Lecture 22

Locality Analysis and Prefetching

I. Locality Analysis
 A. Temporal
 B. Spatial
 C. Group
 D. Localized Iteration Space

II. Prefetching Pointer-Based Structures
Recall: Types of Data Reuse/Locality

double A[3][N], B[N][3];

for i = 0 to 2
 for j = 0 to N-2
 A[i][j] = B[j][0] + B[j+1][0];

(assume row-major, 2 elements per cache line, N small)
I. Predicting Cache Behavior through “Locality Analysis”

• Definitions:
 – Reuse:
 • accessing a location that has been accessed in the past
 – Locality:
 • accessing a location that is now found in the cache

• Key Insights
 – Locality only occurs when there is reuse!
 – BUT, reuse does not necessarily result in locality.
 • why not?
Steps in Locality Analysis

1. Find data reuse
 – if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
 – set of inner loops where the data accessed by an iteration is expected to fit within the cache

3. Find data locality:
 – reuse \(\cap \) localized iteration space \(\Rightarrow \) locality
Reuse Analysis: Representation

\[
\text{for } i = 0 \text{ to } 2 \\
\text{for } j = 0 \text{ to } N-2 \\
A[i][j] = B[j][0] + B[j+1][0];
\]

- Map \(n \) loop indices into \(d \) array indices via array indexing function:

\[
\vec{f}(\vec{i}) = H\vec{i} + \vec{c}
\]

\[
A[i][j] = A \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)
\]

\[
B[j][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)
\]

\[
B[j+1][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)
\]
More Complicated Example

for \(i = \ldots \)

for \(j = 0 \) to \(m \)

\[
A[2i+2][m-j][i+3j+1] = \ldots;
\]

\[
A[2i+2][m-j][i+3j+1] = A \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix} + \begin{pmatrix} 2 \\ m \\ 1 \end{pmatrix}
\]

Note: Representation is for **Affine Array Indexes**, i.e. the index for each dimension of the array is an **affine expression** of surrounding loop variables and symbolic constants.

An expression of one or more variables \(x_1, x_2, \ldots, x_n \) is affine if it can be expressed as \(c_0 + c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \) for constants \(c_0, c_1, \ldots, c_n \).
A. Finding Temporal Reuse

• Temporal reuse occurs between iterations \vec{i}_1 and \vec{i}_2 whenever:

$$H\vec{i}_1 + \vec{c} = H\vec{i}_2 + \vec{c}$$

$$H(\vec{i}_1 - \vec{i}_2) = \vec{0}$$

• There is a well-known concept from linear algebra that characterizes when \vec{i}_1 and \vec{i}_2 satisfy the above equation:
 - Set of all solutions to $H\vec{v} = \vec{0}$ is called the nullspace of H
 - Two iterations refer to the same array element iff the difference of their loop-index vectors is in the nullspace of H

• A nullspace can be summarized by its basis vectors
 - Any vector in the nullspace is a linear combination of the basis vectors
Temporal (Self-)Reuse Example

for \(i = 0 \) to 2
for \(j = 0 \) to 100
\[
A[i][j] = B[j][0] + B[j+1][0];
\]

- For \(B[j+1][0] \) reuse between iterations \((i_1,j_1) \) and \((i_2,j_2) \) whenever:

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_1 \\
j_1
\end{bmatrix}
+ \begin{bmatrix}
1 \\
0
\end{bmatrix}
= \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_2 \\
j_2
\end{bmatrix}
+ \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
i_1 - i_2 \\
j_1 - j_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}
\]

- The nullspace of \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) is summarized by the basis vector \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) because \(c \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) represents all the vectors \(v \) such that \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} v = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \)

- So reuse occurs whenever \(\begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix} \)

\(\Rightarrow \) i.e., whenever \(j_1 = j_2 \), and regardless of the difference between \(i_1 \) and \(i_2 \)

inner or outer loop?
outer
More Complicated Example

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[i+j][0] = i*j;
\]

\[
A[i+j][0] = A\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}\right)
\]

- Nullspace of \(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \) is summarized by the basis vector \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \)
- So reuse occurs whenever \(\begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = c \begin{bmatrix} 1 \\ -1 \end{bmatrix} \)
 \(\Rightarrow \) i.e., when \(\Delta i = -\Delta j \)
B. Computing Spatial Reuse

- We assume two array elements share the same cache line iff they differ only in the last dimension
 - E.g., share the same row in a 2-dimensional array
 - Why is this a reasonable approximation? row major order
 - What are its limitations? A row is made up of many cache lines
 Large row could be larger than the cache

- Replace last row of H with zeros, creating H_s
- Find the nullspace of H_s

- **Result:** vector along which we access the same row
Computing Spatial Reuse: Example

for $i = 0 \text{ to } 2$
for $j = 0 \text{ to } 100$

\[A[i][j] = B[j][0] + B[j+1][0]; \]

\[A[i][j] = A \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

- $H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

- Nullspace of H_s is summarized by the basis vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- So spatial reuse occurs whenever $\begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = c \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- i.e., whenever $i_1 = i_2$, and regardless of the difference between j_1 and j_2
C. Group Reuse (reuse from different static accesses)

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

H = \[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]

• Limit the analysis to consider only accesses with same H
 — i.e., index expressions that differ only in their constant terms
• Determine when access same location (temporal) or same row (spatial)
• Only the “leading reference” suffers the bulk of the cache misses

\[
\begin{array}{c}
B[j][0] \\
\end{array}
\]

\[
\begin{array}{c}
B[j+1][0] \\
\end{array}
\]
D. Localized Iteration Space

- Given finite cache, **when does reuse result in locality?**
- **Localized** if accesses less data than *effective cache size*

\[
\text{for } i = 0 \text{ to } 2 \\
\quad \text{for } j = 0 \text{ to } 7 \\
A[i][j] = B[j][0] + B[j+1][0];
\]

Localized: both \(i\) and \(j\) loops

\[
B[j+1][0]
\]

\[
\text{Basis} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

\[
\text{for } i = 0 \text{ to } 2 \\
\quad \text{for } j = 0 \text{ to } 1000000 \\
A[i][j] = B[j][0] + B[j+1][0];
\]

Localized: \(j\) loop only

\[
B[j+1][0]
\]

\[
\text{Basis} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]
Computing Locality

Reuse Vector Space \cap Localized Vector Space \Rightarrow Locality Vector Space

- Example:

 \[
 \text{for } i = 0 \text{ to } 2 \\
 \quad \text{for } j = 0 \text{ to } N-2 \\
 \quad A[i][j] = B[j][0] + B[j+1][0];
 \]

- If N is small, then both loops are localized:

 - $\text{span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\} \cap \text{span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\} \Rightarrow \text{span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\}$

 - i.e., temporal reuse \text{does} result in \text{temporal locality}
Computing Locality

Reuse Vector Space \(\cap \) Localized Vector Space \(\Rightarrow \) Locality Vector Space

- **Example:**

 \[
 \text{for } i = 0 \text{ to } 2 \\
 \quad \text{for } j = 0 \text{ to } N-2 \\
 \quad A[i][j] = B[j][0] + B[j+1][0];
 \]

- **If** \(N \) is large, then only the innermost loop is localized:

 - \(\text{span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\} \cap \text{span}\{\begin{bmatrix} 0 \\ 1 \end{bmatrix}\} \Rightarrow \text{span}\{\} \)

 - i.e., no temporal locality
Locality Analysis Summary

1. Find data reuse
 - Temporal reuse: Compute the nullspace of H
 - Spatial reuse: Compute the nullspace of H_s, which is H with last row zeroed out
 - If caches were infinitely large, we would be finished

2. Determine “localized iteration space”
 - set of inner loops where the data accessed by an iteration is expected to fit within the cache

3. Find data locality:
 - reuse \cap localized iteration space \Rightarrow locality
II. Prefetching

Recall: Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
Recall: Prefetch Predicate

<table>
<thead>
<tr>
<th>Locality Type</th>
<th>Miss Instance</th>
<th>Predicate on Iteration Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Every Iteration</td>
<td>True</td>
</tr>
<tr>
<td>Temporal</td>
<td>First Iteration</td>
<td>i = 0</td>
</tr>
<tr>
<td>Spatial</td>
<td>Every L iterations (L elements/cache line)</td>
<td>(i mod L) = 0</td>
</tr>
</tbody>
</table>

Example:

\[
\text{for } i = 0 \text{ to } 2 \\
\text{for } j = 0 \text{ to } N-2 \\
A[i][j] = B[j][0] + B[j+1][0];
\]

<table>
<thead>
<tr>
<th>Reference</th>
<th>Locality</th>
<th>Predicate on Iteration Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>A[i][j]</td>
<td>([i] = \begin{bmatrix} \text{none} \ \text{spatial} \end{bmatrix})</td>
<td>(j mod L) = 0</td>
</tr>
<tr>
<td>B[j+1][0]</td>
<td>([i] = \begin{bmatrix} \text{temporal} \ \text{none} \end{bmatrix})</td>
<td>i = 0</td>
</tr>
</tbody>
</table>
Recall: Loop Splitting for Prefetching Arrays

- Decompose loops to isolate cache miss instances
 - cheaper than inserting IF(Prefetch Predicate) statements

<table>
<thead>
<tr>
<th>Locality Type</th>
<th>Predicate</th>
<th>Loop Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>True</td>
<td>None</td>
</tr>
<tr>
<td>Temporal</td>
<td>i = 0</td>
<td>Peel loop i</td>
</tr>
<tr>
<td>Spatial</td>
<td>(i mod L) = 0</td>
<td>Unroll loop i by L</td>
</tr>
</tbody>
</table>

(L elements/cache line)

Loop peeling: split any problematic first (or last) few iterations from the loop & perform them outside of the loop body
Recall: Example Code with Prefetching

Original Code

```c
for (i = 0; i < 3; i++)
    for (j = 0; j < 100; j++)
        A[i][j] = B[j][0] + B[j+1][0];
```

- Cache Hit
- Cache Miss

Prefetching Example

```c
for (j = 0; j < 6; j += 2) {
    prefetch(&B[0][0]);
    prefetch(&B[j+1][0]);
    prefetch(&B[j+2][0]);
    prefetch(&A[0][j]);
}
for (j = 0; j < 94; j += 2) {
    prefetch(&B[j+7][0]);
    prefetch(&B[j+8][0]);
    prefetch(&A[0][j+6]);
    A[0][j] = B[j][0]+B[j+1][0];
    A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (j = 94; j < 100; j += 2) {
    prefetch(&A[0][j]);
    A[0][j] = B[j][0]+B[j+1][0];
    A[0][j+1] = B[j+1][0]+B[j+2][0];
}
for (i = 1; i < 3; i++)
    for (j = 0; j < 6; j += 2)
        prefetch(&A[i][j]);
    for (j = 0; j < 94; j += 2) {
        prefetch(&A[i][j+6]);
        A[i][j] = B[j][0]+B[j+1][0];
        A[i][j+1] = B[j+1][0]+B[j+2][0];
    }
for (j = 94; j < 100; j += 2) {
    A[i][j] = B[j][0]+B[j+1][0];
    A[i][j+1] = B[j+1][0]+B[j+2][0];
}```
Today: Prefetching for Pointer-Based Structures

• Examples:
  – linked lists, trees, graphs, ...

• A common method of building large data structures
  – especially in non-numeric programs

• Cache miss behavior is a concern because:
  – large data set with respect to the cache size
  – temporal locality may be poor
  – little spatial locality among consecutively-accessed nodes

Goal:
• Automatic compiler-based prefetching for pointer-based data structures
Scheduling Prefetches for Pointer-Based Data Structures

Our Goal: *fully hide latency*

- thus achieving fastest possible computation rate of $1/W$

- e.g., if $L = 3W$, we must prefetch 3 nodes ahead to achieve this
Performance without Prefetching

\[ \text{computation rate} = \frac{1}{(L+W)} \]

while (p){
    work(p->data);
    p = p->next;
}
Prefetching One Node Ahead

while (p) {
  pf(p->next);
  work(p->data);
  p = p->next;
}

- Computation is overlapped with memory accesses

\[ \text{computation rate} = \frac{1}{L} \]
Prefetching Three Nodes Ahead

while (p) {
    pf(p->next->next->next);
    work(p->data);
    p = p->next;
}

Prefetching Three Nodes Ahead
Prefetching Three Nodes Ahead

\[ \text{pf}(p->next->next->next) \]

\[ L \]

\[ q=p->next->next; \]
\[ \text{while}(q) \{ \]
\[ \text{pf}(q=q->next); \]
\[ \text{work}(p->data); \]
\[ p = p->next; \]
\[ \} \]

\[ \text{computation rate does not improve (still } = 1/L) \!
\]

**Pointer-Chasing Problem:**

- any scheme which follows the pointer chain is limited to a rate of 1/L
Our Goal: Fully Hide Latency

\[
\begin{align*}
L_i & \quad W_i \\
L_{i+1} & \quad W_{i+1} \\
L_{i+2} & \quad W_{i+2} \\
L_{i+3} & \quad W_{i+3}
\end{align*}
\]

while (p){
\[
\begin{align*}
& \text{pf(} & n_{i+3} \text{);} \\
& \text{work(} & p->\text{data);} \\
& p = p->\text{next;}
\end{align*}
\]

• achieves the fastest possible computation rate of $1/W$
Overcoming the Pointer-Chasing Problem

Key:

- \( n_i \) needs to know \&n_{i+d} without referencing the \( d-1 \) intermediate nodes

Three Algorithms:

- use *existing* pointer(s) in \( n_i \) to approximate \&n_{i+d}
  - Greedy Prefetching

- add *new* pointer(s) to \( n_i \) to approximate \&n_{i+d}
  - History-Pointer Prefetching

- compute \&n_{i+d} *directly* from \&n_i (no ptr deref)
  - Data-Linearization Prefetching
Greedy Prefetching

- **Prefetch all neighboring nodes** (simplified definition)
  - only one will be followed by the immediate control flow
  - hopefully, we will visit other neighbors later

```c
preorder(treeNode * t){
 if (t != NULL){
 pf(t->left);
 pf(t->right);
 process(t->data);
 preorder(t->left);
 preorder(t->right);
 }
}
```

- **Reasonably effective in practice**
- **However, little control over the prefetching distance**
History-Pointer Prefetching

- Add new pointer(s) to each node
  - history-pointers are obtained from some recent traversal

- Trade space & time for better control over prefetching distances
Data-Linearization Prefetching

- No pointer dereferences are required
- Map nodes close in the traversal to contiguous memory

![Diagram of a tree with preorder traversal and prefetching distance of 3 nodes.](image)
# Summary of Prefetching Algorithms for Pointer Structures

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>History-Pointer</th>
<th>Data-Linearization</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Control over Prefetching Distance</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Applicability to Pointer-Based Data Structures</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Overhead in Preparing Prefetch Addresses</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Ease of Implementation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Summary of Prefetching Algorithms for Pointer Structures

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>History-Pointer</th>
<th>Data-Linearization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control over Prefetching Distance</td>
<td>little</td>
<td>more precise</td>
<td>more precise</td>
</tr>
<tr>
<td>Applicability to Pointer-Based Data Structures</td>
<td>any</td>
<td>revisited; changes only slowly</td>
<td>must have a major traversal order; changes only slowly</td>
</tr>
<tr>
<td>Overhead in Preparing Prefetch Addresses</td>
<td>none</td>
<td>space + time</td>
<td>none in practice</td>
</tr>
<tr>
<td>Ease of Implementation</td>
<td>relatively straightforward</td>
<td>more difficult</td>
<td>more difficulty</td>
</tr>
</tbody>
</table>

- Greedy prefetching is the most widely applicable algorithm
Today’s Class: Locality Analysis and Prefetching

I. Locality Analysis
   A. Temporal
   B. Spatial
   C. Group
   D. Localized Iteration Space

II. Prefetching Pointer-Based Structures

Friday’s Class

• Array Dependence Analysis & Parallelization
  – ALSU 11.6