Instructor: Minchen Li

Lec 12: Reduced Order Models
15-763: Physics-Based Animation of Solids and Fluids (S25)



Recap: Frictional Self-Contact

Idea: Approximating Contact Forces as Conservative Forces

Qi(X, t)T3(X, t)ds(X)
500

= Qi(Xat)TDﬁ(th)ds(X)_l_/ Qi (X, )TN (X, t)ds(X)

+ - Qi(Xat)TCM(th)dS(X)_"/F Qi(Xat)TF|i(Xat)d3(X)°

(Here I '~ can overlap with [ ', or | )



Recap: Normal Self-Contact

Barrier Potential

Ob(minx, cr., —n(x) [[%(X, ) — x(Xa, )], d)
ox(X, 1)

where N (X) = {Xy € R? | | Xy — X]|| < r} is an infinitesimal circle
around X with the radius r sufficiently small to avoid unnecessary contact
forces between a point and its geodesic neighbors.

Need d — 0,r — 0, and d/r — 0.

To(X,t) =

Barrier Potential: b() is monotonically decreasing,
: i l 1 PE ;
/l“c §b(X2GF121_HN(X) [x(X,t) — x(X2,t)|,d)ds(X) — . 5 66211_3?%)() b(d" ™ (x(X, 1), e),d)ds(X)

max(ai,as, ..., Q) ~ (azl7 + ag + ...+ aﬁ)%

Accurate when p — oo:



Recap: Normal Self-Contact
Smoothly Approximating the Barrier Potential

Can subtract the duplicate point-point barrier [Li et al. 2023]:

Uo(z)= » bd(z,e),d — » bld(z,z2),d) ~ max b(d(z,e),d)

eeE\x
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Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman.
Convergent Incremental Potential Contact. Arxiv 2307.15%08.



Recap: Broad Phase CCD

o Step 1: query proximal primitive pairs using spatial data structures:
e Spatial Hash
 Bounding Box Hierarchy (BVH)

L4
: 4 v
pe ~
v , ..

o Step 2: Check bounding box overlap: 4 3 / . /

Case 2: can skip

Case 1: needs
narrow phase



Recap: Narrow Phase CCD

Additive CCD [Li et al. 2021]

Taking a point-edge pair as an example, the key insight of ACCD is
that, given the current positions p, eg, €1 and search directions d,, deo,
d.;, its TOI can be calculated as

e — = (L= Neo + de)|
Hdp o ((1 _ A)deO T )‘del)H ’

assuming (1 — \)eg + Ae; is the point on the edge that p will first collide
with. The issue is that we do not a priori know A. But we can derive a
lower bound of aTo1 as

orar > minxepo,1) [|[P — ((1 — A)eo + Aey)|]
— ldpll + (1 = A)deo + Adex |
> dPE(P, €o, 91)
~ |ldpl| + max(||deoll, [|de1]])

p— Xipil4
foriin {0,1,2,3} do
pi—pi—p
Algorithm: \
Make a local copy of x/

-
a < 0
While distance not close enough

Calculate lower bound ¢,
X < X+ qp
a < a -+ Qq

Return a

Only need to evaluate distances;
= q More robust than root-finding;

Generalize to higher-order primitives.
——S—————




Results: Elastic Body Simulation

With Guarantees of Nonpenetration, Non-inversion, and Convergence

E=~105Pa E=~10°Pa
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o |[mplementation & Demo



Today:
e Simulating Stiff Elastic Solids



Simulating Super Stiff Materials
Finite Element Method (FEM)

Displacement modal magnitude

Youngls . Applications: 0.000e+00 OO’J:'? | | I’_.“.‘l'_‘rls 0.0027 0.0034 1
Material ¢ | modulus =

(GPa)
Aluminium (43Al) 68
Bone, human cortical 14
Gold 77.2
Wood, red maple 9.6 -11.3
High-strength concrete 30

Structural Analysis

 Usually no visible deformation before fracture :
min ¥
structure

st.— V. W+t =0
volume < target

Topology Optimization

 Can compute stress distribution using FEM




Simulating Super Stiff Materials
Rigid Body Representation

If only care about the motions,

Can simply track rotation (Q and translation q per body!

Constant deformation gradient per body,
No volumetric discretization needed!



Simulating Super Stiff Materials

Rigid Body Dynamics: Derivation

Full orfler dynamics: Reduced order DOF: ¥ = )_(Q 1+ = 3!
min | - P12+ b2 ) P(x) x=QX+qeR < eR™ XeR>"
g € R3m  § e R3D3m
Reduced order dynamics (from subspace optimization): [ number of nodes,

m: number of bodies

mian)_(Q+S’ — | +h22P()_(Q+§) st. Q'Q=1 VQ (or Q) =0)
nin > q A q 1. = =

—

S & an ) =T . - T, Alternative derivations:
X MXQ +5g —X7) + h Z XTVPXQ+5g9) +(V/Q) 4 =0  Lagrangian Mechanics;
STM(XQ + Sq — )+ h* ) STVP(XQ + Sq) = 0 * Linear and Angular

Momentum Conservations;

f(Q) =0 .




Simulating Super Stiff Materials

Rigid Body Dynamics: Mass Matrix and Inertia Tensor

Reduced order dynamics (from subspace optimization):
X"M(XQ + Sq — )+ h* )’ X' VP(XQ + Sq) + (VAQ) 4 =0
STM(XQ + Sq — ) + h* ) STVP(XQ + §g) = 0
Q) =0

. X! MX is the mass matrix of O related to inertia tensor

Calculating X! MX without volumetric discretization:

1. Convert to continuous form J pXXTdX
0o

2. Transform to surface integral using Divergence Theorem
3. Discretize the surface integral




Simulating Super Stiff Materials
Rigid Body Dynamics: Change of Variable

Reduced order dynamics (from subspace optimization):

mian)_(Q+§ — | +h22P(XQ+§) t. Q'Q=1I VQ (or Q) =0)
nin > q N q s.t. = or =

Use rotation vector 0O:
1 _ _ _ _ Unconstrained!
min—[|XR(©) + Sq — #[13, + h* ) P(XR(0) + Sq)
0.g 2 6 DOF per body!

Rodrigues’ Rotation Formula:

R(6) =1d +sin (]|0]]) oy | (1 —cos(]|6]]))

1101



Simulating Super Stiff Materials
Rigid Body Dynamics: Frictional Contact via IPC [Li et al. 2020]

Reduced order dynamics (from subspace optimization):

] . ] ]
nelmEHXR(e) + Sq — X"||3, + h? Z P(XR(0) + Sq) But line search is on 0, and x(6) is nonlinear
q

So CCD is on nonlinear trajectories:
Just include IPC energies here

T~ | I screw

O.25X W rotation vector /
N
Wy

z N~

No

_

Xy

dt=0.01 Very expensive!

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, Daniele Panozzo.
Intersection-free Rigid Body Dynamics. SIGGRAPH 2021.



Simulating Super Stiff Materials
Rigid-IPC [Ferguson et al. 2021] vs IPC [Li et al. 2020]

-
Penduum | 3397 i 1334 | 26¢ | 10K | 3K

=—— Double pendulum | 9140 | 1559.9 1 06x | . 12K 4K
Arch(25stones) | 265 i 558 i | 0.5x | . K i K .

Arch (101stones) | 2383 i 4878 | | 0.5x | 4K i 5K .

Wrecking ball | - 711798 | 57481 1 12x 4o oK .. 18K

Rigid-IPC performs well for complex geometries



Simulating Super Stiff Materials
Enforcing Rigidity via Penalty Method

Reduced order dynamics (from subspace optimization):

minluXQ+S — 2|2, + k%) PXQ+5q) st. QTQ=1VQ (or Q) = 0)
O ) q M { . L. — —

Don’t need elasticity

Reduced order dynamics with penalty method:

| ——
min—|| X0 + Sqg — %, + h*| Y P(XO + Sq)
0.q 2 M Z

Use elasticity with large Young’s modulus

— the strain energy YV is effectively a penalty function for

12 DOF per body, still significantly reduced
x = XQ + Sq is linear w.r.t. both Q and ¢ -> linear CCD
A stiff ¥ won’t make the problem harder with stiff IPC energies



Simulating Super Stiff Materials
Affine Body Dynamics (ABD)

1 _ - -
erunEHXQ + Sqg — x”HJZW + h? Z P(X0O + Sqg)| Use elasticity with large Young’s modulus
q

Rigid-IPC | ABD
14K triangles
17.6s per step (dt=0.01s) 0.14s per step (dt=0.01s)

575 bodies
>100x faster

Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, Yin Yang. Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials. SIGGRAPH 2022.



Simulating Super Stiff Materials

Bullet v.s. ABD

3.5K triangles ‘) Bullet é’ ABD

142 bodies
58ms per 1/240s step - 41ms per 1/240s step
32ms per 1ms step 19ms per 1ms step

>4x faster

11K triangles " é’
809ms per 1/240s step 328ms per 1/240s step
304ms per 1ms step 102ms per 1ms step

>8x faster



ABD In Another Perspective

Affine Deformation Modes

< — [a b
c d I

DOF:a, b, c,d,e,

<

X+

>
U

a Ab
b

C

el \ /

f Deformation

modes (linearly independent displacement fields)

B
N
y &
g /



Today:

® Modal-Order Reduction



Reduced Simulation of Deformable Solids

Linear Modal Analysis

. :
Deformation (linearly independent displacement fields)
modes

A AN

X=A d =aA1+bA2-I-

€

f

Assume linear elasticity problem: Mii+ Ku =f s.t. Sx = 0 (Dirichlet BC)
Intuition: Meaningful deformation modes are those don’t generate large forces

Can solve the generalized Eigenvalue problem to find them: Ky = AMYy

(where K and M do not account for BC nodes)

(Take the Eigenvectors with smallest Eigenvalues as modes.)



Reduced Simulation of Deformable Solids

Linear Modal Analysis: Time Integration

a :
b Del::l):‘)r;\::on (linearly independent displacement fields)
x = A “| _ a A/ 1 b\A } Can solve Ky = AMy and take Eigenvectors
d ! ’ with the smallest Eigenvalues as more modes.
e
The Eigenvectors will be orthonormal w.r.t. M, i.e. (v')! My’ = §...
Y Y ij

Now let u = x — X = Uz, where z € R¥ are the reduced DOF, U € R formed by the Eigenvectors

Plugging in Mii + Ku = f, ignoring BCs for now:
MUZ + KUz =f
MUZ + MUAz =f A € R™ s a diagonal matrix of Eigenvalues
U'MU7? + UMUAz = U'f  Left-multiply U’ on both sides

74+ Az=U'f Diagonal system! Super fast!




Reduced Simulation of Deformable Solids
Linear Modal Analysis: Effectiveness

Works well for small deformations:

However:

Figure 2: Linear modes for a cantilever beam.

— Consistent with our knowledge
of linear elasticity

linear nonlinear

Figure 3: Model reduction applied to a linear and nonlinear system.




Reduced Simulation of Deformable Solids
Nonlinear Elasticity, Linear Modes

. 1
Mii + f"™(u) = f or equivalently, using Incremental Potential: min EHX — )’Z”HJZW + h? Z P(x)

X

|
Plugging in u = UZ: minEHX + Uz — 52””12\4 + h? 2 P(X + Uz) (Can compute U using VZP(X))

4

Gradient: U'M(X + Uz — ¥") + h? ) UTVP(X + Uz)

Hessian: U MU hzz U'VP(X + Uz)U

Solution: use locally supported modes, e.g. Cage-based
deformation, Medial Axis Mesh [Lan et al. 2021], etc.

Solution: use numerical integration to approximate Gradient and
Hessian, minimizing the number of quadratures [An et al. 2008]

Lei Lan, Yin Yang, Danny M. Kaufman, Junfeng Yao, Minchen Li, Chenfanfu Jiang. Medial IPC: Accelerated Incremental Potential Contact With Medial Elastics. SIGGRAPH 2021.
Steven S. An, Theodore Kim and Doug L. James, Optimizing Cubature for Efficient Integration of Subspace Deformations. SIGGRAPH Asia 2008.



Reduced Simulation of Deformable Solids

Nonlinear Elasticity, Linear Modes

1
min—||X + Uz — |13, + hzZ P(X + Uz)
. 2

Solution 1: use simulated poses/deformed configurations as data, and perform PCA to construct U

Solution 2: use nonlinear modes u = f(z) where fis a nonlinear function
e.g. in rigid body dynamics, u = f(0) is nonlinear
Use modal derivatives to construct a quadratic function 1 = f(2) [*]

Use neural networks to learn u = f(7)

Remarks: Affine modes are linear modes, and are spatially linear;
PCA and Eigen modes are linear modes, but can be spatially nonlinear.

*Jernej Barbic’, Doug James. Real-Time Subspace Integration for St.Venant-Kirchhoff Deformable Models. SIGGRAPH 2005.




Reduced Simulation of Deformable Solids
Results from Medial IPC [Lan et al. 2021]

Puffer Ball x 1

20 handles 50 handles 36% speedup

# of Handles: 1624 .
# of Elements: 625k TN

200 handles Ground truth

Medial IPC Full IPC

Lei Lan, Yin Yang, Danny M. Kaufman, Junfeng Yao, Minchen Li, Chenfanfu Jiang. Medial IPC: Accelerated Incremental Potential Contact With Medial Elastics. SIGGRAPH 2021.



Today:

o |[mplementation & Demo



Implementation

(4
x=|% P X+[f] Aa
Compute Basis (Polynomial) e
DOF: a,b,c,d, e, f
if order == 1: # linear basis, or affine basis
basis = np.zeros((len(x) x 2, 6)) # 1, x, y for both x- and y-displacements chi
for i in range(len(x)):
for d in range(2): X: . X
basis[i * 2 + d][d * 3] = 1
basis[i * 2 + d][d * 3 + 1]
basis[i * 2 + d][d *x 3 + 2] 1£&l7

elif order == 2: # quadratic polynomial basis

basis = np.zeros((len(x) x 2, 12)) # 1, x, y, x*2, xy, y*2 for both x- and y-displacements
for i in range(len(x)):

for d in range(2): X = = aAl + bAZ 4+ ...
basis[i * 2 + d][d * 6] = 1
basis[i * 2 + d1[d * 6 + 1] = x[i] [0] \ / / Ac
basis[i x 2 + d]l[d x 6 + 2] = x[i][1] Deformation
basis[i *x 2 + dl[d *x 6 + 3] = x[il[0] * x[i] [0] modes (linearly independent displacement fields)
basis[i * 2 + dl[d * 6 + 4] = x[i]1[0] * x[i][1]
basis[i * 2 + dl[d * 6 + 5] = x[i][1] * x[i][1]
elif order == 3: # cubic polynomial basis

For each 2 rows of A, find the corresponding
node and its material space coordinates

(x, y), then use the following function to

basis = np.zeros((len(x) *x 2, 20)) # 1, x, y, x*2, xy, y*2, x*3, x*2y, xy*2, y*3 for both x- and y-displacements
for i in range(len(x)):
for d in range(2):

basis[i * 2 + d][d x 10] = 1 : :

basis[1 % 2 + dlld % 10 + 1] = x[i] [0] calculate A's entry in each column:

basis[i *x 2 + d]l[d % 10 + 2] = x[i][1]

basis[i * 2 + d][d * 10 + 3] x[il[0] * x[i][@] _ ( ) _ ( )
basis[i * 2 + dl[d *x 10 + 4] = x[i]1[0] * x[i][1] COla('x9 y) - ('x9 O) COld x’ y - O’ y
basis[i * 2 + d]l[d * 10 + 5] = x[i][1] * x[i][1]

basis[i * 2 + d][d * 10 + 6] = x[il[0] * x[il[@] % x[i] [0] col (x ) — ( O) col (x ) — (1 ())
basis[i * 2 + d][d * 10 + 7] = x[i][@] * x[i][@] * x[i][1] b ? y y’ € ? y ?
basis[i * 2 + d][d * 10 + 8] = x[i1[0] * x[i]1[1] * x[i][1] i

basis[i * 2 + d][d * 10 + 9] = x[i][1] * x[i][1] * x[i][1] Utlls.py COlC(xa )7) — (09 x) COlf(x’ y) — (O’ 1)




Implementation
Compute Basis (Modal)

. For simplicity, we directly use the Eigenvectors of VZ¥(X) (no PSD
projection) with the smallest Eigenvalues as basis.

if order <= 0 or order >= len(x) *x 2:
print("invalid number of target basis for modal reduction")
exit()
IJV = NeoHookeanEnergy.hess(x, e, vol, IB, mu_lame, lam, project_PSD=False)
H = sparse.coo_matrix((IJV[2], (IJVv[@], IJVI[1])), shape=(len(x) * 2, len(x) * 2)).tocsr()
eigenvalues, eigenvectors = eigsh(H, k=order, which='SM') # get 'order' eigenvectors with smallest eigenvalues

return eigenvectors



Implementation

Simulation in the Subspace

 Pick and compute the basis: simulator.py

# compute reduced basis using @: no reduction; 1: polynomial functions; 2: modal reduction
reduced_basis = utils.compute_reduced_basis(x, e, vol, IB, mu_lame, lam, method=1, order=2)

* Solve the time stepping optimization in the subspace:

def search_dir(x, e, x_tilde, m, vol, IB, mu_lame, lam, y_ground, contact_area, is_DBC, reduced_basis, h):
projected_hess = IP_hess(x, e, x_tilde, m, vol, IB, mu_lame, lam, y_ground, contact_area, h)
reshaped_grad = IP _grad(x, e, x_tilde, m, vol, IB, mu_lame, lam, y_ground, contact_area, h).reshape(len(x) *x 2, 1)
# eliminate DOF by modifying gradient and Hessian for DBC:

for i, j in zip(xprojected_hess.nonzero()): —1
if is_DBCI[int(i / 2)] | is_DBClint(j / 2)1: Instead of p = H (_g)!
projected_hess[i, j] = (i == j) — T —1 _ T
for i in range(@, len(x)): ComPUtep o A(A HA) ( A g)
if is DBC[i]: +
reshaped_grad[i *x 2] reshaped_grad[i x 2 + 1] = 0.0

reduced_hess = reduced_basis.T.dot(projected_hess.dot(reduced_basis)) # applying chain rule

reduced_grad = reduced_basis.T.dot(reshaped_grad) # applying chain rule

return (reduced_basis.dot(spsolve(reduced_hess, -reduced_grad))).reshape(len(x), 2) # transform to full space after the solve

time_integrator.py



Demo!

Code: github.com/phys-sim-book/solid-sim-tutorial



http://github.com/phys-sim-book/solid-sim-tutorial

Today:
e Simulating Stiff Elastic Solids

SE(3), Affine Body, Deformation Modes

® Modal-Order Reduction

Linear Modal Analysis for Linear and Nonlinear Elasticity

o |mplementation & Demo

Compute Basis, Simulation in the Subspace



Next Lecture: Codimensional Solids




Image Sources

» https.//padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-
anna-university/

o https://en.wikipedia.org/wiki/Young%27s modulus

e http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-
modelReduction.pdf



https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-anna-university/
https://padeepz.net/ce6602-syllabus-structural-analysis-2-regulation-2013-anna-university/
https://en.wikipedia.org/wiki/Young%27s_modulus
http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-modelReduction.pdf
http://viterbi-web.usc.edu/~jbarbic/femdefo/barbic-courseNotes-modelReduction.pdf

