
2
Amortized Analysis and MSTs

2.1 Minimum Spanning Trees

Given a connected graph G = (V, E), a spanning tree is a subgraph
T = (V, E0) with E0 ✓ E that has no cycles (so it is a tree), and has
a single connected component (and hence is spanning). If each edge
e has a cost/weight w(e), the cost/weight of the tree T is Âe2E0 w(e).
The goal of the MST (minimum-cost spanning tree) problem is to find
a spanning tree with least weight.

Figure 2.1: A minimum-cost spanning
tree (abstract foliage). Opt(imization)
art by Bob Bosch

In 1956, Joseph Kruskal proposed the following greedy algoritm
that repeatedly selects the least-cost edge that does not form a cy-
cle with previously selected edges. Stated another way: As always,

Algorithm 4: Kruskal’s MST Algorithm

4.1 T ∆
4.2 Sort edges so that w(e1)  w(e2)  · · ·  w(em).
4.3 for i 1 . . . m do
4.4 if T [{ei} does not contain a cycle then
4.5 T T [{ei}
4.6 return T

we will ask the two questions: Is this algorithm correct? And how
efficient is it?

Theorem 2.1. Given any connected graph G, Kruskal’s MST Algorithm
outputs the minimum-cost spanning tree.

Proof. The first observation is that the subgraph T is indeed a span-
ning tree: it is acyclic by construction, and it ultimately forms a con-
nected subgraph. Indeed, if T contained a disconnected component
C, then the connectivity of G means there is at least one edge be-
tween C and V \ C—and the first such edge would be added to T.

To show it is a minimum-cost spanning tree, define a set S of
edges to be safe if there exists some MST that contains all edges in

12

S. We will prove that the edges in T maintained by the algorithm are
always safe. So when the algorithm stops with a spanning tree T, the
only MST containing T is T itself: so T is an MST.

To prove the safety of edges in T, we use induction. As a base
case, observe that the empty set is safe. The following lemma shows
the inductive step.

Lemma 2.2. Suppose S is safe. If C is some (maximal) connected compo-
nent formed by the edges of S, and e is the minimum-cost edge crossing from
C to V \ C, then S [{e} is also safe.

Proof. Take any MST T⇤ containing S (but not e). If e = {u, v},
consider the u-v path in T⇤. Since exactly one of the vertices {u, v}
belongs to C and the other not, there must be a unique edge f on
this path with one endpoint in C and the other outside. This means
T0 := T⇤ � f + e is another spanning tree. Moreover, since e had the
least cost among all edges crossing the cut from C to V \ C, we have
w(e)  w(f). This means the new spanning tree T0 has no higher
cost, and hence is also an MST, showing that S [{e} is also safe.

Now each time we add an edge ei in Kruskal’s algorithm, the edge
connects two different connected components C, C0 (because it does
not create any cycles). Since we consider edges in non-decreasing
order of costs, it is the cheapest edge crossing from C to V \ C (and
also from C0 to V \ C0). This means T [{ei} is also safe, hence we end
with a safe set set, which is the MST.

2.1.1 The Running Time

The algorithm statement above is a bit vague, because it does not
explain how to check whether T [{ei} is acyclic. One simple way
is to just run depth-first search on T to check if the endpoints of ei are
already in the same connected component: this would take O(n) time
in general. Since there are m edges, we get an O(mn) runtime. There
is also the time to sort the m edges, which is O(m log m), but that is
asymptotically smaller than O(mn) for simple graphs. Simple graphs are those with no self-

loops, and no parallel edges. We can
always remove these in a linear-time
processing. You can show that any
simple graph has at most (n

2) edges, and
any connected graph has at least n� 1
edges.

But since we are the ones building T, we can store some extra
information that can allow to do this cycle-checking much faster.
We maintain an extra data structure, called the Set Union/Find data
structure, that offers the following operations:

• MakeSet(u): create a new sington set containing element u.

• Find(u): return the “name” of the set containing element u. The
name can change over time, and the only property we require
from the name is that if we do two consecutive finds for u and v

amortized analysis and msts 13

(without any unions between them) then Find(u) = Find(v) if and
only if u and v belong to the same set.

• Union(u, v): merge the sets containing u, v.

Given these operations, we can flesh out the algorithm even more:

Algorithm 5: Kruskal’s MST Algorithm (Again)

5.1 T ∆
5.2 for v 2 V do MakeSet(v)
5.3 Sort edges so that w(e1)  w(e2)  · · ·  w(em).
5.4 for i 1 . . . m do
5.5 let edge ei = {u, v}
5.6 if Find(u) 6= Find(v) then
5.7 Union(u, v)
5.8 T T [{ei}
5.9 return T

Apart from sorting m numbers (which can be done in time O(m log m)

using MergeSort or HeapSort, say, this algorithm performs n Make-
Set, 2m Find, and n � 1 Union operations. It is easy to make sure Each Union reduces the number of

components by 1 and there are n
vertices, so the total number of unions
is n� 1.

that we can implement each of these operations to take time O(n) per
operation. But now we show how to implement them so that they
take only O(log n) on average per operation! Formally we now show
that:

Theorem 2.3. The Set Union/Find data structure has a list-based im-
plementation where any sequence of M makesets, U unions, and F finds
(starting from an empty state) takes time O(M + F + U log U).

This is enough to ensure that the total runtime of Kruskal’s algo-
rithm is O(m log m) + O(m + n + n log n); the first term dominates to
give a net runtime of O(m log m).

In fact, we can implement the data strcture quite a bit better:

Theorem 2.4. The Set Union/Find data structure has a tree-based im-
plementation where any sequence of M makesets, U unions, and F finds
(starting from an empty state) takes time O(M) + O((F + U) log⇤U).

Here the log⇤ function is the iterated logarithm, which is loosely
the number of times the logarithm function should be applied to
get a result smaller than 2. For details of this proof (and further im-
provements), see the notes on Union/Find from 15-451/651. Note,
however, that the asymptotic runtime of Kruskal’s algorithm does
not improve, since the bottleneck is the O(m log m) time to sort m
numbers.

14

2.2 Amortized Analysis

The basic idea of amortization is simple: you have a process where
some operations are expensive, some others are cheap. You want
to show that there is some a such that over any sequence of T op-
erations, you pay at most T · a for some value a. Then you say the
amortized (or average) cost per operation is at most a.

2.3 The Binary Counter

You have a binary counter that starts off with all zeroes. Each time
the counter increments by 1. So the first few settings are:

The cost of an increment is the number of bits that change. So the
first few increments cost

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . .

What is the amortized cost over T operations? There are many
ways to solve this:

2.3.1 Brute Force

First imagine that T is a power of 2, say 2t. Then observe that the
first 2t�1 costs look the same as the last 2t�1, except for the very last
operation costing one more. So if the sum of the first 2t costs is St, we
get

St = 2St�1 + 1.

And S0 = 1. Solving this gives St = 2t+1 � 1. And hence the amor-
tized cost (per operation) is

2t+1 � 1
2t  2.

Then one can argue that if T is not a power of 2, then break the pro-
cess into prefixes of length that are powers of 2, etc. But all this re-
quires some work. Let’s see other approaches.

2.3.2 Summing More Smartly

Observe that the lowest order bit changes each step. The second
lowest-order bit changes once every other step. The third one changes
once every fourth step. So the number of changes in T steps is at
most

T + dT/2e+ dT/4e+ . . .  2T.

And hence the amortized cost per operation is at most 2.

amortized analysis and msts 15

2.3.3 The Banker’s Method

Let’s maintain the invariant that each 1 has a dollar bill sitting next to
it, that can pay for changing it back to zero. This is vacuously satis-
fied at the start: we start with all zeros, so there are no 1s. Now each
increment consists of changing some suffix of 1s to zeros, followed by
changing a single zero to a 1. All the 1! 0 transitions are paid for by
the dollar bills, so we only need to pay for the single 0! 1 transition,
and to put down the dollar bill on it. Hence we pay $2 per operation.

We call this the banker’s method: we show that for each operation
we pay $a, some of which is used to pay for the current operation
and some to save for later, more expensive operations. You can think
of this as keeping a bank account, and saving the extra amount from
the cheaper operations to use for the expensive operations.

2.4 The Potential Function Method

Let us present a more general framework in which most amortized
analyses can be placed. At each time, the system is supposed to be
in some state, drawn from a collection W of states. We maintain a
function F : W ! R called the potential function. With an operation
at time t the system moves from some state st�1 to some other state
st. This changes the potential of the state from F(st�1) to F(st).
Suppose the operation costs ct. Then the amortized cost at time t is
defined as:

At := ct +
�
F(st)�F(st1)

�
. (2.1)

If we sum this over all times, the telescoping sum gives

T

Â
t=1

At =
T

Â
t=1

ct + F(sT)�F(s0).

Now suppose we can show the following three things:

1. The potential starts at zero (i.e., F(s0) = 0),

2. it is non-negative, so that F(sT) � 0, and

3. At  a for all times t.

Then we get

T a �
T

Â
t=1

At =
T

Â
t=1

ct + (� 0� 0).

In other words, the total cost is at most Ta, and hence the amortized
cost is at most a.

This all sounds very abstract: I like to think of F(s) as being the
bank account when you get to state s. The expression on the right

16

of (??) is the actual cost of the operation, plus the change in the bank
account. That is what we have to pay per operation. So sometimes
the operations are cheap but the bank account goes up, and we need
to pay for this increase. At other times, the operations are expensive,
and then the bank account goes down, with this decrease helping to
pay this larger cost (and us paying only the difference).

For example: if the current number in the binary counter is s, then
define

F(s) = number of 1s in the binary representation of s.

Now if we changing from s to s + 1 requires us to flip f bits, f � 1 of
these flips must be 1! 0, and the last one is 0! 1. So the number of
1s decreases by f � 2. This means the amortized cost at each timestep
is

As!s+1 = f � (f � 2) = 2.

Observe that the potential here matches the total money in the bank
from the previous analysis.

2.4.1 Why and How

You may ask: why even talk about potential functions, why not just
use the banker’s method all the time? The answer is that potentials
are a more general idea, and sometimes they will be more useful. We
will see some later in the course.

And the next natural question: how do you come up with a poten-
tail function? This is more difficult, there is no silver bullet. The only
suggestion is to look closely what the algorithm

2.5 The List-Based Union-Find Data Structure

Recall that the operations are:

1. Makeset(e): create a singleton set {e}, costs 1.

2. Find(e): return the name of the set containing e, costs 1.

3. Union(e, f): merges the sets A, B containing e, f , costs min(|A|, |B|).

With n elements in total, observe that the worst-case cost of an
operation could now be W(n). Indeed, if we union two lists of length
n/2, we pay n/2. Of course, building up these long lists from scratch
requires many operations, so we may hope the amortized cost is low.
This is precisely what we show next.

amortized analysis and msts 17

2.5.1 The Amortized Cost

Theorem 2.5. If we perform n Makesets, m Finds and u Unions using
the list-based union-find data structure, the total cost is at most

m + O(n log n).

Here are two proofs of this theorem:

1. Using the banker’s method: each Makeset(e) brings log2 n dollars
with it, which is stored with the element e. Each time e belongs to
the smaller set involved in a Union, it pays for this operation. But
the size of the set containing e at least doubles, so e has to pay at
most log2 n times.

2. Using potentials: if the sets at the current state s have size n1, . . . , nk,
let

F(s) = Â
i

ni log2(n/ni).

Each makeset costs log2n, the finds cost 1. And when we replace
sets of size ni  nj by a new set of size ni + nj, the amortized cost
for each union is

ni + (ni + nj) log2
n

ni + nj
� ni log2

n
ni
� nj log2

n
nj

= ni � ni log2
ni + nj

ni| {z }
�1

�nj log2
ni + nj

nj| {z }
�0

 0.

Hence, the total cost is O(m + n log n).

One can improve both the analyses a bit and show a total cost of

m + n + O(u log n).

Indeed, each makeset only costs a dollar now, but inctead each union
operation brings in log2 n dollars, with the first union involving
element e giving its log2 n dollars to e. Since the number of unions
is at most n (Be sure you see why?), m + n + O(u log n) is a better
bound than m + O(n log n).

