1 An Unbiased Coin

An unbiased coin X (which takes on values 0 and 1, each with probability $1 / 2$ has mean

$$
\mu=\mathbb{E}[X]=\frac{1}{2} 0+\frac{1}{2} 1=1 / 2 .
$$

(We will always use μ for the mean of the random variables.) And it has variance

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\frac{1}{2}\left(0-\frac{1}{2}\right)^{2}+\frac{1}{2}(1-1 / 2)^{2}=\frac{1}{4} .
$$

Another equivalent expression for variance is

$$
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} .
$$

But X takes on value 0 and 1 , so $X^{2}=X$. And so

$$
\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\mathbb{E}[X]-\mathbb{E}[X]^{2}=\frac{1}{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} .
$$

We will also use σ^{2} for the variance, and σ for the standard deviation. Hence, an unbiased $\{0,1\}$ r.v. has $\mu=1 / 2$ and $\sigma^{2}=1 / 4$.

Exercise \#1: show that if the coin comes up heads with probability p, then $\mathbb{E}[X]=p$ and $\operatorname{Var}(X)=$ $p(1-p) \leq \mathbb{E}[X]$.

1.1 Sums of Random Variables

Linearity of expectation says:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

Linearity of expectations is true even for correlated random variables, which are not independent. For independent random variables, we get more - we can prove that variances add up. So

$$
\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \quad \text { for independent } X, Y
$$

Exercise \#2: suppose $X_{1}, X_{2}, \ldots, X_{n}$ all have the same mean μ and variance σ^{2}, and are all independent. If $S=\sum_{i=1}^{n} X_{i}$. Show that $\mathbb{E}[S]=n \mu$ and $\operatorname{Var}(S)=n \sigma^{2}$. Use the calculations above to infer that if the sum S of n unbiased coin tosses has mean $\mu=n / 2$ and variance $\sigma^{2}=n / 4$.

Exercise \#2b: Let T be the sum of n coin tosses (where now the coin has bias $p=\frac{1}{\sqrt{n}}$). Use Exercise $\# 1$ to infer that T has mean $\mathbb{E}[T]=\sqrt{n}$ and variance $\operatorname{Var}(T)=\sqrt{n}\left(1-\frac{1}{\sqrt{n}}\right)=\sqrt{n}-1$. Moreover, observe that $\operatorname{Var}(T) \leq \mathbb{E}[T]$.

2 The Two Questions

We are interested in two questions:

1. Given a random variable X, and some value ℓ, what is the value of $\operatorname{Pr}[X \geq \ell]$? I.e., what is the likelihood of being in the "tail" of the distribution?
2. Given a random variable X, and some target likelihood δ (say $\delta=1 / n^{2}$ for concreteness). What is the value of ℓ_{δ} such that the likelihood of being in the "tail" of the distribution is at most δ ?

Most of the time, we solve the former problem (for a general ℓ) to get some probability value that is a function of ℓ. Then we work backwards from there - set this probability value to δ and figure out what ℓ that corresponds to.

3 The Concentration Bounds

3.1 Markov's Inequality

Let X be a positive random variable. Then for all $k \geq 1$,

$$
\begin{equation*}
\operatorname{Pr}[X \geq k \mu] \leq \frac{1}{k} \tag{1}
\end{equation*}
$$

Exercise \#3: Let S be sum of n unbiased coin tosses. Show that $\operatorname{Pr}[S \geq 3 n / 4] \leq 2 / 3$.
Let T be as in Exercise \#2b. Show that $\operatorname{Pr}[T \geq 3 n / 4] \leq \frac{4}{3 \sqrt{n}}$.

3.2 Chebyshev's Inequality

For any r.v. X with mean μ and variance σ^{2}, the following holds.

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

Now we don't need X to be non-negative. This is Chebyshev's inequality. The proof, interestingly, just applies Markov's to the r.v. $Y=(X-E[X])^{2}$.

Exercise \#4: Let S be sum of n unbiased coin tosses. Use Chebyshev to show that $\operatorname{Pr}[S \geq 3 n / 4] \leq 2 / n$.
Show that

$$
\begin{equation*}
\operatorname{Pr}[S \geq n / 2+t \sqrt{n} / 2] \leq 1 / t^{2} \tag{2}
\end{equation*}
$$

Observe that in order to a tail probability of $\delta=1 / n$, we would have to set $t=\sqrt{n}$. So we would only be able to say $\operatorname{Pr}[S \geq n / 2+n / 2] \leq 1 / n$, which is very weak. (In fact the probability is zero.)
Let T be as in Exercise $\# 2 b$. Show that $\operatorname{Pr}[T \geq 3 n / 4] \leq O\left(\frac{1}{n^{3 / 2}}\right)$.

3.3 Chernoff/Hoeffding Bounds

Now we'll assume more about the random variables: that they are sums of "small" random variables (say taking on values between 0 and 1) that are independent.

Theorem 1 (Hoeffding's Bound) Suppose $X=X_{1}+X_{2}+\ldots+X_{n}$, where the $X_{i} s$ are independent random variables taking on values in the interval $[0,1]$. Let $\mu=E[X]=\sum_{i} E\left[X_{i}\right]$. Then

$$
\begin{gather*}
\operatorname{Pr}[X>\mu+\lambda] \leq \exp \left(-\frac{\lambda^{2}}{2 \mu+\lambda}\right) \tag{3}\\
\operatorname{Pr}[X<\mu-\lambda] \leq \exp \left(-\frac{\lambda^{2}}{3 \mu}\right) \tag{4}
\end{gather*}
$$

Exercise \#4: Let S be sum of n unbiased coin tosses. Use Chernoff to show that

$$
\operatorname{Pr}[S \geq 3 n / 4] \leq \exp \left(-\frac{(n / 4)^{2}}{n+n / 4}\right)=\exp (-n / 20)
$$

Show that for $t \leq 2 \sqrt{n}$,

$$
\begin{equation*}
\operatorname{Pr}[S \geq n / 2+t \sqrt{n} / 2] \leq \exp \left(-\frac{t^{2} n / 4}{n+t \sqrt{n} / 2}\right) \leq \exp \left(-\frac{t^{2} n / 4}{2 n}\right)=e^{-t^{2} / 8} \tag{5}
\end{equation*}
$$

Observe that we're getting a much better bound than in (2), by using more properties about S, about it being a sum of small independent r.v.s.
Use this to show that if we want the tail probability $\operatorname{Pr}[S \geq \mu+\lambda]$ being at most $\delta=1 / n^{2}$, show that setting $\lambda=2 \sqrt{n \ln n}$ suffices. (Hint: if you want the right side of (5) to be $1 / n^{2}$, what value of t would you set? What value of λ would that correspond to.

4 Union Bound

Very often we will have a collection of "bad" events $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$. Then

$$
\operatorname{Pr}\left[\text { at least one of the bad events } \mathcal{E}_{i} \text { happens }\right]=\operatorname{Pr}\left[\cup_{i} \mathcal{E}_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[\mathcal{E}_{i}\right]
$$

If we want none of these n bad events to happen, then we can set $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leq 1 / n^{2}$. Then

$$
\operatorname{Pr}\left[\text { at least one of the bad events } \mathcal{E}_{i} \text { happens }\right] \leq \sum_{i}\left(1 / n^{2}\right) \leq 1 / n
$$

So
$\operatorname{Pr}\left[\right.$ none of the bad events \mathcal{E}_{i} happens $] \geq 1-1 / n$.

5 Balls into Bins

This is the example from lecture. We throw n balls into n bins, uniformly and independently. Want to control the maximum load of any bin.

5.1 Defining the Random Variables

So if $X_{i j}$ is the indicator for whether ball i goes into bin j, then $X_{i j}=1$ with probability $1 / n$, and 0 otherwise. Note that $X_{i j}, X_{i j^{\prime}}$ are not independent of each other, since $X_{i j}=1$ means $X_{i j^{\prime}}=0$ for $j^{\prime} \neq j$, the ball i can only go into one bin. However $X_{1 j}, X_{2 j}, \ldots, X_{n j}$ are all independent, since the choices for the balls are made independently.

Let L_{j} be the load of bin j. Then

$$
\begin{equation*}
L_{j}=\sum_{i=1}^{n} X_{i j} . \tag{6}
\end{equation*}
$$

And the right side is a sum of independent r.v.s. (You will almost surely use a Chernoff bound.) We want to control the max-load. That is

$$
L_{\max }=\max _{j} L_{j} .
$$

What result do we want? Today we want to show that

$$
\begin{equation*}
\operatorname{Pr}\left[L_{\max } \leq \text { blah }\right] \geq \text { large }=1-1 / n . \tag{7}
\end{equation*}
$$

This is a "with high probability" result.
The max of a bunch of random variables is not as well-behaved as a sum. Hence, to show (7), we often use a union bound-show that each of the L_{j} variables (one for each bin) are smaller than blah with probability $1 / n^{2}$, and then take a union bound over all bins j.

5.2 Bounding Load of Each Bin

Let's use B for blah. Fix a bin j, and we want to find B such that

$$
\begin{equation*}
\operatorname{Pr}\left[L_{j} \geq B\right] \leq 1 / n^{2} \tag{8}
\end{equation*}
$$

Let's see what we can do with our favorite concentration bounds above:

5.2.1 Prelim Calculations

What is the expectation $\mathbb{E}\left[X_{i j}\right]$? It is

$$
\left(1-\frac{1}{n}\right) \cdot 0+\frac{1}{n} \cdot 1=1 / n
$$

Hence by linearity of expectations:

$$
\mathbb{E}\left[L_{j}\right]=\mathbb{E}\left[\sum_{i} X_{i j}\right]=\sum_{i} \mathbb{E}\left[X_{i j}\right]=n \cdot 1 / n=1
$$

Note that if we had m balls, the expected load would be m / n. As expected (har har).
What's the variance? You can calculate it by hand, but not that each $X_{i j}$ is like a coin with bias $p=1 / n$, so you can read off its variance from Section \#1 as being $p(1-p)=\frac{n-1}{n_{n-1}^{2}}$. And since L_{i} is a sum of independent coin tosses, their variance adds up to give $\operatorname{Var}\left(L_{j}\right)=n \cdot \frac{n-1}{n^{2}}=\frac{n-1}{n}$.

5.2.2 Markov

The mean of L_{j} is $\mu=1$, and we want to find B such that the tail probability is $1 / n^{2}$. So all Markov can say is that we will not be more than $n^{2} \mu$ with probability $1 / n^{2}$. Useless.

5.2.3 Chebyshev

Again, we want to prove (8) for as small a B as possible, maybe using Chebyshev. So let's get (8) into a Chebyshev-like form. (Recall $\mu=\mathbb{E}\left[L_{j}\right]=1$.)

$$
\operatorname{Pr}\left[L_{j} \geq B\right]=\operatorname{Pr}\left[L_{j}-\mu \geq(B-1)\right] \leq \operatorname{Pr}\left[\left|L_{j}-\mu\right| \geq\left(\frac{B-1}{\sigma}\right) \sigma\right] .
$$

Chebyshev says that deviating by k times σ has likelihood at most $1 / k^{2}$. So deviating by $(B-1) / \sigma$ times σ has likelihood at most $\sigma^{2} /(B-1)^{2}$. Set this equal to $1 / n^{2}$, what we want. You get

$$
\frac{\sigma}{B-1}=\frac{1}{n} \Longleftrightarrow B=1+\sigma n=1+(n-1)=n
$$

So Chebyshev says: the chance of the load being more than $B=n$ is at most $1 / n^{2}$.
Again useless, since we know that no load can be more than n anyways, there are only n balls.

5.2.4 Chernoff

Now to prove (8) for as small a B as possible using Chernoff. Again, get it into a Chernoff-like form:

$$
\operatorname{Pr}\left[L_{j} \geq B\right]=\operatorname{Pr}\left[L_{j} \geq \mu+(B-1)\right] .
$$

This is at most $\exp \left(-\frac{(B-1)^{2}}{2 \mu+B-1}\right)$. So set this equal to $1 / n^{2}$ and solve for B.

$$
\exp \left(-\frac{(B-1)^{2}}{2 \mu+B-1}\right)=\frac{1}{n^{2}} \Longleftrightarrow \exp \left(\frac{(B-1)^{2}}{2 \mu+B-1}\right)=n^{2}
$$

Take logs to get

$$
\frac{(B-1)^{2}}{2 \mu+B-1}=2 \ln n .
$$

But $\mu=1$, so

$$
\frac{(B-1)^{2}}{B+1}=2 \ln n
$$

Now solving for B exactly is annoying. But if we choose B slightly larger than strictly necessary, we'd still be fine, the probability would be even lower.

Here's what I'd do now: $B-1$ and $B+1$ are close to B (if B is large). So squint, then the LHS becomes like $B^{2} / B=B$. So we want $B \approx 2 \ln n$. Probably we lost a bit in this approximation, so try $B=16 \ln n$. Then

$$
\frac{(B-1)^{2}}{B+1} \geq \frac{(B / 2)^{2}}{2 B}=\frac{B}{8}=2 \ln n .
$$

As desired. ${ }^{1}$

[^0]
5.2.5 Wrapup

So we showed: the load L_{j} of each machine j is more than $B=16 \ln n$ with probability $\leq 1 / n^{2}$. Union bounding over all these "bad" events, the probability that some machine having load more than B is $1 / n$. So the probability of all machines have load at most $O(\ln n)$ is $1-1 / n$. This proves (7).

[^0]: ${ }^{1}$ Of course, we could have been much more careful with these approximations, but that's not the point-for now. We just want a ballpark estimate, which we can refine at leisure.

