4
Dynamic Programming

Please read the 15-451 lecture notes on dynamic programming for
the basic concepts, of top-down dynamic programming (or memo-
ization), and bottom-up dynamic programming. (It also talks about

dynamic programming on trees, etc.) These notes here are focused on

the issues of reducing space usage for these DPs.

4.1 Longest Common Subsegeuence

Here is the naive bottom-up dynamic program to find the longest
common subseqeuence (LCS) of two strings S and T. Define M to be
a table with m + 1 rows and 7 + 1 columns, where M(i, j) computes
the length of the longest common subsequence of the prefixes Sy.;
and Tli]"

Algorithm 6: LCS-value(S, T)

61 M(0,x) = M(%,0) =0
62 fori =1to m do
6.3 for j=1tondo

6.4 if Si = T] then

65 | M(,j) < 1+M(3i-1,j—1)

6.6 else

67 | M(i, j) < max(M(i —1,j), M(i,j — 1))

6.8 return M(m,n)

Theorem 4.1. Algorithm 6 computes the length of the longest common
subsequence of two strings of length m,n in O(mn) time and space.

4.1.1 Finding the LCS Itself

Having run Algorithm 6 to fill in the table, we can find the LCS itself
in O(m + n) time by just “following the decisions” when filling the

Notes by Anupam Gupta

[0
[0
[0
[0
[0
[0
[0
[0
[0

Figure 4.1: The LCS of ACCTACAG
and CATATACCAG.

PRPRRPRRPRPRPOO®
NNNRRRREO
NNNNRRRO
WWWNRRRPRO

WWWwWwWwWwNRRRO

AP WWNRRLRRO
AP WNNNRO®
AR WwWwWNROO
uprrpPpwwNnpneEO®

=
N
N
w
IS
N
w1

0]
1]
2]
3]
3]
4]
4]
5]
6]

22

table.

Algorithm 7: LCS-Search(S, T)

7.1 i<+ m,j «—n
72 whilei > 0orj>0do
7.3 if Si = T] then

7.4 output S;

7.5 l%l—l,](—]—l

7.6 else

77 | | if M(i,j) = M(i—1,j) theni < i—1elsej < j—1

(Exercise: One of the strings T has been accidentally deleted, but
you still have the string S, and the table M(-, -). Show how to output
the LCS in O(m + n) time)

4.2 Space-Efficiency

The above bottom-up algorithm for the LCS problem always takes
O(mn) time and space. A very recent result shows that the quadratic
runtime is necessary in general, but we can reduce the space usage.
The crucial observations are simple: (a) we care only about the value
of M(m,n), and (b) the update rule for a cell M(i,j) depends only on
M(i—1,j—1), M(i —1,j) and M(i,j — 1), which belong to the same
row or previous row as the current cell (7, j) being filled in. Hence we
can fill the table row-by-row, “keeping in mind” only rows i — 1 and i
when filling in row i. Formally, we define the table M to have only 2
rows and 7 4 1 columns, and change the algorithm as follows:

Algorithm 8: Low-Space LCS(S, T)

81 M(0,x) = M(%,0) =0
s2 fori =1 tomdo

83 forj=1tondo
8.4 if 5; = Tj then
85 | M(imod?2,j) + 1+ M(i—1mod2,j—1)
8.6 else
8.7 M(i mod 2,j)
max(M(i —1mod 2,j), M(imod 2,j — 1))

88 return M(m mod 2,n)

Theorem 4.2. Algorithm 8 computes the length of the longest common sub-
sequence of two strings of length m,n in O(mn) time and O(min(m, n))
space

0

[0
[0
[0
[0
[0
[0
[0
[0

Figure 4.2: The LCS of ACCTACAG
and CATATACCAG is ATACAG.

(]

NNV R R RO

NDNDN PR

HHHH}—\HH@@
@LLU)WNI—‘@

0]
1]
2]
3]
3]
4]
4]
5]

4.3 (Optional) Finding the LCS in Linear Space

How can we find the actual LCS using O(m + n) space: clearly the
search algorithm given in Algorithm 7 will no longer work, since we
don’t have the entire table. Hence we need to be smarter: the lovely
idea here can be called “guess the mid-point”.

The main observation is this: there exists a value g such that

LCS(St:m, Trn) = LCS(S1imy2, Trg) + LCS(Spyag1,m Tgr1n). (41)

I visualize this as follows: when we follow the optimal solution up
from M(m,n) to M(0,0), this optimal solution must cross row m/2 at
some point—this point (/2,q) must provide this partition.

Now using Algorithm 8 on Sy.,,/» and T, and on the reversed
strings S,, /241, and T, we can find the index g that achieves the
equality (4.1). Now we can recurse on the two halves

Algorithm 9: Low-Space LCS-Search(S, T)

91 run Algorithm 8 on S;.,,,/» and T, and on reversed S, /241
and T

92 find g that satisfies equality (4.1)

9.3 Tecurse on Sy, 2, T1.q, and on Sy /241, m, Tyv1,n-

Theorem 4.3. Algorithm 9 runs in time O(mn) and space O(m + n).

Proof. For the runtime, note that the first line of the algorithm runs in
O(mn) time, using Theorem 4.2. Now a linear-time scan can find the

value q that minimizes the sum LCS(S1./2, T1,4) + LCS(Sp/241,m Tys1,n)-

Now for the inductive proof, assume that the rumtime of the recur-
sive calls is at most c(m/2)q + c(m/2)(n — q) = c¢(m/2)n. Summing
this all up, we get at most cmn. O

4.4 Palindrome Deletion

Starting with a string S = sq, s1,...,5,_1, you repeatedly delete
contiguous substrings, each of which is a palinidrome. What is the
fewest number of palindrome deletions which will turn S into the
empty string?

Consider the string “aacbbca”. It’s possible to do it in three moves:
remove the aa then cbbc, then a. However, if you remove cbbc first
you are left with aaa, which can be removed in one move.

Here we given an O(n?) algorithm to do this. Define a recurrence
variable C[i, j] which is the minimial number of palindrome deletions
required to obliterate the substring s;, .. .,s j in isolation. We’ll derive a
recurrence for this.

DYNAMIC PROGRAMMING 23

This idea is essentially that used by
Savitch for his classical result relat-
ing log-space computation to non-
deterministic log-space.

™/ A
ACCTACA G
\ O\ O\
CATATACCAG,
0'/ ay&-l

Figure 4.3: The choice of g = 5 gives the

partition promised in (4.1).

24

Consider a valid way of deleting the string by removing palin-
dromes. For each character draw an arc (above the string) to the char-
acter it is paired with when it is deleted. These arcs are non-crossing.
A character can be paired with itself.

So we consider a subrange form i to j. We'll compute the most

efficient way to delete this using palindromes. We know that the
character at i must be paired with some other character ini...j.
So we simply try all possibilities, and take the one that results in
minimal cost. The one tricky thing is that if the arc is trivial (that is, it
goes from i to 7 or from i to 7 + 1) then it contributes a cost of 1. But
if it is non-trivial then its cost is 0 because those two characters can
be merged (as the first and last character) of the last palindrome that
will be removed from the range [i +1,j —1].

This leads to the following recurrence:

0 ifi >j
1 ifi =j
Cli,j] = . .
1 fked{ii+1 .
min ' tii+1} +Clk+1,j] otherwise
i<k<j|Cli+1,k—1] otherwise
Sk = Si

There are O(n?) DP variables to compute, and each takes O(n)
time. So this algorithm runs in time O(n®) when memoized.

4.5 Strokes

You start with an array A[] of length n consisting of all zeros. A
sequence of Stroke operations is done on A. So Stroke(i, j, ¢) just does
the assignments A[k] < c for all i < k < j. In other words it just sets
that range of elements of A[] to all be equal to c.

You're given G = [go,...,8n—1), a list of positive numbers. Your
goal is to use the minimum number of strokes to convert A to G, so
at the end Ali] = gj for 0 <i < n.

We'll given an O(n?) algorithm to compute the fewest strokes
required for a given input G.

Let s[i, j] be the minimum number of strokes to color the range
[i,j] in total isolation. If i > j thenit’s 0,if i = j then it’s 1. In the
i < j case we consider how we handle position i. One solution is to
simply use a stroke to color i, but not use that stroke for anything to
its right. This is 1 + s[i + 1, j]. On the other hand that same stroke can
be used to color some others to the right of i. Let the first place that it
also colors be at k. This option has stroke count:

min 1+s[i+1,k—1]+slkj] —1.
i<k<j
8 = 8k

DYNAMIC PROGRAMMING

The first 1 is for the stroke that colors i and k. The s[i + 1,k — 1] is
the cost of that range (which does not make use of the first stroke.).
And sk, j] — 1 is the cost of doing the [k, j] range where you have a
"free" stroke of color g coming from the left to color position k (and
perhaps beyond) — thus the —1.

A useful way to visualize this is to think about drawing links
above the pairs of elements whose final coloring is from the same
stroke. These links cannot cross. Each group of connected links rep-
resents one stroke.

Here’s the full recurrence for this solution:

0 ifi>j
.. 1 ifi=j
sifl=q . :
min{l+s[i+1,j], min s[i+1k—1]+s[kj]}
i<k<j
8i = &k

The running time to compute this recurrence is O(n?).

4.6 Longest Path in a Tree

This is an example of DP being applied to trees. Suppose you want
to compute the longest path in an unrooted tree. We set up the DP
algorithm by first rooting the tree, and computing a set ¢; for each
node i which are the children of that node.

What does a path in a rooted tree look like? It can start some-
where, go up (toward the root) for a while. Then turn around and go
back toward a leaf. This leads to the following observation: Any path
in a tree has a unique shallowest node.

A path whose shallowest node is i is said to peak at i. So we let L;
be the length of the longest path peaking at node i. And we let D; be
the length of the longest path going down from node i to a leaf.

Here are the recurrences:

0 if C;i = {}
Di=931+ max D; otherwise
JEC
0 if Ci — {}
Li = Di if |Cz'| =1

Dj,+Dj, +2 otherwise

The term jj is the child of i with the biggest D value. And jj is the
child of i with the second biggest D value. It’s easy to see that these
recurrences are correct, and can be computed in O(#n) time in a tree
with 7 nodes.

25

