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Week 1-2: A quick start

e Week 1
o Jan 14: LecO: Course Logistics

o Jan 16: Lec1: Spatial and Temporal Discretization

e Week 2
o Jan 21: Lec2: Mass-Spring Systems

Week 2-4: Boundary treatment

o Jan 23: Lec3: Dirichlet Boundary Conditions
e Week 3

o Jan 28: Lec4: Normal Contact Force

o Jan 30: Lecb: Friction
e Week 4

o Feb 4: Lec6: Moving Boundary Conditions

Week 4-6: A bit continuum mechanics

Tentative Schedule (S25)

o Feb 6: Lec7: Strain Energy

e Week 5

o Feb 11: Lec8: Stress and Its Derivative
o Feb 13:

e Week 6

o Feb 18: Lec9: Governing Equations
o Feb 20: Lec10: Finite Element Discretization

Week 7-11: Special topics

Week 7
o Feb 25: Lec11: Frictional Self-Contact
o Feb 27: Lec12: Reduced-Order Model
Week 8:
Week 9
o Mar 11: Lec13: Codimensional Solids
o Mar 13: Lec14: Fluid Simulation Fundamentals, SPH
Week 10
o Mar 18: Lec15: Hybrid Lagrangian/Eulerian Methods
o Mar 20:
Week 11
o Mar 25: Lec16: Plasticity
o Mar 27:

Week 12-15: Paper presentations

Week 12
o Apr 1: Paper Presentation
o Apr 3:
Week 13
o Apr 8: Paper Presentation
o Apr 10: Paper Presentation
Week 14
o Apr 15: Paper Presentation
o Apr 17: Paper Presentation
Week 15
o Apr 22: Paper Presentation
o Apr 24:

Project checkpoints &

presentations:
Week 5, 10, 15
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Today:
e Shape Representation

Options, pros and cons, application



Shape Representation

Example: How to represent a disk in 2D?

{(x,y) ER?* | x* +y* < 1}

Algebraic equation
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and more...




Shape Representation

Implicit — Algebraic Equation

e Pros and cons:

* [+] Fast to compute distance

 [+] Little storage needed

 [-] Hard to represent complex shapes
* [-] Hard to apply non-uniform deformation
* Often used to represent passive objects in the simulation

 E.g. ground, spherical collision objects, etc.



Shape Representation
Implicit — Signed Distance Field (SDF)

* Pros and cons:

* [+] Fast to compute distance (interpolation from sampled distances)

e [+] Structured, easy to \ "
e exploit memory locality \‘EHEE

* re-topology

* [+/-] Can represent complex shapes (grid resolution dependent, grid-aligned artifacts)
e [-] Takes efforts to track deformation
* Often used to
* Represent passive objects with complex shapes
e Track liquid surface in fluid sim.

e Surface repairing, e.g. converting to water-tight surface



Shape Representation
Explicit — Mesh
 Pros and cons:

* [+] Good at representing complex shapes

* [+] Easy to track deformation

* [-] Slow to compute distance (needs to first locate the closest element)

* [-] Unstructured, takes efforts to }
* exploit memory locality @ YWl o
* re-topology St o) S

* Often used to represent all kinds of solids and simulation domains



Shape Representation
EprICIt — Particles

e Pros and cons:
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* [+] no structure, simple primitive: easy to

» exploit memory locality (after organized based on grids)

e re-sample

o

* [+/-] Easy to track deformation (accuracy relies on large # particles)

* [+/-] Can represent complex shapes (accuracy relies on large # particles)
* [-] Slow to compute distance (needs to first locate the closest particle)

* Often used to track solid/fluid volumes under large deformation and topology changes



Shape Representation
Others

* 3D Gaussian Splatting (GS) [Kerbl et al 2023]

* A set of ellipsoids, each with varying transparency and
color

fo(Z) = SDF(T)

T =(x,y,z2) j SDF

* Neural Implicit Functions, e.qg.

 NeRF [Mildenhall et al 2020]

 DeepSDF [Park et al 2019]

* Simulations (both using particles):

3D GS: PhysGaussian [Xie et al 2024]

 NeRF: PIE-NeRF [Feng et al 2024]



https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://www.matthewtancik.com/nerf
https://github.com/facebookresearch/DeepSDF
https://xpandora.github.io/PhysGaussian/
https://fytalon.github.io/pienerf/

Questions?
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State Variables

Tetrahedral Mesh as an Example

Position Yox| Velocity
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Newton’s 2nd Law

* The spatially discrete, temporally continuous form
dx

@
dv

M— = f.
dt /

 Mass matrix (for now)



Time Stepping (Time Integration)

TiIne s;teT S . Saio
2 . . . Time



Newton’s 2nd Law (Temporally Discrete)

Forward Difference — Forward Euler

 Forward difference approximation on velocity and acceleration
df

d n+l . n d n+l ' n " - -
(@)~ == (@)" ~ s (" + A1) = f") + — (") AL+ O(AL)

Taylor’s expansion

. " = 2" + At
Mvn—|—l — B f” ’Un_l_l — " 4+ AtM_lfn.




Newton’s 2nd Law (Temporally Discrete)

Forward and Backward Difference — Symplectic Euler

 Forward difference on acceleration, backward difference on velocity

" = 2" + At
"t =" + AtM T



Newton’s 2nd Law (Temporally Discrete)

Backward Difference — Backward Euler (or Implicit Euler)

 Backward difference approximation on velocity and acceleration

o = g 1 AT

o =™ + AtM

Needs to solve a system of equations:

M (z"

L (2™ + At™)) — At? f(2™

fn+1 =f(x”+1)

N =0.



Stability of Forward, Symplectic, and Backward Euler

Example on a Uniform Circular Motion

Problem Setup
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More Time Integration Methods

 Backward Difference Formula (BDF)

. Uses configuration from multiple steps (e.g. x™, v", x"~ 1, y*=1 - x+1 ynth

 BDF-2 is similarly stable as |IE and conserves energy better, see experiments in Chen et al. [2022]

* |Leapfrog

n+1/2 _, n+l n+3/2)

 Uses staggered configurations (e.g. x", v X"y
 Runge-Kutta Methods
* Exponential

* Exponential integrators for stiff elastodynamic problems [Michels et al. 2014]

® Comparison of high-order time integrators for deformable solids [LGschner et al 2020]



https://drive.google.com/file/d/19lqK5g8E__8C77Ic1aWSSsJ-r4pzrC23/preview
https://dl.acm.org/doi/10.1145/2508462
https://animation.rwth-aachen.de/media/papers/71/2020-CGF-HigherOrderIntegration.pdf

Questions?



» Solver

Convergence & robustness



Newton’s Method for Backward Euler

Formulation
Let g(x) = M(x — (x" + Atv™)) — A*f(x)

We want to solve g(x) = 0

Newton’s method in 1D:

0

o Start from initial guess x

* For each iteration (until convergence)
i+1

c XM e x' = g(x)/g'(x)




Newton’s Method for Backward Euler

Formulation 9 (”\)
Let g(x) = M(x — (x" + Atv™)) — At*f(x) _
90¢)
We want to solve g(x) = 0 oAt

Newton’s method in 1D:
0 A

7 x

o Start from initial guess x

o — . /
* For each iteration (until convergence) o \J/

+1

c XM e x' = g(x)/g'(x)

: : : Derivation:
In higher dimensions:

Linearly approximate g(x) = 0 at x' :

i+l i NV~ o(y! . - -
A el = (Vg g \ g(x) = g(x") + Vg(x)(x — x')
"t~ () + VgxH(x™! = 1) = 0

g(x




Newton’s Method for Backward Euler

Pseudo-code

Algorithm 1: Newton’s Method for Backward Euler Time In-
tegration

Result: "1, ynt!
1 ¥ ™
2 while || M(z* — (2™ + Atv™)) — At?f(z?)|| > € do
3 | solve M(z — (2™ + Atv™)) — At?(f(x*) + Vf(z")(x — ) =0
for x:
4 | 2tz

5 x" Tl « %
6 V"1« (2"t — ™)/ At;



Convergence Issue of Newton’s Method
Over-Shooting

309
AN

Good initial guess
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Optimization Time Integration

A Reformulation

" = arg min E(x)

1
where F(x) = §||:B — "5, + At°P(z).

~

" =" + Atv"

%(iL‘ — )M (x — ™)

OP (1) = —f(x)

2llz =213 =

At the local minimum of E(z), 2Z(z"*1) = 0

M(x" ™ — (2™ + Atv™)) — At* f(2"T) = 0.



Optimization Time Integration

Newton’s Method with Line Search

We want to solve VE(x) = 0

Theory:
Newton’s method: If p is a descent direction at x = x' (like — V E(x")),
. Start from initial guess x" da >0, s.t. E(x'+ ap) < E(x')

* For each iteration (until convergence)
e X x' = (VEGY)) ' VEG

— need V?E(x) to be symmetric positive-definite

Let p = — (VEGY))™ ! VEGY) Idea: i
We can project V-E(x) to a nearby
Line Seqrch along direction p: SPD matrix for computing p
min E(x' + ap) . .
o Then we can ensure E(x'*) < E(x}) Vi
i+1

l :
X e x tap — no explosion!



Optimization Time Integration
Optimization Methods, 2D lllustration

3(0,.0,)

0,



Optimization Time Integration

Pseudo-code

Algorithm 3: Projected Newton Method for Backward Euler
Time Integration

Result: "1, pnt!

1 1 z™;
2 do
3 P <+ SPDProjection(VE(z"));
4 | p —P 'VE(z");
O O < BackTrackingLineSearch(a:’, p), / / Algorithm 2: Backtracking Line Search
6 Result: a

. ’ 1 o<+ 1;
7 while Hp”oo/h > €; 2 while E(z' + ap) > E(z') do
8 xn—l—l — 33?:' 3 | a+ a/2;

7

o v Tl (2"t — ") /At;



Questions?
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Image Sources

» https://shaderfun.com/2018/03/25/signed-distance-fields-part-2-solid-geometry/

» https://pbr-book.org/3ed-2018/Monte Carlo Integration/2D Sampling with Multidimensional Transformations

e https://stackoverflow.com/questions/53406534/procedural-circle-mesh-with-uniform-faces

e https://www.matthewtancik.com/nerf

* https://www.youtube.com/watch?v=0lLnHeOxbZE&t=1404s

» https://xpandora.qgithub.io/PhysGaussian/

* https://medium.com/@pushkarevmm/signed-distance-field-simple-example-with-raymarched-soft-shadows-
in-unity-2b3fdf20218

» https://elmoatazbill.users.greyc.fr/point cloud/index.html

e https://www.lix.polytechnigue.fr/~maks/Verona MPAM/TD/TD2/

* https://geometryfactory.com/products/igm-quad-meshing/



https://shaderfun.com/2018/03/25/signed-distance-fields-part-2-solid-geometry/
https://pbr-book.org/3ed-2018/Monte_Carlo_Integration/2D_Sampling_with_Multidimensional_Transformations
https://stackoverflow.com/questions/53406534/procedural-circle-mesh-with-uniform-faces
https://www.matthewtancik.com/nerf
https://www.youtube.com/watch?v=0lLnHe0xbZE&t=1404s
https://xpandora.github.io/PhysGaussian/
https://medium.com/@pushkarevmm/signed-distance-field-simple-example-with-raymarched-soft-shadows-in-unity-2b3fdf20218
https://medium.com/@pushkarevmm/signed-distance-field-simple-example-with-raymarched-soft-shadows-in-unity-2b3fdf20218
https://elmoatazbill.users.greyc.fr/point_cloud/index.html
https://www.lix.polytechnique.fr/~maks/Verona_MPAM/TD/TD2/
https://geometryfactory.com/products/igm-quad-meshing/

