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1 An Unbiased Coin

An unbiased coin X (which takes on values 0 and 1, each with probability 1/2 has mean

µ = E[X] =
1

2
0 +

1

2
1 = 1/2.

(We will always use µ for the mean of the random variables.) And it has variance

Var(X) = E[(X − µ)2] =
1

2
(0− 1

2
)2 +

1

2
(1− 1/2)2 =

1

4
.

Another equivalent expression for variance is

Var(X) = E[X2]− E[X]2.

But X takes on value 0 and 1, so X2 = X. And so

E[X2]− E[X]2 = E[X]− E[X]2 =
1

2
− (

1

2
)2 =

1

2
− 1

4
=

1

4
.

We will also use σ2 for the variance, and σ for the standard deviation. Hence, an unbiased {0, 1}
r.v. has µ = 1/2 and σ2 = 1/4.

Exercise #1: show that if the coin comes up heads with probability p, then E[X] = p and Var(X) =
p(1− p) ≤ E[X].

1.1 Sums of Random Variables

Linearity of expectation says:
E[X + Y ] = E[X] + E[Y ].

Linearity of expectations is true even for correlated random variables, which are not independent.
For independent random variables, we get more—we can prove that variances add up. So

Var(X + Y ) = Var(X) + Var(Y ) for independent X,Y .

Exercise #2: suppose X1, X2, . . . , Xn all have the same mean µ and variance σ2, and are all inde-
pendent. If S =

∑n
i=1Xi. Show that E[S] = nµ and Var(S) = nσ2. Use the calculations above to infer

that if the sum S of n unbiased coin tosses has mean µ = n/2 and variance σ2 = n/4.

Exercise #2b: Let T be the sum of n coin tosses (where now the coin has bias p = 1√
n

). Use Exercise

#1 to infer that T has mean E[T ] =
√
n and variance Var(T ) =

√
n(1 − 1√

n
) =
√
n − 1. Moreover,

observe that Var(T ) ≤ E[T ].
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2 The Two Questions

We are interested in two questions:

1. Given a random variable X, and some value `, what is the value of Pr[X ≥ `]? I.e., what is
the likelihood of being in the “tail” of the distribution?

2. Given a random variable X, and some target likelihood δ (say δ = 1/n2 for concreteness).
What is the value of `δ such that the likelihood of being in the “tail” of the distribution is at
most δ?

Most of the time, we solve the former problem (for a general `) to get some probability value that
is a function of `. Then we work backwards from there—set this probability value to δ and figure
out what ` that corresponds to.

3 The Concentration Bounds

3.1 Markov’s Inequality

Let X be a positive random variable. Then for all k ≥ 1,

Pr[ X ≥ kµ ] ≤ 1

k
. (1)

Exercise #3: Let S be sum of n unbiased coin tosses. Show that Pr[S ≥ 3n/4] ≤ 2/3.

Let T be as in Exercise #2b. Show that Pr[T ≥ 3n/4] ≤ 4
3
√
n

.

3.2 Chebyshev’s Inequality

For any r.v. X with mean µ and variance σ2, the following holds.

Pr[ |X − µ| ≥ kσ ] ≤ 1

k2
.

Now we don’t need X to be non-negative. This is Chebyshev’s inequality. The proof, interestingly,
just applies Markov’s to the r.v. Y = (X − E[X])2.

Exercise #4: Let S be sum of n unbiased coin tosses. Use Chebyshev to show that Pr[S ≥ 3n/4] ≤ 2/n.
Show that

Pr[S ≥ n/2 + t
√
n/2] ≤ 1/t2. (2)

Observe that in order to a tail probability of δ = 1/n, we would have to set t =
√
n. So we would only

be able to say Pr[S ≥ n/2 + n/2] ≤ 1/n, which is very weak. (In fact the probability is zero.)

Let T be as in Exercise #2b. Show that Pr[T ≥ 3n/4] ≤ O( 1

n3/2 ).

3.3 Chernoff/Hoeffding Bounds

Now we’ll assume more about the random variables: that they are sums of “small” random variables
(say taking on values between 0 and 1) that are independent.
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Theorem 1 (Hoeffding’s Bound) Suppose X = X1 + X2 + . . . + Xn, where the Xis are in-
dependent random variables taking on values in the interval [0, 1]. Let µ = E[X] =

∑
iE[Xi].

Then

Pr[X > µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
(3)

Pr[X < µ− λ] ≤ exp

(
−λ

2

3µ

)
(4)

Exercise #4: Let S be sum of n unbiased coin tosses. Use Chernoff to show that

Pr[S ≥ 3n/4] ≤ exp

(
− (n/4)2

n+ n/4

)
= exp(−n/20).

Show that for t ≤ 2
√
n,

Pr[S ≥ n/2 + t
√
n/2] ≤ exp

(
− t2n/4

n+ t
√
n/2

)
≤ exp

(
− t

2n/4

2n

)
= e−t2/8. (5)

Observe that we’re getting a much better bound than in (2), by using more properties about S, about
it being a sum of small independent r.v.s.

Use this to show that if we want the tail probability Pr[S ≥ µ+ λ] being at most δ = 1/n2, show that
setting λ = 2

√
n lnn suffices. (Hint: if you want the right side of (5) to be 1/n2, what value of t would

you set? What value of λ would that correspond to.

4 Union Bound

Very often we will have a collection of “bad” events E1, E2, . . . , En. Then

Pr[at least one of the bad events Ei happens] = Pr[∪iEi] ≤
∑
i

Pr[Ei].

If we want none of these n bad events to happen, then we can set Pr[Ei] ≤ 1/n2. Then

Pr[at least one of the bad events Ei happens] ≤
∑
i

(1/n2) ≤ 1/n.

So
Pr[none of the bad events Ei happens] ≥ 1− 1/n.

5 Balls into Bins

This is the example from lecture. We throw n balls into n bins, uniformly and independently. Want
to control the maximum load of any bin.

5.1 Defining the Random Variables

So if Xij is the indicator for whether ball i goes into bin j, then Xij = 1 with probability 1/n, and
0 otherwise. Note that Xij , Xij′ are not independent of each other, since Xij = 1 means Xij′ = 0
for j′ 6= j, the ball i can only go into one bin. However X1j , X2j , . . . , Xnj are all independent, since
the choices for the balls are made independently.
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Let Lj be the load of bin j. Then

Lj =
n∑
i=1

Xij . (6)

And the right side is a sum of independent r.v.s. (You will almost surely use a Chernoff bound.)
We want to control the max-load. That is

Lmax = max
j
Lj .

What result do we want? Today we want to show that

Pr[Lmax ≤ blah] ≥ large = 1− 1/n. (7)

This is a “with high probability” result.

The max of a bunch of random variables is not as well-behaved as a sum. Hence, to show (7), we
often use a union bound—show that each of the Lj variables (one for each bin) are smaller than
blah with probability 1/n2, and then take a union bound over all bins j.

5.2 Bounding Load of Each Bin

Let’s use B for blah. Fix a bin j, and we want to find B such that

Pr[Lj ≥ B] ≤ 1/n2. (8)

Let’s see what we can do with our favorite concentration bounds above:

5.2.1 Prelim Calculations

What is the expectation E[Xij ]? It is

(1− 1

n
) · 0 +

1

n
· 1 = 1/n.

Hence by linearity of expectations:

E[Lj ] = E

[∑
i

Xij

]
=
∑
i

E[Xij ] = n · 1/n = 1.

Note that if we had m balls, the expected load would be m/n. As expected (har har).

What’s the variance? You can calculate it by hand, but not that each Xij is like a coin with bias
p = 1/n, so you can read off its variance from Section #1 as being p(1 − p) = n−1

n2 . And since Li
is a sum of independent coin tosses, their variance adds up to give Var(Lj) = n · n−1

n2 = n−1
n .

5.2.2 Markov

The mean of Lj is µ = 1, and we want to find B such that the tail probability is 1/n2. So all
Markov can say is that we will not be more than n2µ with probability 1/n2. Useless.
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5.2.3 Chebyshev

Again, we want to prove (8) for as small a B as possible, maybe using Chebyshev. So let’s get (8)
into a Chebyshev-like form. (Recall µ = E[Lj ] = 1.)

Pr[Lj ≥ B] = Pr[Lj − µ ≥ (B − 1)] ≤ Pr

[
|Lj − µ| ≥

(B − 1

σ

)
σ

]
.

Chebyshev says that deviating by k times σ has likelihood at most 1/k2. So deviating by (B−1)/σ
times σ has likelihood at most σ2/(B − 1)2. Set this equal to 1/n2, what we want. You get

σ

B − 1
=

1

n
⇐⇒ B = 1 + σn = 1 + (n− 1) = n.

So Chebyshev says: the chance of the load being more than B = n is at most 1/n2.

Again useless, since we know that no load can be more than n anyways, there are only n balls.

5.2.4 Chernoff

Now to prove (8) for as small a B as possible using Chernoff. Again, get it into a Chernoff-like
form:

Pr[Lj ≥ B] = Pr[Lj ≥ µ+ (B − 1)].

This is at most exp(− (B−1)2
2µ+B−1). So set this equal to 1/n2 and solve for B.

exp(− (B − 1)2

2µ+B − 1
) =

1

n2
⇐⇒ exp(

(B − 1)2

2µ+B − 1
) = n2.

Take logs to get
(B − 1)2

2µ+B − 1
= 2 lnn.

But µ = 1, so
(B − 1)2

B + 1
= 2 lnn.

Now solving for B exactly is annoying. But if we choose B slightly larger than strictly necessary,
we’d still be fine, the probability would be even lower.

Here’s what I’d do now: B − 1 and B + 1 are close to B (if B is large). So squint, then the LHS
becomes like B2/B = B. So we want B ≈ 2 lnn. Probably we lost a bit in this approximation, so
try B = 16 lnn. Then

(B − 1)2

B + 1
≥ (B/2)2

2B
=
B

8
= 2 lnn.

As desired.1

1Of course, we could have been much more careful with these approximations, but that’s not the point—for now.
We just want a ballpark estimate, which we can refine at leisure.
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5.2.5 Wrapup

So we showed: the load Lj of each machine j is more than B = 16 lnn with probability ≤ 1/n2.
Union bounding over all these “bad” events, the probability that some machine having load more
than B is 1/n. So the probability of all machines have load at most O(lnn) is 1 − 1/n. This
proves (7).
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