/(
√
v̂ + ϵ) (5)

where t denotes the iteration number. You should use the following class template based upon the SGD
optimizer SGD in the provided code (file code_15780.py) to develop your implementation:

class Adam:
def __init__(self, params, lr=1e-3, beta=0.9, gamma=0.999, eps=1e-8):

...

def step(self):
...

def zero_grad(self):
...

Note that you will need to maintain the u and v terms internal to the class Adam (initialize both u and
v to zero vectors)1. Train your network using Adam versus the original SGD optimizer and compare the
relative loss after one epoch. Using the default learning rate of 1e-3 for Adam, the trained Transformer
model should reach a lower evaluation loss than the one trained with SGD. Finally, it is also fine to use
the torch.optim.Adam optimizer while debugging your implementation (but obviously not in your final
solution).

Implement KV Caching for self-attenion

As discussed in class, implement the KV cache for the self-attention layer. You are free to do this in multiple
ways (the manner we discussed in class was only one possibility), but your modified SelfAttention layer
should have the following form:

1For reference, you can also check out the note from https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.

1

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html


class SelfAttention(Module):
def __init__(self, d, num_heads, max_seq_len=None):

...

def clear_cache(self):
...

def forward(self, X, mask = None, use_kv_cache=False):
...

When use kv cache is set to True, the attention computation should take into account the key and value
states in the kv cache. Also, the number of kv vectors in kv cache should not exceed max_seq_len. Remember
to add additional use kv cache flags for the other layers that require it (i.e., TransformerBlockPreNorm
and LanguageModel), so that these can be passed down through the forward pass of your network.

Efficient sampling

Finally, using the KV cache, implement an efficient sampler for your language model. A “naive” sampler
that does not use the KV cache could look something like this:

def sample_transformer_naive(model, tokens, max_context, num_tokens, temperature=0.6):
for i in range(num_tokens):

probs = torch.softmax(model(tokens[None,-max_context:])[0,-1] / temperature,-1)
tokens = torch.cat([tokens, torch.multinomial(probs, 1)])

return tokens

In other words, this function passes the entire previous max context tokens into the model each time.
Implement an efficient version of the function by leveraging the KV cache, which would only pass a single
new token to the function at each iteration. The implementation using KV cache should be faster in sampling
than using the naive approach sample_transformer_naive.

2


