15-750: Graduate Algorithms (Spring 2020)
Some notes on Concentration Bounds Last Updated: February 18, 2020

1 An Unbiased Coin

An unbiased coin X (which takes on values 0 and 1, each with probability 1/2 has mean

1 1
p=E[X] = 0+ 51=1/

(We will always use p for the mean of the random variables.) And it has variance

Var(X) = E[(X — )] = 20— )’ + 5 (- 1/2° = |

Another equivalent expression for variance is
Var(X) = E[X?] - E[X]%
But X takes on value 0 and 1, so X2 = X. And so
BIX?] - BIX]* =E[X] - EIXP =5 - 5P =5-7=7
We will also use o2 for the variance, and o for the standard deviation. Hence, an unbiased {0,1}
r.v. has u =1/2 and 02 = 1/4.

Exercise #1: show that if the coin comes up heads with probability p, then E[X] = p and Var(X) =
p(1 —p) <E[X].

1.1 Sums of Random Variables

Linearity of expectation says:
E[X +Y] =E[X]+E[Y].

Linearity of expectations is true even for correlated random variables, which are not independent.
For independent random variables, we get more—we can prove that variances add up. So

Var(X +Y) = Var(X) + Var(Y) for independent X, Y.

Exercise #2: suppose X1, Xz, ..., X, all have the same mean p and variance o2, and are all inde-
pendent. If S =3"" | X;. Show that E[S] = nu and Var(S) = no?. Use the calculations above to infer
that if the sum S of n unbiased coin tosses has mean y = n/2 and variance o = n/4.

Exercise #2b: Let T be the sum of n coin tosses (where now the coin has bias p = ﬁ) Use Exercise
#1 to infer that T has mean E[T| = y/n and variance Var(T) = /n(1 — ﬁ) = y/n — 1. Moreover,

observe that Var(T") < E[T].



2 The Two Questions
We are interested in two questions:

1. Given a random variable X, and some value ¢, what is the value of Pr[X > ¢]? L.e., what is
the likelihood of being in the “tail” of the distribution?

2. Given a random variable X, and some target likelihood & (say § = 1/n? for concreteness).
What is the value of £5 such that the likelihood of being in the “tail” of the distribution is at
most §7

Most of the time, we solve the former problem (for a general ¢) to get some probability value that
is a function of ¢. Then we work backwards from there—set this probability value to ¢ and figure
out what ¢ that corresponds to.

3 The Concentration Bounds

3.1 Markov’s Inequality

Let X be a positive random variable. Then for all k£ > 1,

Exercise #3: Let S be sum of n unbiased coin tosses. Show that Pr[S > 3n/4] < 2/3.
Let T be as in Exercise #2b. Show that Pr[T" > 3n/4] < %.

3.2 Chebyshev’s Inequality

For any r.v. X with mean u and variance o2, the following holds.
1
PI"HX—MZk‘U]Sﬁ-

Now we don’t need X to be non-negative. This is Chebyshev’s inequality. The proof, interestingly,
just applies Markov’s to the r.v. Y = (X — E[X])%

Exercise #4: Let S be sum of n unbiased coin tosses. Use Chebyshev to show that Pr[S > 3n/4] < 2/n.
Show that

Pr[S > n/2 +tv/n/2] < 1/t% (2)

Observe that in order to a tail probability of § = 1/n, we would have to set t = y/n. So we would only
be able to say Pr[S > n/2 4+ n/2] < 1/n, which is very weak. (In fact the probability is zero.)

Let T be as in Exercise #2b. Show that Pr[T > 3n/4] < O(—573).

3.3 Chernoff/Hoeffding Bounds

Now we’ll assume more about the random variables: that they are sums of “small” random variables
(say taking on values between 0 and 1) that are independent.



Theorem 1 (Hoeffding’s Bound) Suppose X = X; + X2 + ... + X,,, where the X;s are in-
dependent random variables taking on values in the interval [0,1]. Let p = E[X] = >, E[X}].
Then

Pr[X > ji+ A < oxp (-Ji A) (3)
Pelx <= < e (3 @)

Exercise #4: Let S be sum of n unbiased coin tosses. Use Chernoff to show that

Pr[S > 3n/4] < exp (— TEZ/Z:L)/Z) = exp(—n/20).

Show that for ¢t < 24/n,

Pr[S > n/2 + tv/n/2] < exp (—%) < exp (—t?f) _ 8, 5)

Observe that we’re getting a much better bound than in (2), by using more properties about S, about
it being a sum of small independent r.v.s.

Use this to show that if we want the tail probability Pr[S > u + A] being at most § = 1/n?, show that
setting A = 2v/nInn suffices. (Hint: if you want the right side of (5) to be 1/n?, what value of ¢ would
you set? What value of A would that correspond to.

4 Union Bound

Very often we will have a collection of “bad” events &1, &, ...,E,. Then

Pr[at least one of the bad events &; happens] = Pr[U;&;] < Z Pr[&;].

If we want none of these n bad events to happen, then we can set Pr[&;] < 1/n%. Then

Prlat least one of the bad events & happens] < Z(l/n2) <1/n.

7

So
Pr[none of the bad events & happens] > 1 —1/n.

5 Balls into Bins

This is the example from lecture. We throw n balls into n bins, uniformly and independently. Want
to control the maximum load of any bin.

5.1 Defining the Random Variables

So if Xj; is the indicator for whether ball i goes into bin j, then X;; = 1 with probability 1/n, and
0 otherwise. Note that Xj;, X;; are not independent of each other, since X;; = 1 means X;; = 0
for j' # j, the ball i can only go into one bin. However X1, Xa;, ..., X,,; are all independent, since
the choices for the balls are made independently.



Let L; be the load of bin j. Then

Lj=Y X (6)

And the right side is a sum of independent r.v.s. (You will almost surely use a Chernoff bound.)
We want to control the max-load. That is

Limax = mjax L.

What result do we want? Today we want to show that
Pr[Lmax < blah] > large =1 —1/n. (7)

This is a “with high probability” result.

The max of a bunch of random variables is not as well-behaved as a sum. Hence, to show (7), we
often use a union bound—show that each of the L; variables (one for each bin) are smaller than
blah with probability 1/n2, and then take a union bound over all bins j.

5.2 Bounding Load of Each Bin
Let’s use B for blah. Fix a bin j, and we want to find B such that
Pr[L; > B] < 1/n*. (8)
Let’s see what we can do with our favorite concentration bounds above:
5.2.1 Prelim Calculations

What is the expectation E[X;;]7 It is

1 1
1-=)-04+—-1=1/n.
(=) 04— /n

Hence by linearity of expectations:

E[L;] =E

Note that if we had m balls, the expected load would be m/n. As expected (har har).

What’s the variance? You can calculate it by hand, but not that each X;; is like a coin with bias
p = 1/n, so you can read off its variance from Section #1 as being p(1 — p) = "n—gl And since L;
n—1 n—1

is a sum of independent coin tosses, their variance adds up to give Var(L;) =n - =

5.2.2 Markov

The mean of L; is 4 = 1, and we want to find B such that the tail probability is 1 /n?. So all
Markov can say is that we will not be more than n?y with probability 1/n2. Useless.



5.2.3 Chebyshev

Again, we want to prove (8) for as small a B as possible, maybe using Chebyshev. So let’s get (8)
into a Chebyshev-like form. (Recall u = E[L;] =1.)

Pr[L; > B] = Pr[L; — p > (B —1)] < Pr [|Lj ol > (B; 1)0] .

Chebyshev says that deviating by k times o has likelihood at most 1/k2. So deviating by (B —1)/c
times o has likelihood at most o/(B — 1)2. Set this equal to 1/n?, what we want. You get
o 1

= — :1 :1 —1: .
51 n<:>B +on +(n—1)=n

So Chebyshev says: the chance of the load being more than B = n is at most 1/n?.

Again useless, since we know that no load can be more than n anyways, there are only n balls.
5.2.4 Chernoff

Now to prove (8) for as small a B as possible using Chernoff. Again, get it into a Chernoff-like
form:
Pr[L; > B] =Pr[L; > p+ (B —1)].

This is at most exp(—%). So set this equal to 1/n? and solve for B.
eXp(_2p(eEjr_Bl)—21) BRI eXp(2/(fi_Bl)—21) =
Take logs to get 5 )
2;(L—|-_Bl)—1 =2lnn.
But p =1, so 5 )
1
(B—l—l) = 2lnn.

Now solving for B exactly is annoying. But if we choose B slightly larger than strictly necessary,
we’d still be fine, the probability would be even lower.

Here’s what I’d do now: B — 1 and B + 1 are close to B (if B is large). So squint, then the LHS
becomes like B?/B = B. So we want B =~ 2Inn. Probably we lost a bit in this approximation, so
try B = 161nn. Then
(B-1>_ (B/2* B
> =—=2Inn.
B+1 = 28 8 "

As desired.!

LOf course, we could have been much more careful with these approximations, but that’s not the point—for now.
We just want a ballpark estimate, which we can refine at leisure.



5.2.5 Wrapup

So we showed: the load L; of each machine j is more than B = 16Inn with probability < 1/n?.
Union bounding over all these “bad” events, the probability that some machine having load more
than B is 1/n. So the probability of all machines have load at most O(Inn) is 1 — 1/n. This
proves (7).
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