
A Theorist’s Toolkit CMU 15-751*, Fall 2016

TAKE-HOME FINAL

Due: 11:59pm, Sunday December 11, email the pdf to toolkit2016homework@gmail.com

Take-home final policy: You must complete the take-home final by yourself. You may not discuss
any of the problems with any other person. You may only consult your own class notes. You may
ask for problem clarifications on Piazza (privately) as needed. As usual, LATEX typesetting with
pdf output is mandatory.

Solve 5 of the 9 problems, including at least 2 problems from the last 4 problems.

1. Show that
n

∑
t=1

(1 + 1/t)t = en±O(log n).

2. A random 3SAT instance I with n variables and m = m(n) constraints is defined as follows:
There are n Boolean variables x1, . . . , xn, and m constraints are randomly chosen as follows:
Each constraint is (independently) is chosen of the form xb1

i ∨ xb2
j ∨ xb3

k , where: (i, j, k) is a
uniformly random triple of distinct indices in [n]; b1, b2, b3 ∈ {0, 1} are chosen uniformly
and independently; and, “x1” just signifies the variables x, whereas “x0” signifies the logical
negation of x.

Show that for all ε > 0, there is a large enough constant C = C(ε) such that, when m ≥ Cn,

Opt(I) ≤ 7/8 + ε except with probability at most 2−n.

3. (a) Show that if G = (V, E) is a connected undirected graph whose normalized Laplacian L
has an eigenvalue of 2, then G is bipartite. (Recall L = I− A, where A is the normalized
adjacency matrix.)

(b) Give an explicit counterexample showing the statement is false if we drop the hypoth-
esis that G is connected.

4. In the Set-Cover problem, the input consists of a ground set E of n elements, a collection of m
subsets S1, . . . , Sm ⊆ E, and associated nonnegative costs c1, . . . , cm for the subsets. The task
is to find a minimum-cost collection of subsets Si whose union is all of E.

(a) Formulate the Set-Cover problem exactly as an integer linear program. Then indicate
how to relax it to a linear program.

(b) Derive the dual linear program.

(c) Give an English-language description/interpretation of the optimization problem de-
fined by the dual linear program.

5. (a) For n×n matrices M and N, let 〈M, N〉F = ∑i,j∈[n] M[i, j] ·N[i, j]. (Equivalently, 〈M, N〉F =

Tr(MT N).) Let Sn denote the set of n× n symmetric matrices and let Sn
+ denote the set

of n× n symmetric positive-semidefinite matrices. Define

S̃ := {M ∈ Sn | ∀N ∈ Sn
+, 〈M, N〉F ≥ 0}.

Prove that S̃ = Sn
+.
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(b) Consider a SDP of the form below where C, Ai are symmetric n × n matrices and we
are optimizing over X ∈ Sn

+:

max 〈C, X〉F
〈Ai, X〉F = bi i = 1, 2, . . . , m
X < 0

Consider the “dual” SDP

min
m

∑
i=1

biyi

m

∑
i=1

yi Ai < C

(where A < B means A− B is positive semidefinite).
Show that if X and y are any feasible solutions to the above SDPs, then 〈C, X〉F ≤
∑m

i=1 biyi.
(c) Consider the following SDP:

max
X∈S3

−X11

X22 = 0
X11 + 2X23 = 2
X < 0

i. What is its optimum value? Why?
ii. Write down its dual as in part (b). What is the optimum value of the dual?

6. Consider the Reed-Solomon code RS[n, k] over a fieldFq with evaluation points {a1, a2, . . . , an}.
Assume n is even for convenience. When the number of errors can be as high as n/2, one
cannot uniquely recover the message polynomial, as the received word might agree with
one polynomial in the first half and another polynomial in the second half.

Suppose r ∈ Fn
q is a noisy received word such that for each i ∈ {1, 2, . . . , n}, ri ∈ {p1(ai), p2(ai)},

and |{i : ri = p1(ai)}| ≥ n/2 as well as |{i : ri = p2(ai)}| ≥ n/2. Assume that k ≤ n/4.

(a) Show that p1 and p2 are the only polynomials of degree < k that agree with r on at least
n/2 positions.

(b) Give a polynomial time algorithm that given as input an r satisfying the above promise
(for a unknown pair of polynomials p1, p2), finds the polynomials p1, p2.
Hint: For each i, (ri − p1(ai))(ri − p2(ai)) = 0. Use this to interpolate a polynomial in
Fq[X, Y] that is quadratic in Y and vanishes on all (ai, ri).

7. (a) Let f ∈ F[X1, X2, . . . , Xn] be a polynomial over a field F with total degree n such that
the monomial X1X2 · · ·Xn has a nonzero coefficient in f . (Note that f is not assumed
to be multilinear, and might have degree bigger than 1 in the Xi’s.) Let S1, S2, . . . , Sn
be arbitrary subsets of F with |Si| = 2 for 1 ≤ i ≤ n. Prove that f (a) 6= 0 for some
a ∈ S1 × S2 × · · · × Sn.
Hint: Show that there is a nonzero multilinear polynomial g that agrees with f on
S1 × S2 × · · · × Sn.
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(b) Suppose G = (V, E) is a 5-regular graph (i.e., every vertex has degree exactly 5). Prove
that G has a subgraph H that is 3-regular.
Hint: Apply part (a) to the following polynomial in variables Xe, e ∈ E, over the field
F3:

∏
v∈V

(
1−

(
∑

e∈Γ(v)
Xe
)2
)
−∏

e∈E
(1− Xe) ,

where Γ(v) denotes the set of (five) edges incident on v in G.

8. The inner product mod 2 function, IP2n : {0, 1}2n → {0, 1} is defined by IP2n(x, y) = ∑n
i=1 xiyi

(mod 2). The goal of this problem is to show a linear lower bound on its randomized com-
munication complexity.

(a) We wish to show that any (public-coins) randomized communication protocol with
error at most 1/4 must use at least n/2− 1 bits of communication. Show that it suffices
to prove the below statement:
“Let R1 × S1, . . . ,R2c × S2c be a partition of {−1,+1}n × 2[n] into combinatorial rect-
angles1, and let z1, . . . , z2c ∈ {−1,+1}. Suppose2

E
x∼{−1,+1}n uniformly

S∼2[n] uniformly

[(
2c

∑
i=1

1Ri(x)1Si(S)zi

)
χS(x)

]
≥ 1/2.

Then c ≥ n/2− 1.”
(Hint: Yao’s Principle is involved here.)

(b) Prove the above statement using Fourier analysis of Boolean functions. You will need

Parseval’s identity (as well as Cauchy–Schwarz in the form E[Z] ≤
√

E[Z2]).

9. Let us make the following strong hardness assumption: ∀ε > 0, there exist constants k, C
depending only on ε, such that determining if an input k-SAT instance on n variables and at
most Cn clauses is satisfiable requires at least 2(1−ε)n time in the worst case.

Consider the following “disjoint sets” problem: We are given a set family F of N subsets of
a universe U, |U| ≤ O(log N). The goal is to determine if there exist S 6= T ∈ F such that
S ∩ T = ∅.

Prove that, under the above hardness assumption, for any constant δ > 0, there is no
O(N2−δ) time algorithm for the disjoint sets problem.

Hint: Split the variables of the SAT instance into two halves, and with each of the 2n/2 partial
assignments to each half, associate an appropriate subset of clauses.

1The notation 2[n] means the collection of all subsets of [n].

2Using the notation χS(x) = ∏
i∈S

xi and 1A(b) =

{
1 if b ∈ A,
0 else.

.

3


