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Instructor: Minchen Li

15-763: Physics-Based Animation of Solids and Fluids (S25)



Recap: Frictional Self-Contact
Idea: Approximating Contact Forces as Conservative Forces

(Here  can overlap with  or  )ΓC ΓD ΓN



Recap: Normal Self-Contact
Barrier Potential

Need , , and .̂d → 0 r → 0 ̂d/r → 0

Barrier Potential:  is monotonically decreasing,b()

⟹

Accurate when p → ∞: Expensive!

But  is non-smooth!min()



Recap: Normal Self-Contact
Smoothly Approximating the Barrier Potential

Can subtract the duplicate point-point barrier [Li et al. 2023]:

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman. 

Convergent Incremental Potential Contact. Arxiv 2307.15908.



Recap: Broad Phase CCD

• Step 1: query proximal primitive pairs using spatial data structures:


• Spatial Hash


• Bounding Box Hierarchy (BVH)


• …


• Step 2: Check bounding box overlap:

Case 1: needs  
narrow phase Case 2: can skip



Recap: Narrow Phase CCD
Additive CCD [Li et al. 2021]

Make a local copy of  
 

While distance not close enough 
Calculate lower bound  

 
 

Return 

x
α ← 0

αl
x ← x + αlp
α ← α + αl

α

Algorithm:

Only need to evaluate distances;
More robust than root-finding;
Generalize to higher-order primitives.



Results: Elastic Body Simulation
With Guarantees of Nonpenetration, Non-inversion, and Convergence

E = ~105 Pa E = ~109 Pa
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Simulating Super Stiff Materials
Finite Element Method (FEM)

• Usually no visible deformation before fracture

• Can compute stress distribution using FEM

Structural Analysis

• Applications:

Topology Optimization

min
structure

Ψ

s.t. − ∇xΨ + f ext = 0
volume < target



Simulating Super Stiff Materials
Rigid Body Representation
If only care about the motions,

Can simply track rotation  and translation  per body!Q q

X
x

Q

q
x = QX + q

Constant deformation gradient per body, 
No volumetric discretization needed!



Simulating Super Stiff Materials
Rigid Body Dynamics: Derivation

s.t. QTQ = I ∀Q (or f(Q) = 0)

Alternative derivations: 
• Lagrangian Mechanics; 
• Linear and Angular 

Momentum Conservations; 
• …

min
x

1
2

∥x − x̃n∥2
M + h2 ∑ P(x)

Full order dynamics:

x = QX + q ∈ ℝ3

Reduced order DOF:

min
Q,q

1
2

∥X̄Q + S̄q − x̃n∥2
M + h2 ∑ P(X̄Q + S̄q)

Reduced order dynamics (from subspace optimization):

X̄TM(X̄Q + S̄q − x̃n) + h2 ∑ X̄T ∇P(X̄Q + S̄q) + (∇f(Q))Tλ = 0

S̄TM(X̄Q + S̄q − x̃n) + h2 ∑ S̄T ∇P(X̄Q + S̄q) = 0

f(Q) = 0

x = X̄Q + S̄q ∈ ℝ3l

,Q ∈ ℝ9m X̄ ∈ ℝ3l×9m

,   q ∈ ℝ3m S̄ ∈ ℝ3l×3m
⟺

⟹

: number of nodes, 

: number of bodies

l
m



Simulating Super Stiff Materials
Rigid Body Dynamics: Mass Matrix and Inertia Tensor

•  is the mass matrix of  related to inertia tensorX̄TMX̄ Q

Calculating  without volumetric discretization: 

1. Convert to continuous form  

2. Transform to surface integral using Divergence Theorem 
3. Discretize the surface integral

X̄TMX̄

∫Ω0

ρXXTdX

Reduced order dynamics (from subspace optimization):

X̄TM(X̄Q + S̄q − x̃n) + h2 ∑ X̄T ∇P(X̄Q + S̄q) + (∇f(Q))Tλ = 0

S̄TM(X̄Q + S̄q − x̃n) + h2 ∑ S̄T ∇P(X̄Q + S̄q) = 0

f(Q) = 0



Simulating Super Stiff Materials
Rigid Body Dynamics: Change of Variable

s.t. QTQ = I ∀Q (or f(Q) = 0)min
Q,q

1
2

∥X̄Q + S̄q − x̃n∥2
M + h2 ∑ P(X̄Q + S̄q)

Reduced order dynamics (from subspace optimization):

min
θ,q

1
2

∥X̄R(θ) + S̄q − x̃n∥2
M + h2 ∑ P(X̄R(θ) + S̄q)

Use rotation vector :θ

Rodrigues’ Rotation Formula:

Unconstrained!

Highly nonlinear!

6 DOF per body!



Simulating Super Stiff Materials
Rigid Body Dynamics: Frictional Contact via IPC [Li et al. 2020]
Reduced order dynamics (from subspace optimization):

min
θ,q

1
2

∥X̄R(θ) + S̄q − x̃n∥2
M + h2 ∑ P(X̄R(θ) + S̄q)

Just include IPC energies here

But line search is on , and  is nonlinearθ x(θ)
So CCD is on nonlinear trajectories:

Very expensive!
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, Daniele Panozzo. 


Intersection-free Rigid Body Dynamics. SIGGRAPH 2021.



Simulating Super Stiff Materials
Rigid-IPC [Ferguson et al. 2021] vs IPC [Li et al. 2020]

Rigid-IPC performs well for complex geometries



Simulating Super Stiff Materials
Enforcing Rigidity via Penalty Method

s.t. QTQ = I ∀Q (or f(Q) = 0)min
Q,q

1
2

∥X̄Q + S̄q − x̃n∥2
M + h2 ∑ P(X̄Q + S̄q)

Reduced order dynamics (from subspace optimization):

Don’t need elasticity

min
Q,q

1
2

∥X̄Q + S̄q − x̃n∥2
M + h2 ∑ P(X̄Q + S̄q)

Reduced order dynamics with penalty method:

Use elasticity with large Young’s modulus

— the strain energy  is effectively a penalty function forΨ

12 DOF per body, still significantly reduced
 is linear w.r.t. both  and   ->  linear CCDx = X̄Q + S̄q Q q

A stiff  won’t make the problem harder with stiff IPC energiesΨ



Simulating Super Stiff Materials
Affine Body Dynamics (ABD)

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, Yin Yang. Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials. SIGGRAPH 2022.

min
Q,q

1
2

∥X̄Q + S̄q − x̃n∥2
M + h2 ∑ P(X̄Q + S̄q) Use elasticity with large Young’s modulus

575 bodies
14K triangles

17.6s per step (dt=0.01s)
Rigid-IPC

0.14s per step (dt=0.01s)
ABD

>100x faster



Bullet ABD

142 bodies
3.5K triangles

562 bodies
11K triangles

58ms per 1/240s step
82ms per 1ms step

809ms per 1/240s step
804ms per 1ms step

41ms per 1/240s step
19ms per 1ms step

328ms per 1/240s step
102ms per 1ms step

>4x faster

>8x faster

Bullet v.s. ABD
Simulating Super Stiff Materials



ABD in Another Perspective
Affine Deformation Modes

x = [a b
c d] X + [e

f] Δa

Δd

Δb

Δc

0 0.3 0.8 1.3

:X :x

DOF: a, b, c, d, e, f

x = A

a
b
c
d
e
f

= aA1 + bA2 + . . .

Deformation 
modes (linearly independent displacement fields)
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Reduced Simulation of Deformable Solids
Linear Modal Analysis

x = A

a
b
c
d
e
f

= aA1 + bA2 + . . .

Deformation 
modes (linearly independent displacement fields)

How do we generate more meaningful deformation modes?

Intuition: Meaningful deformation modes are those don’t generate large forces

M··u + Ku = fAssume linear elasticity problem:  (Dirichlet BC)s.t. Sx = 0

Can solve the generalized Eigenvalue problem to find them: K̄y = λM̄y

(where  and  do not account for BC nodes)K̄ M̄
(Take the Eigenvectors with smallest Eigenvalues as modes.)



Reduced Simulation of Deformable Solids
Linear Modal Analysis: Time Integration

x = A

a
b
c
d
e
f

= aA1 + bA2 + . . .

Deformation 
modes (linearly independent displacement fields)

Can solve  and take Eigenvectors 
with the smallest Eigenvalues as more modes.

K̄y = λM̄y

The Eigenvectors will be orthonormal w.r.t. , i.e. .M̄ (yi)TMyj = δij

Plugging in , ignoring BCs for now:M··u + Ku = f

Now let , where  are the reduced DOF,  formed by the Eigenvectorsu = x − X = Uz z ∈ Rk U ∈ ℝ3n×k

MU··z + KUz = f

··z + Λz = UTf Diagonal system! Super fast!

MU··z + MUΛz = f  is a diagonal matrix of EigenvaluesΛ ∈ ℝk×k

UTMU··z + UTMUΛz = UTf Left-multiply  on both sidesUT



Reduced Simulation of Deformable Solids
Linear Modal Analysis: Effectiveness
Works well for small deformations:

— Consistent with our knowledge 
of linear elasticity

However:



Reduced Simulation of Deformable Solids
Nonlinear Elasticity, Linear Modes
M··u + f int(u) = f or equivalently, using Incremental Potential:  min

x

1
2

∥x − x̃n∥2
M + h2 ∑ P(x)

Plugging in :u = Uz min
z

1
2

∥X + Uz − x̃n∥2
M + h2 ∑ P(X + Uz)

Gradient: UTM(X + Uz − x̃n) + h2 ∑ UT ∇P(X + Uz)

Hessian: UTMU + h2 ∑ UT ∇2P(X + Uz)U

Issue 1: Hessian can be dense!

Solution: use numerical integration to approximate Gradient and 
Hessian, minimizing the number of quadratures [An et al. 2008]

Steven S. An, Theodore Kim and Doug L. James, Optimizing Cubature for Efficient Integration of Subspace Deformations. SIGGRAPH Asia 2008.

Issue 2: Calculating  and  are still slow (requiring full space computations)∇P ∇2P

Solution: use locally supported modes, e.g. Cage-based 
deformation, Medial Axis Mesh [Lan et al. 2021], etc.

Lei Lan, Yin Yang, Danny M. Kaufman, Junfeng Yao, Minchen Li, Chenfanfu Jiang. Medial IPC: Accelerated Incremental Potential Contact With Medial Elastics. SIGGRAPH 2021.

(Can compute U using )∇2P(X)



Reduced Simulation of Deformable Solids
Nonlinear Elasticity, Linear Modes
min

z

1
2

∥X + Uz − x̃n∥2
M + h2 ∑ P(X + Uz)

Issue 3: modes computed at rest shape (using ) 
can result in artificial stiffening at large deformation

∇2P(X)

Solution 1: use simulated poses/deformed configurations as data, and perform PCA to construct U

Solution 2: use nonlinear modes  where  is a nonlinear functionu = f(z) f
e.g. in rigid body dynamics,  is nonlinearu = f(θ)

Use modal derivatives to construct a quadratic function  [*]u = f(z)

Remarks: Affine modes are linear modes, and are spatially linear; 
PCA and Eigen modes are linear modes, but can be spatially nonlinear.

Use neural networks to learn u = f(z)

*Jernej Barbicˇ, Doug James. Real-Time Subspace Integration for St.Venant-Kirchhoff Deformable Models. SIGGRAPH 2005.



Reduced Simulation of Deformable Solids
Results from Medial IPC [Lan et al. 2021]

Lei Lan, Yin Yang, Danny M. Kaufman, Junfeng Yao, Minchen Li, Chenfanfu Jiang. Medial IPC: Accelerated Incremental Potential Contact With Medial Elastics. SIGGRAPH 2021.
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Implementation
Compute Basis (Polynomial)

utils.py

cola(x, y) = (x, 0)
colb(x, y) = (y, 0)
colc(x, y) = (0, x)

cold(x, y) = (0, y)
cole(x, y) = (1, 0)
colf(x, y) = (0, 1)

For each 2 rows of A, find the corresponding 
node and its material space coordinates 

, then use the following function to 
calculate A’s entry in each column:
(x, y)



Implementation
Compute Basis (Modal)
• For simplicity, we directly use the Eigenvectors of  (no PSD 

projection) with the smallest Eigenvalues as basis.
∇2Ψ(X)

utils.py



Implementation
Simulation in the Subspace

simulator.py• Pick and compute the basis:

time_integrator.py

• Solve the time stepping optimization in the subspace:

Instead of , 
Compute 

p = H−1(−g)
p = A(ATHA)−1(−ATg)



Demo!
Code: github.com/phys-sim-book/solid-sim-tutorial 

http://github.com/phys-sim-book/solid-sim-tutorial
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Compute Basis, Simulation in the Subspace



Next Lecture: Codimensional Solids



Image Sources

• https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-
anna-university/


• https://en.wikipedia.org/wiki/Young%27s_modulus


• http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-
modelReduction.pdf

https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-anna-university/
https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-anna-university/
https://en.wikipedia.org/wiki/Young%27s_modulus
http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-modelReduction.pdf
http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-modelReduction.pdf

