Instructor: Minchen Li

A

\ /

Lec 5: Friction
15-763: Physics-based Animation of Solids and Fluids (S25)

Recap: Normal Contact Force

* |nequality constraints
Elasticity

1
min F(z) = 5“:1: — (z™ 4+ ho™)||5, —I—. s.t. di(x) 2 0

Inertia term e.g. for distances 1 VA
between any distinct —rF—
e Barrier method: min E(z) + h*Py(x) points on the solid
x
* Filtered line search 2| — Mechanics
C —d =1
. . —— S d=0.8
Algorithm 4: Filter Backtracking Line Search >2 | i_os
Result: o S
1 o < CCD(z*,p); // the only different line from algorithm 2 g 11
2 while F(z' + ap) > E(z") do =
3 | a<+ a/2 Mg |

0 0.5 1 1.5
Distance

Simulating Tangential Contact Force — Friction

neudinl

Today:

¢ Formulation

e (Case Study: Square on Slope
® Remarks

Today:
® Formulation

Types of Friction (Macroscopic Views)

Dry friction Our focus today

 Between rough surfaces

 Fluid friction

* |.e. fluid viscosity
 [ubricated friction

e Skin friction

Properties of Dry Friction

 Non-conservative

 Work done by friction is path dependent

» Kinetic energy is always transformed to thermal energy (not backwards)
 No potential energy

* how to incorporate it into the optimization time integration?

min B(x) = —lx = (" + hv I3+ k%) P()

Formulation of Dry Friction

Tangential Relative Velocity

» Add friction to each contact pair k

_ _ _ - . Tangent operator Tx(z) € R4m>d
Tangential relative velocity vy = Ti(z) v € R
Current configuration {z, v}

 Example:
nkT(x)
v, € R3 HVp c R3

Vi = (Vp — V) —ng - (vp — ve)ng = (I3 — ngny) (vy, — V)

-I3 — 1N (az)nk (z)T-

1T T17T 6 —
Denote v =[v,,v.]|" €R Ty (z) = _nk(:c)nk(a:)T — 13

p

Formulation of Dry Friction

Coulomb Friction

» Add friction to each contact pair k . o
Coefficient of friction

Fi(z) = Ti(z) argmin B v, s.t. || 8| gk and B -n; =0

BeRA

A\ = —wk(%’k is the contact force magnitude

Non-smooth!

s(Vg) = 2k when ||[vg| > 0 f(llve]) = 1 when |[vk] >0

”Vk”

Any unit vector | n, when |[vg| =0 f(|[vel]) € [0,1] when ||vg| = 0

Formulation of Dry Friction

Approximation: Smooth Dynamic-Static Transition

1 1
Fk(.’I}) — —/,l,)\ka(a:)f(HVkH)S(Vk) — Coulomb \ :Soglcimb
()} 05 (<)) 05 GU;O.E)
S S v
f(|vkl) = 1 when |[[vk] > 0 < o o ;
2 S
f(|[vel]) € [0,1] when |[vg| = 0 L 05 = 05|
T4 05 0 05 1 T4 05 0 05 1

Tangent relative velocity Tangent relative velocity

2
ZZ% | 2%7 yE[O,ev)

Approximate f with f;(y) =
1, Y 2 €y,

Let f(x) be a function we wish to smooth. It is C! continuous ev-
erywhere except at x = a where it is only C° continuous. Applying Fk: (33) — —MAka (x) f~|.(‘ | Vi ‘ |)S (Vk')
What about s ? a function g(x) that is C! continuous everywhere with g(a) = 0, —

we have a smoothed function f(x)g(x) that is C! continuous every-

is Cl-continuous!

where.

Mollification Lemma

Formulation of Dry Friction

Approximation: Semi-Implicit Temporal Discretization

Fr(z) = —pMTe(z) fi([[Ve])s(Vi)

Motivation: in explicit time integration, forces are constant (within a time step), thus integrable

Solution: discretize A and 7T to time step n F.(x) & —pA Ty f1(||vell)s(Vi)

n — 7 h Vi = Tn L . n — n no — n
Pf(m):Z:U)‘ka(”thH) where vy = (T})"v T T(z") A A(z™)
k
h is a constant multiple of the time step size — VP(x Z;M"T,? f1(|vel)s(Vi)
foly) = 35}12 | eyz;; | Eﬁﬁa y € [0, e,h)
R y>eh, JoW)=hH/h) R = (9v/ow)
V=P (x)
flVelDIVell = flivel) o oz filllVel) T Ov
= A T3 (VEVi - I)T'”’ —
R el Tl) 6

Formulation of Dry Friction

Fixed-Point lteration

 How to obtain solution with fully-implicit friction?

Algorithm: alternate between

. 1 n
min : E(z, {A,T}) = Sllz -2 |3 + At* (Pe(z) + Po(2)

s.t. Ax =0,

and friction update until convergence

Fixed-point iterationon f, - f

Define
fm (AN, T}) = arg;nin E(x,{\,T})

fu(x) = FrictionUpdate(x),

Formulation of Dry Friction

Fixed-Point Iteration (Cont.)

Definition (Fixed-Point Iterations). x is a fixed point of function

f() if and only if

The fixed-point iterations finds the fixed-point of a function f() starting
from 2° by iteratively updating the estimate

until convergence.

r = f(x).

£ f(a)

[Li et al 2020]

Algorithm 5: Fixed-Point Iteration for Fully-Implicit Friction

1
2
3

& O s

Result: "t ynt!

) — x™;

{N,T7} < FrictionUpdate(z’);

while ||((V2E)"VE)(z?,{\,T’})|| > € do
/T« argmin_ E(x,{\,T7});

{N+L 79+ « FrictionUpdate(z/11);
) +1

Converges only when starting sufficiently close.

No numerical explosion issues here.

https://ipc-sim.github.io/

Today:

e (Case Study: Square on Slope

Case Study: Square on Slope

From Ground to Slope

Groud: d(x)=x, —yo, Vd(x)=

0
1)

VZd(x) =0

General half-space (including slope):

d(x) = n! (x — o),

np.array([0.1, 1.0])
np.linalg.norm(ground_n)

17 ground_n =
18 ground_n /=

-1.01)

1o ground_o = np.array([0.0,

(0, O,
- 3.0 * ground_n/[1],

58 pygame .draw.aaline (screen,
([ground_o [0]
ground_n [0]]),

59 screen_projection([ground_o [0]
ground_o[1] - 3.0 * ground_n[0]]))

Vd(x) = n,

256) ,

screen_projection
ground_o[1] + 3.0 =

+ 3.0 * ground_n/[1],

and VZd(x) =0

7 def val(x, n, o,

s def

5 def

def

contact_area) :
sum = 0.0
for i in range (0,
d = n.dot(x[i]
if d < dhat:
s = d / dhat
sum += contact_area[i] * dhat * kappa / 2 * (s -
1) * math.log(s)
return sum

len(x)):
- o)

grad(x, n, o, contact_area):
g = np.array([[0.0, 0.0]] * len(x))
for i in range (0, len(x)):
d = n.dot(x[i] - o)
if d < dhat:
s = d / dhat
gli] = contact_area[i] * dhat * (kappa / 2 * (math
.log(s) / dhat + (s - 1) / d)) * n
return g

hess(x, n, o, contact_area):
IJv = [[0] = 0, [0] * O, np.array([0.0]
for i in range (0, len(x)):
d = n.dot(x[i] - o)
if d < dhat:
local_hess = contact_area[i] * dhat * kappa / (2

d * d * dhat) * (d + dhat) * np.outer(n, n)

* 0)]

fAnvr -~

init_step_size(x, n, o, p):
alpha = 1
for i in range (0, len(x)):
p.n = pli].dot(n)
if p_n < O:

alpha = min(alpha, 0.9 * n.dot(x[i]

return alpha

- o) / -p_n)

Case Study: Square on Slope

Without Friction

Case Study: Square on Slope

Friction Implementation

— VP () = —papp Ik g,
1Vl
fl(H‘_’kH) _ ||‘Zéc|| | 62,,,’ Vil € [O,Ev) 12522 e
1Vl A Vil > €0, e
¢ def fO(vbarnorm, epsv, hhat):
7 if vbarnorm >= epsv:
i} 8 ?eturn vbarnorm * hhat
T V-Pf k(m) _//LAZJ]Z;?l fl(‘l kH)‘_,k: — O When H.‘_fk;H — O uj else\.rbarnormhhat = vbarnorm * hhat
, ‘l‘/k;” 1} epsvhhat = epsv * hhat

return vbarnormhhat * vbarnormhhat * (-vbarnormhhat /

3.0 + epsvhhat) / (epsvhhat * epsvhhat) + epsvhhat / 3.0

14 def f1_div_vbarnorm(vbarnorm, epsv):
if vbarnorm >= epsv:

:Z/’LA” ’I’L(f],_(H‘—,kll)H‘—,kH o fl(”‘—,k‘l)_‘—,k_‘—,T | fl(”‘_,kH)I'g)TnT 8'0 L) return 1.0 / vbarnorm

— _ 17 else:
1Vl

k é?aj 18 return (-vbarnorm + 2.0 * epsv) / (epsv * epsv)

20 def f_hess_term(vbarnorm, epsv):
if vbarnorm >= epsv:

f],_(H‘—,kH)”‘_,kH o f].(H.‘_,kIH) {_1/6,12), '_fk E [O, G’U) ; elsefeturn -1.0 / (vbarnorm * vbarnorm)

— return -1.0 / (epsv * epsv)
=1/1vell®, Vel = €,

o (|| V 1 OV

Case Study: Square on Slope

Friction Implementation (Cont.)

— VP p(x) = —pA Ty ——— Vi :
V||
. Vel 2 g 0
AR -1+ 20 19 € [0,e)
[RV R T
.
— VP p(z) = —pAg gfl‘(llkﬁu) vi =0 when |[vig| =0 .
14 def

V2Pf(£6) 46
:Zwm(h(uvknﬂmu — Al g o7 | f1<|\vku>l3)TnTav
k

— Vi —
1Vl V|

FUvelDIvell = f(lvel) _) —1/e, Vil €10, €v)

H‘_,kH2 B _1/H‘7k‘|27 ‘_fk > €vy

\% ov

26 def val(v, mu_lambda, hhat, n):

sum = 0.0
T = np.identity(2) - np.outer(n, n)

for i in range(0, len(v)):
if mu_lambdal[i] > O:
vbar = np.transpose(T).dot(v[il])
sum += mu_lambda[i] * fO(np.linalg.norm(vbar),
epsv, hhat)
return sum

grad(v, mu_lambda, hhat, n):
g np.array([[0.0, 0.0]] * len(v))
T np.identity(2) - np.outer(n, n)

for i in range (0, len(v)):
if mu_lambdal[i] > O:
vbar = np.transpose(T).dot(v[il])
glil] = mu_lambda[i] * f1_div_vbarnorm(np.linalg.
norm(vbar), epsv) * T.dot(vbar)
return g

hess (v, mu_lambda, hhat, n):
I1Jv = [[0] * 0, [0] * O, np.array([0.0] * 0)]
T = np.identity(2) - np.outer(n, n)

for i in range (0, len(v)):
if mu_lambdal[i] > O:
vbar = np.transpose(T).dot(v[i])

vbarnorm = np.linalg.norm(vbar)

inner_term = fl1_div_vbarnorm(vbarnorm, epsv) * np.
identity (2)

if vbarnorm != O:

inner_term += f_hess_term(vbarnorm, epsv) /
vbarnorm * np.outer (vbar, vbar)
local _hess = mu_lambda[i] * T.dot(utils.make PD(
inner_term)) .dot(np.transpose(T)) / hhat
for ¢ in range (0, 2):
for r in range (0, 2):
IJV[O0].append(i * 2 + r)
IJV[1].append(i * 2 + c)
IJV[2] = np.append(IJV[2], local_hess[r, c
1)
return IJV

Case Study: Square on Slope

Calculating Normal Force Magnitude

ob

A\ = —Wk g, is the contact force magnitude

16 def compute_mu_lambda(x, n, o, contact_area, mu):

17

18

19

o0

o1

o2

mu_lambda = np.array([0.0] * len(x))
for i in range (0, len(x)):
d = n.dot(x[i] - o)
if d < dhat:
s = d / dhat
mu_lambda[i] = mu * -contact_areal[i] * dhat * (
kappa / 2 * (math.log(s) / dhat + (s - 1) / d))
return mu_lambda

O def

step_forward(x, e, v, m, 12, k, n, o, contact_area, mu,
is_DBC, h, tol):
x_tilde = x + v * h

X_n = copy.deepcopy(x)
mu_lambda = BarrierEnergy.compute_mu_lambda(x, n, o,
contact_area, mu)

Demo!

Code: github.com/phys-sim-book/solid-sim-tutorial

GPU Version: github.com/phys-sim-book/solid-sim-tutorial-gpu

Online Book: phys-sim-book.github.io

http://github.com/phys-sim-book/solid-sim-tutorial
http://github.com/phys-sim-book/solid-sim-tutorial-gpu
http://phys-sim-book.github.io

Today:

® Remarks

Remarks — Stick-Slip Instability Effect

Rabinowicz, Ernest. "Stick and slip." Scientific
American 194, no. 5 (1956): 109-119.

CHALK MARKS on a blackboard demonstrate stick-slip. The top at an obtuse angle to this direction. In the latter marks the chalk
mark was made by a piece of chalk held at an acute angle to the stuck to the blackboard, then slipped, then stuck again and so on.
direction of motion; the marks below it, by pieces of chalk held The more tightly the chalk is held, the smaller the distance of slip.

Zoom View 0.25X

tetrahedra: 2K

contacts per step (max): 16
dt: 0.001

f1:0.35

Remarks — Applications

Computational Mechanics

» Jiang et al. [2022]

e Uses IPC to couple
discrete element method
(DEM) and material point
method (MPM)

(b) 1=0.010s

D/D,

1.2

1.0

0.8

0.6

0.4

B N
N A
e)
SN
0.2 | &6
. LS
v
(™)

X
)
Y)
’
0.0€
.

- Simulation
o Experiment

l
0.01 002 003 0.04 0.05
t(s)

0.06

https://link.springer.com/article/10.1007/s11440-022-01598-2

Remarks — Applications
Robotics

e |PC-GraspSim [Kim et al. 2022]

 Compares grasping results
between IPC simulations and
experiments

IPC-GraspSim
Physical Experiments

https://sites.google.com/berkeley.edu/ipcgraspsim

Today:
® Formulation

Mollification, Semi-Implicit Approx., Fixed-Point Iteration

e (Case Study: Square on Slope

Avoid Numerical Issues

® Remarks
Stick-Slip Instability, Applications

IIons

Moving Boundary Cond

Next Lecture

Image Sources

» https://nacho.blogs.uv.es/2017/11/20/conformation-constraints-for-efficient-
viscoelastic-fluid-simulation/

» https://www.gauss-centre.eu/results/computational-and-scientific-
engineering/dns-of-airfoil-acoustics

* https://iselinc.com/explore-many-benefits-lubrication/

o https://en.wikipedia.org/wiki/Friction#/media/
File:Friction between surfaces.jpg

https://nacho.blogs.uv.es/2017/11/20/conformation-constraints-for-efficient-viscoelastic-fluid-simulation/
https://nacho.blogs.uv.es/2017/11/20/conformation-constraints-for-efficient-viscoelastic-fluid-simulation/
https://www.gauss-centre.eu/results/computational-and-scientific-engineering/dns-of-airfoil-acoustics
https://www.gauss-centre.eu/results/computational-and-scientific-engineering/dns-of-airfoil-acoustics
https://iselinc.com/explore-many-benefits-lubrication/
https://en.wikipedia.org/wiki/Friction#/media/File:Friction_between_surfaces.jpg
https://en.wikipedia.org/wiki/Friction#/media/File:Friction_between_surfaces.jpg

