1 An Unbiased Coin

An unbiased coin \(X \) (which takes on values 0 and 1, each with probability \(\frac{1}{2} \)) has mean

\[
\mu = E[X] = \frac{1}{2}0 + \frac{1}{2}1 = 1/2.
\]

(We will always use \(\mu \) for the mean of the random variables.) And it has variance

\[
\text{Var}(X) = E[(X - \mu)^2] = \frac{1}{2}(0 - \frac{1}{2})^2 + \frac{1}{2}(1 - 1/2)^2 = \frac{1}{4}.
\]

Another equivalent expression for variance is

\[
\text{Var}(X) = E[X^2] - (E[X])^2.
\]

But \(X \) takes on value 0 and 1, so \(X^2 = X \). And so

\[
E[X^2] - (E[X])^2 = E[X] - (E[X])^2 = \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.
\]

We will also use \(\sigma^2 \) for the variance, and \(\sigma \) for the standard deviation. Hence, an unbiased \(\{0,1\} \) r.v. has \(\mu = 1/2 \) and \(\sigma^2 = 1/4 \).

Exercise #1: show that if the coin comes up heads with probability \(p \), then \(E[X] = p \) and \(\text{Var}(X) = p(1-p) \leq E[X] \).

1.1 Sums of Random Variables

Linearity of expectation says:

\[
E[X + Y] = E[X] + E[Y].
\]

Linearity of expectations is true even for correlated random variables, which are not independent. For independent random variables, we get more—we can prove that variances add up. So

\[
\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \quad \text{for independent } X, Y.
\]

Exercise #2: suppose \(X_1, X_2, \ldots, X_n \) all have the same mean \(\mu \) and variance \(\sigma^2 \), and are all independent. If \(S = \sum_{i=1}^{n} X_i \). Show that \(E[S] = n\mu \) and \(\text{Var}(S) = n\sigma^2 \). Use the calculations above to infer that if the sum \(S \) of \(n \) unbiased coin tosses has mean \(\mu = n/2 \) and variance \(\sigma^2 = n/4 \).

Exercise #2b: Let \(T \) be the sum of \(n \) coin tosses (where now the coin has bias \(p = \frac{1}{\sqrt{n}} \)). Use Exercise #1 to infer that \(T \) has mean \(E[T] = \sqrt{n} \) and variance \(\text{Var}(T) = \sqrt{n}(1 - \frac{1}{\sqrt{n}}) = \sqrt{n} - 1 \). Moreover, observe that \(\text{Var}(T) \leq E[T] \).
2 The Two Questions

We are interested in two questions:

1. Given a random variable X, and some value ℓ, what is the value of $\Pr[X \geq \ell]$? I.e., what is the likelihood of being in the “upper tail” of the distribution? \(^1\)

2. Given a random variable X, and some target likelihood δ (say $\delta = 1/n^2$ for concreteness). What is the value of ℓ_{δ} such that the likelihood of being in the “tail” of the distribution is at most δ?

Most of the time, we solve the former problem (for a general ℓ) to get some probability value that is a function of ℓ. Then we work backwards from there—set this probability value to δ and figure out what ℓ that corresponds to.

3 The Concentration Bounds

3.1 Markov’s Inequality

Let X be a positive random variable. Then for all $k \geq 1$,

$$\Pr[X \geq k\mu] \leq \frac{1}{k}.$$ (1)

Exercise #3: Let S be sum of n unbiased coin tosses. Show that $\Pr[S \geq 3n/4] \leq 2/3$.

Let T be as in Exercise #2b. Show that $\Pr[T \geq 3n/4] \leq \frac{1}{3\sqrt{n}}$.

3.2 Chebyshev’s Inequality

For any r.v. X with mean μ and variance σ^2, the following holds.

$$\Pr[|X - \mu| \geq k\sigma] \leq \frac{1}{k^2}.$$

Now we don’t need X to be non-negative. This is Chebyshev’s inequality. The proof, interestingly, just applies Markov’s to the r.v. $Y = (X - E[X])^2$.

\(^1\)Sometimes we will also want to understand the lower tail: given some value b, what is the value of $\Pr[X \leq b]$?
Exercise #4: Let S be sum of n unbiased coin tosses. Use Chebyshev to show that $\Pr[S \geq 3n/4] \leq 2/n$.

Show that

$$\Pr[S \geq n/2 + t\sqrt{n}/2] \leq 1/t^2. \tag{2}$$

Observe that in order to a tail probability of $\delta = 1/n$, we would have to set $t = \sqrt{n}$. So we would only be able to say $\Pr[S \geq n/2 + n/2] \leq 1/n$, which is very weak. (In fact the probability is zero, since S can be at most n.)

Let T be as in Exercise #2b. Show that $\Pr[T \geq 3n/4] \leq O(1/n^2)$.

3.3 Chernoff/Hoeffding Bounds

Now we’ll assume more about the random variables: that they are sums of “small” random variables (say taking on values between 0 and 1) that are independent.

Theorem 1 (Hoeffding’s Bound) Suppose $X = X_1 + X_2 + \ldots + X_n$, where the X_is are independent random variables taking on values in the interval $[0, 1]$. Let $\mu = E[X] = \sum_i E[X_i]$. Then

$$\Pr[X > \mu + \lambda] \leq \exp \left(-\frac{\lambda^2}{2\mu + \lambda} \right) \tag{3}$$

$$\Pr[X < \mu - \lambda] \leq \exp \left(-\frac{\lambda^2}{3\mu} \right) \tag{4}$$

Exercise #4: Let S be sum of n unbiased coin tosses. Use Chernoff to show that

$$\Pr[S \geq 3n/4] \leq \exp \left(-\frac{(n/4)^2}{n + n/4} \right) = \exp(-n/20).$$

Show that for $t \leq 2\sqrt{n},$

$$\Pr[S \geq n/2 + t\sqrt{n}/2] \leq \exp \left(-\frac{t^2n/4}{n + t\sqrt{n}/2} \right) \leq \exp \left(-\frac{t^2n/4}{2n} \right) = e^{-t^2/8}. \tag{5}$$

Observe that we’re getting a much better bound than in (2), by using more properties about S, about it being a sum of small independent r.v.s.

Use this to show that if we want the tail probability $\Pr[S \geq \mu + \lambda]$ being at most $\delta = 1/n^2$, show that setting $\lambda = 2\sqrt{n \ln n}$ suffices. (Hint: if you want the right side of (5) to be $1/n^2$, what value of t would you set? What value of λ would that correspond to.

4 Union Bound

Very often we will have a collection of “bad” events $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n$. Then

$$\Pr[\text{at least one of the bad events } \mathcal{E}_i \text{ happens}] = \Pr[\bigcup_i \mathcal{E}_i] \leq \sum_i \Pr[\mathcal{E}_i].$$

If we want none of these n bad events to happen, then we can set $\Pr[\mathcal{E}_i] \leq 1/n^2$. Then

$$\Pr[\text{at least one of the bad events } \mathcal{E}_i \text{ happens}] \leq \sum_i (1/n^2) \leq 1/n.$$

So

$$\Pr[\text{none of the bad events } \mathcal{E}_i \text{ happens}] \geq 1 - 1/n.$$
5 Balls into Bins

This is the example from lecture. We throw n balls into n bins, uniformly and independently. Want to control the maximum load of any bin.

5.1 Defining the Random Variables

So if X_{ij} is the indicator for whether ball i goes into bin j, then $X_{ij} = 1$ with probability $1/n$, and 0 otherwise. Note that $X_{ij}, X_{ij'}$ are not independent of each other, since $X_{ij} = 1$ means $X_{ij'} = 0$ for $j' \neq j$, the ball i can only go into one bin. However $X_{1j}, X_{2j}, \ldots, X_{nj}$ are all independent, since the choices for the balls are made independently.

Let L_j be the load of bin j. Then

$$L_j = \sum_{i=1}^{n} X_{ij}. \quad (6)$$

And the right side is a sum of independent r.v.s. (At this point you should see a Chernoff bound in your future.) We want to control the max-load. That is

$$L_{\text{max}} = \max_j L_j.$$

What result do we want? Today we want to show that

$$\Pr[L_{\text{max}} \leq \text{blah}] \geq \text{large} = 1 - 1/n. \quad (7)$$

This is a “with high probability” result.

The max of a bunch of random variables is not as well-behaved as a sum. Hence, to show (7), we often use a union bound—show that each of the L_j variables (one for each bin) are smaller than blah with probability $1/n^2$, and then take a union bound over all bins j.

5.2 Bounding Load of Each Bin

Let’s use B for blah. Fix a bin j, and we want to find B such that

$$\Pr[L_j \geq B] \leq 1/n^2. \quad (8)$$

Let’s see what we can do with our favorite concentration bounds above:

5.2.1 Prelim Calculations

What is the expectation $\mathbb{E}[X_{ij}]$? It is

$$(1 - \frac{1}{n}) \cdot 0 + \frac{1}{n} \cdot 1 = 1/n.$$}

Hence by linearity of expectations:

$$\mathbb{E}[L_j] = \mathbb{E}\left[\sum_i X_{ij}\right] = \sum_i \mathbb{E}[X_{ij}] = n \cdot 1/n = 1.$$
Note that if we had \(m \) balls, the expected load would be \(m/n \). As expected (har har).

What’s the variance? You can calculate it by hand, but not that each \(X_{ij} \) is like a coin with bias \(p = 1/n \), so you can read off its variance from Section #1 as being \(p(1 - p) = \frac{n-1}{n^2} \).

And since \(L_i \) is a sum of independent coin tosses, their variance adds up to give \(\text{Var}(L_j) = n \cdot \frac{n-1}{n^2} = \frac{n-1}{n} \).

5.2.2 Markov

The mean of \(L_j \) is \(\mu = 1 \), and we want to find \(B \) such that the tail probability is \(1/n^2 \). So all Markov can say is that we will not be more than \(n^2 \mu \) with probability \(1/n^2 \). Useless.

5.2.3 Chebyshev

Again, we want to prove (8) for as small a \(B \) as possible, maybe using Chebyshev. So let’s get (8) into a Chebyshev-like form. (Recall \(\mu = E[L_j] = 1 \).)

\[
\Pr[L_j \geq B] = \Pr[L_j - \mu \leq (B - 1)] \leq \Pr \left[|L_j - \mu| \leq \left(\frac{B - 1}{\sigma} \right) \sigma \right].
\]

Chebyshev says that deviating by \(k \) times \(\sigma \) has likelihood at most \(1/k^2 \). So deviating by \((B - 1)/\sigma \) times \(\sigma \) has likelihood at most \(\sigma^2/(B - 1)^2 \). Set this equal to \(1/n^2 \), what we want. You get

\[
\frac{\sigma}{B - 1} = \frac{1}{n} \iff B = 1 + \sigma n = 1 + (n - 1) = n.
\]

So Chebyshev says: the chance of the load being more than \(B = n \) is at most \(1/n^2 \).

Again useless, since we know that no load can be more than \(n \) anyways, there are only \(n \) balls.

5.2.4 Chernoff

Now to prove (8) for as small a \(B \) as possible using Chernoff. Again, get it into a Chernoff-like form:

\[
\Pr[L_j \geq B] = \Pr[L_j \geq \mu + (B - 1)].
\]

This is at most \(\exp\left(-\frac{(B-1)^2}{2\mu + B - 1} \right) \). So set this equal to \(1/n^2 \) and solve for \(B \).

\[
\exp\left(-\frac{(B-1)^2}{2\mu + B - 1} \right) = \frac{1}{n^2} \iff \exp\left(\frac{(B-1)^2}{2\mu + B - 1} \right) = n^2.
\]

Take logs to get

\[
\frac{(B-1)^2}{2\mu + B - 1} = 2 \ln n.
\]

But \(\mu = 1 \), so

\[
\frac{(B-1)^2}{B + 1} = 2 \ln n.
\]

Now solving for \(B \) exactly is annoying. But if we choose \(B \) slightly larger than strictly necessary, we’d still be fine, the probability would be even lower.
Here’s what I’d do now: $B - 1$ and $B + 1$ are close to B (if B is large). So squint, then the LHS becomes like $B^2/B = B$. So we want $B \approx 2 \ln n$. Probably we lost a bit in this approximation, so try $B = 16 \ln n$. Then

$$\frac{(B - 1)^2}{B + 1} \geq \frac{(B/2)^2}{2B} = \frac{B}{8} = 2 \ln n.$$

As desired.\(^2\)

5.2.5 Wrapup

So we showed: the load L_j of each machine j is more than $B = 16 \ln n$ with probability $\leq 1/n^2$. Union bounding over all these “bad” events, the probability that some machine having load more than B is $1/n$. So the probability of all machines have load at most $16 \ln n = O(\log n)$ is $1 - 1/n$. This proves (7).

\(^2\)Of course, we could have been much more careful with these approximations, but that’s not the point—for now. We just want a ballpark estimate, which we can refine at leisure.