15-780 HW2

Linear Hypothesis for Language Modeling

Part a. Assume that we consider a language modeling setting where our input x is a one-hot vector encoding a single previous word

$$
\begin{equation*}
x \in[0,1]^{k}=\left[\operatorname{One}-\operatorname{Hot}\left(\operatorname{word}_{i}\right)\right] \tag{1}
\end{equation*}
$$

(where One-Hot represents the operator we dicussed in class, a vector with all zeros except a one in the position corresponding to the value of word_{i}) and the target y is a discrete encoding of the next word

$$
\begin{equation*}
y \in 1, \ldots, k \tag{2}
\end{equation*}
$$

where k is the number of possible classes (which is also the vocabulary size). Suppose we have a set of target probabilities of next word given the previous word:

$$
p\left(\operatorname{word}_{i+1}=j \mid \operatorname{word}_{i}=r\right)
$$

(i.e., we have a target probability value for each next work given the previous word). Show that a linear hypothesis function, followed by a softmax operation to convert this to probabilities, can encode any such probabilities. In other words, show that there exists some $\theta \in \mathbb{R}^{k \times k}$ such that the target probabilities are given by

$$
\begin{equation*}
\operatorname{softmax}\left(\theta^{T} x\right) \tag{3}
\end{equation*}
$$

Part b. Now suppose the input $x \in[0,1]^{2 k}$ contains a concatenation of the previous two words

$$
x=\left[\begin{array}{c}
\text { One-Hot }\left(\operatorname{word}_{i-1}\right) \tag{4}\\
\text { One-Hot }\left(\operatorname{word}_{i}\right)
\end{array}\right] .
$$

Show that a linear hypothesis function cannot express all possible two-word probabilities. I.e., show that there exist target probabilitty distributions

$$
P\left(\operatorname{word}_{i+1}=j \mid \operatorname{word}_{i}=r, \operatorname{word}_{i-1}=s\right)
$$

such that one cannot encode this probability distribution using the probabilities given by

$$
\begin{equation*}
\operatorname{softmax}\left(\theta^{T} x\right) \tag{5}
\end{equation*}
$$

for any $\theta \in \mathbb{R}^{2 k \times k}$.
Part c. In part (b), is there an alternative representation of the inputs (i.e., not just as the concatenation of two one-hot vectors of each word, but via some other representation), that does make it possible to present arbitrary distributions conditioned on the past two words?

