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ANNOUNCEMENTS

• Building Blocks Seminar: today, at 4:30 pm.
Towards “Unified” Compute Engines: Opportunities and Challenges 
(Mehmet Ozan Kabak)
https://db.cs.cmu.edu/events/

• Next lecture: Snowflake. The talk is over Zoom, and we will watch it in the 
classroom. I’ll hang around after the lecture to answer any questions.

• Same for the lectures next week. 

https://db.cs.cmu.edu/events/
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GOOGLE’S EARLY DATA STORY

• At the turn of this century, Google had just about every data problem you can imagine: large 
volumes, real-time analytics, scalable OLTP, streaming … And on large volumes of data that 
was growing exponentially.

• Had to build their home-grown infrastructure, as existing systems did not scale to their needs.

• Early systems included GFS (File System), sharded MySQL (AdWords/OLTP/HTAP), 
MapReduce (data analytics), … 

• All have evolved: 
Colossus cluster-level file system (Storage). The precursor, GFS, is deprecated.  
Spanner (OLTP): globally-consistent, scalable relational database.
Big Query (OLAP): Built using Dremel as the execution engine.
Borg: scalable job schedule -> influences Kubernetes.
…
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GOOGLE’S EARLY DATA STORY: NOSQL

• In early 2000’s SQL was used in some parts (shared MySQL), but SQL was not 
seen as the way to interact with these structured and nested data. 

• Scalable Key-Value stores and MapReduce were seen as the answer.
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GOOGLE TODAY: SQL EVERYWHERE

• SQL is critical across the Google 
data platforms, including Spanner 
(OLTP), BigQuery (OLAP), and 
BigTable (Key-value store).

• GoogleSQL: Complies with the 
ANSI SQL standard. 
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GOOGLE TODAY: SQL EVERYWHERE

• Some new ideas that clean up the SQL syntax. 

• Example:  Calculate the average sales for items that have above-average total sales.

WITH item_sales AS (
  SELECT item, SUM(sales) AS total_sales
  FROM mydataset.produce
  GROUP BY item
),
avg_sales AS (
  SELECT AVG(total_sales) AS overall_avg
  FROM item_sales
)
SELECT item_sales.item, item_sales.total_sales
FROM item_sales, avg_sales
WHERE item_sales.total_sales > avg_sales.overall_avg;

Traditional way, with CTEs.

FROM mydataset.produce
|> AGGREGATE SUM(sales) AS total_sales GROUP BY item
|> EXTEND (SELECT AVG(total_sales) FROM UNNEST) AS overall_avg
|> WHERE total_sales > overall_avg
|> SELECT item, total_sales;

With the new pipe syntax.

Shute	et	al.:	SQL	has	problems.	We	can	fix	them:	Pipe	syntax	in	SQL.	
Proc.	VLDB	Endow,	2024.
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DREMEL

• Nested records. (Recall the discussion on extensible types in database systems.)

• Large data volumes. 

• Need to scale. 

• Need to be fault tolerant. 
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NESTED RECORDS

• Need to go beyond flat 
tables, and in-practice 
need a nested data model.

• Protocol Buffers 
(protobufs) are ubiquitious 
across Google, and 
effectively their record-
level data model.
• This idea carried over to 

similar data formats 
including Thrift (Facebook), 
and Avro (Hadoop). 

syntax = "proto3";

package order;

// Define a message to represent an Order
message Order {
  int32 order_id = 1;
  Customer customer = 2;
  repeated OrderItem items = 3;
  string order_date = 4;
  double total_amount = 5;
}

// Define a nested message for Customer
message Customer {
  int32 customer_id = 1;
  string name = 2;
  string email = 3;
  Address address = 4;  // Nested customer address
}

// Define a nested message for OrderItem
message OrderItem {
  int32 item_id = 1;
  string name = 2;
  int32 quantity = 3;
  double price = 4;
}

// Define a nested message for Address
message Address {
  string street = 1;
  string city = 2;
  string state = 3;
  string zip_code = 4;
}

{
  "order_id": 1001,
  "customer": {
    "customer_id": 5001,
    "name": "John Doe",
    "email": "johndoe@example.com",
    "address": {
      "street": "123 Elm St",
      "city": "Springfield",
      "state": "IL",
      "zip_code": "62701"
    }
  },
  "items": [
    {
      "item_id": 1,
      "name": "Laptop",
      "quantity": 1,
      "price": 999.99
    },
    {
      "item_id": 2,
      "name": "Wireless Mouse",
      "quantity": 2,
      "price": 19.99
    },
    {
      "item_id": 3,
      "name": "Keyboard",
      "quantity": 1,
      "price": 49.99
    }
  ],
  "order_date": "2024-10-30",
  "total_amount": 1089.96
}
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DREMEL: KEY IDEAS

• Disaggregated storage 
(now called Lakehouse).

• Columnar storage even for nested data 
(now part of Parquet).

• Efficient query execution with a special 
shuffle infrastructure.

Storage	Cloud
Data Data

Compute	Cloud
P P P

N
et
w
or
k
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NESTED RECORDS AND QUERYING

Melnik	et	al.:	Dremel:	Interactive	Analysis	of	Web-Scale	Datasets.	Proc.	VLDB	Endow.	3(1):	330-339	(2010)

User	may	want	to	refer	to	a	nested	field,	such	
as	Name.Language.Code	in	their	queries.

A	Web	Document	record	schema	in	protobuf	(v1)	
for	a	web	crawl.
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NESTED RECORDS AND QUERYING

Melnik	et	al.:	Dremel:	Interactive	Analysis	of	Web-Scale	Datasets.	Proc.	VLDB	Endow.	3(1):	330-339	(2010)

A	Web	Document	record	schema	in	protobuf	(v1)	
for	a	web	crawl.

Columnar	storage	representation	with	repetition	levels	
(r)	and	definition	levels	(d).
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NESTED RECORDS AND QUERYING

Melnik	et	al.:	Dremel:	Interactive	Analysis	of	Web-Scale	Datasets.	Proc.	VLDB	Endow.	3(1):	330-339	(2010)

A	Web	Document	in	protobuf	(v1),	and	a	sample	query.• SQL with nesting.

• Operators take as input one or more 
nested tables, and outputs a nested table 
(and the output schema).

• Notice the use of path expressions, e.g., 
Name.Language.Code and Name.Url, is 
allowed in the query.

• Also notice the within-record 
aggregation (COUNT).

• Model: nested record == a labeled tree. 
Selection prunes branches.

In	the	original	version	of	Dremel,	
queries	were	1-pass	scan	on	a	table,	
and	aggregation	(no	joins).
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Move	towards	elastic	computing.

Data	can	be	computed	by	multiple	compute	engines.	
Don’t	lock	the	data	format		to	a	specific	compute	engine.

e.g.;	the	same	data	may	be	consumed	via	SQL,	dataframes,	MapReduce,	…	

Serverless:	no-upfront	provisioning.	
Pay-as-you-go	consumption	model.

Columnar	storage	even	for	nested	data.

Also,	adopted	SQL	as	the	query	language.	
(Moving	away	from	Sawzall,	which	was	a	
syntactic	sugar	layer	over	MapReduce.)
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DREMEL ON A SHARED NOTHING ARCHITECTURE

• Till ~2009 data was managed in a cluster of commodity servers

Data
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Single	Node
A	commodity	server

Data

P
M
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Data
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Node	2

Data

P
M

Node	n

A	cluster	of	commodity	servers
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DISAGGREGATED ARCHITECTURE

• Till ~2009 data was managed in a cluster of commodity servers.

• Then Borg – a cluster management system – was introduced. 
(Precursor to Kubernetes). 

• Why a cluster management system?

    1. Share the hardware across different platforms to improve utilization. 

    2. Grow/shrink the cluster to deal with changes in workload.

• Now the hard disk (spindle) were shared by Dremel with other platforms.
• Replicate the data (on local disks) for performance and fault-tolerance.
• The algorithms now have to be replication aware à More complex development.
• Also, resizing the system means having to move replicas to balance the system.

• The need for disaggregate storage starts to emerge.

Elasticity
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MOVE FROM SHARED-NOTHING TO SHARED-DISK
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Shared	File	System	(GFS)

• After moving to the 
shared file system (GFS), 
the system was much 
slower than on the shared 
nothing.
• A table scan may require 

opening 100K+ files in GFS
• Metadata access was also 

slow.

• Tune: storage format, 
metadata, query affinity, 
prefetching … 
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MOVE FROM SHARED-NOTHING TO DISAGGREGATED STORAGE
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Advantages of managed storage:

• SLOs in the storage are now 
not a responsibility of the 
Dremel team (a clean division 
of team responsibilities).

• Easier to “resize” the system to 
add new databases – just ask 
for more from the storage 
service.

• The whole system gets more 
robust as the storage system 
gets more robust.
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MOVE TO A DISAGGREGATED ARCHITECTURE
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Network
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• Dremel initially did not have 
joins – it was used mainly for 
aggregate queries. 

• As joins got added, need to 
add support to partition the 
inputs, aka. shuffle (in 
MapReduce parlance).

• Shuffle puts a lot of pressure 
on the DRAM and the 
network. Want to abstract the 
compute side too, especially 
for shuffle.

DRAM
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MOVE TO FULLY DISAGGREGATED ARCHITECTURE

A	new	
component	in	the	
disaggregated	
architecture:	the	
memory	shuffle	
tier.	

This	tier	has	
memory	and	disk	
space	to	store	
intermediate	
shuffle	data.	
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A TYPICAL SHUFFLE OPERATOR

• Remember Exchange … essentially that. 

Producer	1

Producer	2

Producer	n

Consumer	1

Consumer	2

Consumer	k

Two	key	issues	with	a	typical	shuffle:
1. The	communication	is	O(n2).
2. MapReduce	Shuffle:	The	shuffle	

has	to	complete	before	consumers	
can	start.	

Was	a	big	deal	as	MapReduce	
dominated	the	big	data	space	for	
(way)	too	long.

https://cloud.google.com/blog/products/bigquery/in-memory-query-execution-in-google-bigquery
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A TYPICAL SHUFFLE OPERATOR

Specialized	shuffle	
infrastructure	in	
Dremel/BigQuery.

Can	optimize	the	
memory/disk	requirement	
for	the	shuffle	infrastructure.	

CLX	can	potentially	help	in	
the	future?	

https://cloud.google.com/blog/products/bigquery/in-memory-query-execution-in-google-bigquery
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IN SITU DATA ANALYSIS

• Instead of loading data into the warehouse than then querying the data, what if the 
initial data was self-descriptive? 

• Now can simply run queries on this data – no explicit ETL.

• There may be extra overhead, but the flexibility makes this worth while. 

• Also, once the data engine does not need to “own the data,” there is bigger emphasis 
on building ways to bring in external data via wrappers, or APIs to other data 
sources. This is a federated data systems now.

New	issue:	Data	Governance. New	issue:	QO	may	have	no	stats	on	data.
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STRAGGLERS

• When you have 100s or 1000s of servers for a single query, high chance that some 
worker may fail or fall behind.

• For a server in a service, assume a 10ms 
response time but 99th percentile latency of 1 sec.

• If a task needs 100 server, 63% requests will need 
more than 1 sec., i.e. end up on a server that has 
a service time of 1 sec.

• Ways out: 
1. Detect a straggler, and assign that work to 
another worker. Need the task to be idempotent.
2. Speculate and duplicate tasks, and when one 
of them completes, kill the other task.

Jeffrey	Dean,	Luiz	André	Barroso:	The	tail	at	scale.	Commun.	ACM,	2013.
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QUERY EXECUTION IN DREMEL

• Coordinator: Receives queries and 
uses a multi-level serving tree.

• Also, the root server can query the 
metadata server, instead of each 
leaf server doing that 
independently. The latter can 
overload the metadata server 
when the query first starts.

Original	source	of	the	following	slides:	Andy	Pavlo
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DREMEL: STORAGE

• DBMS relies on Google's distributed file system (Colossus) to scale 
out storage capacity.

• Relies on Capacitor's columnar encoding scheme for nested 
relational and semi-structured data.
• Think of it as JSON/YAML without the slowness.
• Capacitor also provides access libraries with basic filtering.
• Similar to Parquet vs. ORC formats.

• Repetition and definition fields are embedded in columns to avoid 
having to retrieve/access ancestor attributes.

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format
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DREMEL: SCHEMA REPRESENTATION

• Dremel's internal storage format is self-describing
• Everything the DBMS needs to understand what is in a file is contain 

within the file.

• But the DBMS must parse a file's embedded schema whenever it 
wants to read that a file.
• Tables can have thousands of attributes. Most queries only need a subset of 

attributes.

• DBMS stores schemas in a columnar format to reduce overhead 
when retrieving meta-data.
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DREMEL: QUERY EXECUTION

• DBMS converts a logical plan into stages (pipelines) that contain 
multiple parallel tasks.
• Each task must be deterministic and idempotent to support restarts.

• Root node (Coordinator) retrieves all the meta-data for target files in 
a batch and then embeds it in the query plan.

• Each worker node has its own local memory and can spill to local 
disk if needed.
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SELECT language, MAX(views)
  FROM wikipedia
 WHERE title LIKE "%Steven%"
 GROUP BY 1 ORDER BY 2 DESC
 LIMIT 100

Stage #1

Partial Group By

Stage #2

Group By, Sort, Limit

Stage #3

Sort, Limit

DREMEL: QUERY EXECUTION
Coordinator

Distributed

File System

Distributed

File System

In-Memory

Shuffle

In-Memory

Shuffle

Worker

Source: H.Ahmadi + A.Surna

Worker

Worker

Worker

Worker

Worker

Worker

Worker

https://youtu.be/Zk5_RcRg3nA
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DREMEL: IN-MEMORY SHUFFLE

•Producer/consumer model for transmitting intermediate 
results from each stage to the next using dedicated nodes.
•Workers send output to shuffle nodes.
• Shuffle nodes store data in memory in hashed partitions.
•Workers at the next stage retrieve their inputs from the shuffle 

nodes.

• Shuffle nodes store this data in memory and only spill to disk 
storage if necessary.
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DREMEL: IN-MEMORY SHUFFLE

Source: H.Ahmadi + A.Surna
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DREMEL: IN-MEMORY SHUFFLE

• The shuffle phases represent checkpoints in a query's lifecycle where 
that the coordinator makes sure that all tasks are completed.

• Fault Tolerance / Straggler Avoidance:

• If a worker does not produce a task's results within a deadline, the 
coordinator speculatively executes a redundant task.

• Dynamic Resource Allocation:

• Scale up / down the number of workers for the next stage depending size of 
a stage's output.



32

DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: IN-MEMORY SHUFFLE
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DREMEL: QUERY OPTIMIZATION

• Dremel's optimizer uses a stratified approach with rule-based + cost-
based optimizer passes to generate a preliminary physical plan to 
start execution.
• Rules for predicate pushdown, star schema constraint propagation, 

primary/foreign key hints, join ordering.
• Cost-based optimizations only on data that the DBMS has statistics 

available (e.g., materialized views).

• To avoid the problems with bad cost model estimates, Dremel uses 
adaptive query optimization…

Source: H.Ahmadi + A.Surna

https://youtu.be/Zk5_RcRg3nA
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DREMEL: ADAPTIVE QUERY OPTIMIZATION

• Dremel changes the query plan before a stages starts based on 
observations from the preceding stage. 
• Avoids the problem of optimizer making decisions with inaccurate (or non-

existing) data statistics.

• Optimization Examples:

• Change the # of workers in a stage.
• Switch between shuffle vs. broadcast join.
• Change the physical operator implementation.
• Dynamic repartitioning.
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DREMEL: ADAPTIVE JOIN
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DREMEL: ADAPTIVE JOIN
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DREMEL: ADAPTIVE JOIN
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DREMEL: ADAPTIVE JOIN
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DREMEL: DYNAMIC REPARTITIONING

• Dremel dynamically load 
balances and adjusts 
intermediate result partitioning 
to adapt to data skew.

• DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

WorkerWorker

Partition #1

Coordinator

Source: H.Ahmadi + A.Surna

Partition #2

https://youtu.be/Zk5_RcRg3nA
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OBSERVATION

• Since the 2011 VLDB paper, there are DBMS projects that are copies 
or inspired by Dremel.
• Apache Drill (MapR)
• Presto (Meta)
• Apache Impala (Cloudera)
• Dremio

• There are also shuffle-as-a-service systems:
• Apache Celeborn (Alibaba)
• Apache Uniffle (Tencent)
• Remote Shuffle Service (Uber)

https://drill.apache.org/
https://prestodb.io/
https://impala.apache.org/
https://www.dremio.com/
https://celeborn.apache.org/
https://uniffle.apache.org/
https://github.com/uber/RemoteShuffleService
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SUMMARY AND OUTLOOK

• Dremel became BigQuery, a key GCP offering.

• Lead the way in disaggregated: compute, storage, shuffle layer.

• Columnar storage for nested nested data. Mimicked in Parquet.

• In-situ data analytics, essentially the foundation for data lakes.

• Lead the way in making SQL the key query language for structured and 
nested data at Google and beyond. Including for Spanner, and other non-
Google projects like Hive, Spark, Presto, … 

• Snowflake recognized this trend early to build a cloud-native data 
warehousing solution … next class.
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DREMEL: SQL

• In the early 2010s, many of Google's internal DBMS projects each 
had their own SQL dialect.

• The GoogleSQL project unified these redundant efforts to build a 
data model, type system, syntax, semantics, and function library.

• (Zombie?) Open-Source Version: ZetaSQL

https://cloud.google.com/spanner/docs/reference/standard-sql/overview
https://github.com/google/zetasql

