15-750:Algorithms in the Real World

Data Compression:

Linear Transform Coding
(for both lossless and lossy compression)

5. Linear Transform Coding

Goal: Transform the data into a form that is easily compressible (through lossless or lossy compression)

Select a set of linear basis functions ϕ_{i} that span the space

- sin, cos, spherical harmonics, wavelets, ...

Example: Cosine Transform

Other Transforms

Polynomial:

Wavelet (Haar):

How to Pick a Transform

Goals:

- Decorrelate the data
- Low coefficients for many terms
- Basis functions that can be ignored from the perception point-of-view

15-750:Algorithms in the Real World

Quantization (lossy)

Scalar Quantization

Quantize regions of values into a single value
E.g. Drop least significant bit (Can be used to reduce \# of bits for a pixel)

Q: Why is this lossy?
Many-to-one mapping

Two types

- Uniform: Mapping is linear
- Non-uniform: Mapping is non-linear

Scalar Quantization

uniform

non uniform

Q: Why use non-uniform?
Error metric might be non-uniform.
E.g. Human eye sensitivity to specific color regions

Can formalize the mapping problem as an optimization problem

Vector Quantization

Mapping a multi-dimensional space into a smaller set of messages

Encode
Decode

Vector Quantization (VQ)

What do we use as vectors?

- Color (Red, Green, Blue)
- Can be used, for example to reduce 24bits/pixel to 8bits/pixel
- Used in some monitors to reduce data rate from the CPU (colormaps)
- K consecutive samples in audio
- Block of K pixels in an image

How do we decide on a codebook

- Typically done with clustering

VQ most effective when the variables along the dimensions of the space are correlated

Vector Quantization: Example

Case Study: JPEG

A nice example since it uses many techniques:

- Transform coding (Cosine transform)
- Scalar quantization
- Residual coding
- Run-length coding
- Huffman or arithmetic coding

15-750: Algorithms in the Real World

Algorithms for coding
(Error Correcting Codes)

$$
\begin{aligned}
& \text { Welc**e } t^{*} t^{*} \text { is clas* } o^{*} c^{*} d^{*} n g \\
& \quad y^{*} u \text { a** in } f^{*} r \text { a } f^{*} n \text { rid*! }
\end{aligned}
$$

What do these sentences say?

Why did this work?

Redundancy!

Codes are clever ways of judiciously adding redundancy to enable recovery under "noise".

General Model

codeword' (c')
decoder
message or error
"Noise" introduced by the channel:

- changed fields in the codeword vector (e.g. a flipped bit).
- Called errors
- missing fields in the codeword vector (e.g. a lost byte).
- Called erasures

How the decoder deals with errors and/or erasures?

- detection (only needed for errors)
- correction

Applications

Numerous applications:
Some examples

- Storage: Hard disks, cloud storage, NAND flash...
- Wireless: Cell phones, wireless links,
- Satellite and Space: TV, Mars rover, ...

Reed-Solomon codes are by far the most used in practice.

Low density parity check codes (LDPC) codes used for 4G (and 5G) communication and NAND flash

Block Codes

symbols (e.g., bits)

message I

message 2

Other kind: convolutional codes (we won't cover it)...

Block Codes

message or error

- Each message and codeword is of fixed size
- Notation:

"length of the code"
length of the codeword

C = "code" = set of codewords

Simple Examples

3-Repetition code: $k=1, n=3$

Message		Codeword
0	->	000
1	->	111

- How many erasures can be recovered?
- How many errors can be detected?
- Up to how many errors can be corrected?

Errors are much harder to deal with than erasures.
Why?

