Q

G

el m
mn/_
S
-
%S
=
wc D
Vt
52
<O
& =
= o) un
X
==
S=5

Lecture #15

IcS at

Analyt

IgQuery

and B

1 Js':

}) Prof. Jignesh Patel

Fall 2024

o
-
-

'.1"#:' | o

¥ L LT

ANNOUNCEMENTS

* Building Blocks Seminar: today, at 4:30 pm.

Towards “Unified” Compute Engines: Opportunities and Challenges
(Mehmet Ozan Kabak)
https://db.cs.cmu.edu/events/

e Next lecture: Snowflake. The talk is over Zoom, and we will watch it in the

classroom. I'll hang around after the lecture to answer any questions.

e Same for the lectures next week.

https://db.cs.cmu.edu/events/

GOOGLE’S EARLY DATA STORY

* At the turn of this century, Google had just about every data problem you can imagine: large
volumes, real-time analytics, scalable OLTP, streaming ... And on large volumes of data that

was growing exponentially.

* Had to build their home-grown infrastructure, as existing systems did not scale to their needs.

e Early systems included GFS (File System), sharded MySQL (AdWords/OLTP/HTAP),
MapReduce (data analytics), ...

 All have evolved:
Colossus cluster-level file system (Storage). The precursor, GFS, is deprecated.
Spanner (OLTP): globally-consistent, scalable relational database.
Big Query (OLAP): Built using Dremel as the execution engine.
Borg: scalable job schedule -> influences Kubernetes.

GOOGLE’S EARLY DATA STORY: NOSQL

* In early 2000’s SQL was used in some parts (shared MySQL), but SQL was not
seen as the way to interact with these structured and nested data.

* Scalable Key-Value stores and MapReduce were seen as the answer.

MapReduce: Simplified Data Processing on Large Clusters Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wi kerr,m3b,

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

gruber} @google.com

Google, Inc. Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated i ion for ing and ing large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

icati This allows without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on of machines. P
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of ization, fault-tol , data distributi
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-

Google have i hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

To appeal 12004

of the interface tailored towards

our cluster-based i i Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
of our i ion for a variety of

tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

Abstract

Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
i and deployed a distri storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from iput-oriented batch: i
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In many ways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel datab: [14] and mai ry datab: [13] have

To appear in OSDI 2006

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.

Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client APL Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the

s of the Bigtable i ion, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides

of Bigtable’s per We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) — string

GOOGLE ToODAY: SQL EVERYWHERE

* SQL is critical across the Google Bigtable transforms the developer
data platforms, including Spanner experience with SQL support
(OLTP), BigQuery (OLAP), and ugust 2ozt

BigTable (Key_value Store) . Christopher Crosbie Gary Elliott

Group Product Manager, Google Engineering Manager, Bigtable
* GoogleSQL: Complies with the

Bigtable is a fast, flexible, NoSQL database that powers core Google services such as Search,
ANSI SQL standard. 9 p :

Ads, and YouTube, as well as critical applications for customers such as PLAID and Mercari.

Today, we're announcing Bigtable support for GoogleSQL, an ANSI-compliant SQL dialect
used by Google products such as Spanner and BigQuery. Now you can use the same SQL
with Bigtable to write applications for Al, fraud detection, data mesh, recommendations, or

any other application that would benefit from real-time data.

Bigtable SQL support allows you to query Bigtable data using the familiar GoogleSQL syntax,
making it easier for development teams to work with Bigtable’s flexibility and speed. With
over 100 SQL functions at launch, Bigtable SQL support also makes it easy to analyze and
process large amounts of data directly within Bigtable, unlocking its potential for a wider
range of use cases, ranging from JSON manipulation for log analysis, hyperloglog for web
analytics, or kNN for vector search and generative Al.

GOOGLE ToDAY: SQL EVERYWHERE

* Some new ideas that clean up the SQL syntax.

* Example: Calculate the average sales for items that have above-average total sales.

WITH item sales AS (

Traditional way, with CTEs.

SELECT item, SUM(sales) AS total sales

FROM mydataset.produce
GROUP BY item

)
avg sales AS (

SELECT AVG(total sales) AS overall avg

FROM item sales
)

With the new pipe syntax.

FROM mydataset.produce
| > AGGREGATE SUM(sales) AS total sales GROUP BY item

| > EXTEND (SELECT AVG(total sales) FROM UNNEST) AS overall avg
| > WHERE total sales > overall avg

| > SELECT item, total_sales;

SELECT item _sales.item, item sales.total sales
FROM item sales, avg sales

WHERE item sales.total sales > avg sales.overall avg;

Shute et al.: SQL has problems. We can fix them: Pipe syntax in SQL.
Proc. VLDB Endow, 2024.

DREMEL

* Nested records. (Recall the discussion on extensible types in database systems.)

* Large data volumes.

* Need to scale.

 Need to be fault tolerant.

{ syntax = "proto3";
"order_id": 1001,

NESTED RECORDS “custoner: {

"customer_id": 5001,

e "name": "John Doe", // Define a message to represent an Order
"email": "johndoe@example.com", message Order {
° N d b d ﬂ "address": { int32 order_id = 1;
eed to gO eYOH at "street": "123 Elm St", Customer customer = 2;
. . "city": "Springfield", repeated OrderItem items = 3;
tables’ and ln‘praCtlce "state": "IL", string order_date = 4;
"zip_code": "62701" double total amount = 5;
need a nested data model.))
"items": [// Define a nested message for Customer
{ message Customer {
¢ PrOtOCOI BUfferS "item_id": 1, int32 customer_id = 1;
. . e "name": "Laptop", string name = 2;
(protobufs) are ubiquitious ‘quantity”: 1, string email = 3;
"price": 999.99 Address address = 4; // Nested customer address
across Google, and 2)
. . "item id": 2, // Define a nested message for OrderItem
effeCth@lY thelr record_ "name": "Wireless Mouse", message OrderItem { °
"quantity": 2, int32 item_id = 1;
level data mOdel, "price": 19.99 string name = 2;
}s int32 quantity = 3;
* This idea carried over to { double price = 4;
o "item_id": 3, }
similar data formats "name": "Keyboard",
. . . "quantity": 1, // Define a nested message for Address
1nclud1ng Thrlft (Facebook), "price": 49.99 message Address {
} string street = 1;
and Avro (Hadoop). 1, string city = 2;
"order_date": "2024-10-30", string state = 3;
"total_amount": 1089.96 string zip code = 4;

DREMEL: KEY IDEAS

Compute Cloud

QQ o0 G

* Disaggregated storage

(now called Lakehouse).

* Columnar storage even for nested data

(now part of Parquet).

* Efficient query execution with a special
shuffle infrastructure.

Network

- O

Storage Cloud

NESTED RECORDS AND QUERYING

A Web Document record schema in protobuf (v1)

for a web crawl.

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: 'http://A’'
Name
Url: 'http://B'
Name
Language
Code: 'en-gb'
Country: 'gb'

message Document {
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated int64 Forward; }
repeated group Name {
repeated group Language {
required string Code;
optional string Country; }
optional string Url; }}

DocId: 20 rz
Links
Backward: 10
Backward: 30
Forward: 80
Name
Urls 'http://C!

User may want to refer to a nested field, such
as Name.Language.Code in their queries.

Melnik et al.: Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 3(1): 330-339 (2010)

10

NESTED RECORDS AND QUERYING

I
A Web Document record schema in protobuf (v1) Columnar storage representation with repetition levels
for a web crawl. (r) and definition levels (d).
] r message Document {
D<_>cId. 10 1 required int64 DocId; Docld Name.Url Links.Forward || Links.Backward
Ll;ks d: 20 optional group Links { m
r ra: g
F:r::r 4w repeated int64 Backward; 10 0 0| | http/A 0 2 0 2 | NULL | 0 1
: repeated int64 Forward; }
Forward: 60 Eisiee 4 B 20 (0 O/ | http/B |1 2 40 |1 2 10 |0 2
Name repeated group Language { NULL |1 1 60 1.2 30 1.2
Language required string Code; http://C | 0 2 80 0 2

. | = 1
Code: ‘en-us optional string Country; }

Country: 'us' - : :
Languag:Y optional string Url; }} Name.Language.Code Name.Language.Country
Code: 'en'

Url: 'http://A’ DocId: 20 r, on-us us
Name Links
Url: 'http://B' Backward: 10 en NULL
Name Backward: 30
Language Forward: 80
Code: 'en-gb' Name
Country: 'gb' Urls 'http://C!

Melnik et al.: Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 3(1): 330-339 (2010) 1

NESTED RECORDS AND QUERYING

* SQL with nesting.

A Web Document in protobuf (v1), and a sample query.
SELECT DocId AS Id,

° Operators take as input one or more COUNT (Name . Language .Code) WITHIN Name AS Cnt,

Name.Url + ',' + Name.Language.Code AS Str

nested tables, and outputs a nested table rrom ¢
WHERE REGEXP (Name.Url, '“http') AND DocId < 20;

(and the output schema).

Id: 10 tl message QueryResult {
. . Name required int64 Id;
* Notice the use of path expressions, e.g., Cnt: 2 repeated group Name {
Language optional uinté64 Cnt;
. Str: 'http://A,en-us' repeated group Language {
Name.Language.Code and Name.Ur], is Ste: BECTE T Giy el s
. Name
allowed in the query. Cat: 0

* Also notice the within-record

aggregation (COUNT). In the original version of Dremel],

e Model: nested record == a labeled tree. queries were 1-pass scan on a table,
and aggregation (no joins).

Selection prunes branches.

Melnik et al.: Dremel: Interactive Analysis of Web-Scale Datasets. Proc. VLDB Endow. 3(1): 330-339 (2010)

12

Move towards elastic computing.

Data can be computed by multiple compute englnes |
. Don’t lock the data format to a specific compute englne
 e.g.; the same data may be consumed via SQL, dataframes, MapReduce, ..

Google’s Dremel was one of the first systems that combined a set of
architectural principles that have become a common practice in to-
day’s cloud-native "'analytics tools, including disaggregated storage
and compute, in situ analysis, and columnar storage for semistruc-
tured data. In this paper, we discuss how these ideas evolved in the
past decade and became the foundation for\(ioogle BigQuery.

N N

Serverless: no-upfront provisioning. ___Columnar storage even for nested data.;

Pay-as-you-go consumption model.

Also, adopted SQL as the query language.

(Moving away from Sawzall, which was a
syntactic sugar layer over MapReduce.)

13

DREMEL ON A SHARED NOTHING ARCHITECTURE

* Till ~2009 data was managed in a cluster of commodity servers

P
\Y|
— =

Data

Single Node

A commodity server

P

' Node 1

<
Data

P

\Y|

<
Data Data

P

\Y|
— =

Node 2 Node n

A cluster of commodity servers

14

DISAGGREGATED ARCHITECTURE

* Till ~2009 data was managed in a cluster of commodity servers.

* Then Borg - a cluster management system — was introduced.
(Precursor to Kubernetes).

* Why a cluster management system?

1. Share the hardware across different platforms to improve utilization.

> Elasticity

2. Grow/shrink the cluster to deal with changes in workload. _

* Now the hard disk (spindle) were shared by Dremel with other platforms.
* Replicate the data (on local disks) for performance and fault-tolerance.

* The algorithms now have to be replication aware = More complex development.
* Also, resizing the system means having to move replicas to balance the system.

* The need for disaggregate storage starts to emerge.

15

MOVE FROM SHARED-NOTHING TO SHARED-DISK

Shared File System (GFS)

* After moving to the
shared file system (GFS),
the system was much
slower than on the shared
nothing.

* A table scan may require
opening 100K+ files in GFS

* Metadata access was also
slow.

* Tune: storage format,
metadata, query affinity,
prefetching ...

16

MOVE FROM SHARED-NOTHING TO DISAGGREGATED STORAGE

- Advantages of managed storage:

| ¢ SLOs in the storage are now
not a responsibility of the
Dremel team (a clean division
of team responsibilities).

* Easier to “resize” the system to
add new databases — just ask
for more from the storage
service.

Disaggregated, Managed, Storage NIRRT Do Tt

robust as the storage system

gets more robust.

17

MOVE TO A DISAGGREGATED ARCHITECTURE

Compute

Disaggregated, Managed, Storage

* Dremel initially did not have
joins — it was used mainly for
aggregate queries.

* Asjoins got added, need to
add support to partition the
inputs, aka. shuffle (in
MapReduce parlance).

 Shuffle puts a lot of pressure
on the DRAM and the
network. Want to abstract the
compute side too, especially

for shuffle.

18

MOVE TO FULLY DISAGGREGATED ARCHITECTURE

Replicated, Distributed
Storage

(high durability)

| Distributed ! . imf imf imf imf
:MemorYSthfle: I LLL LLL LLL Ll
Ter i imf {=f {sf {uf

T T T T T T T T T T T T T TR T T TR

L S S ———

Disaggregated storage, memory, and compute

A new
component in the
disaggregated
architecture: the
memory shuffle
tier.

This tier has
memory and disk

space to store
intermediate

shuffle data.

19

A TYPICAL SHUFFLE OPERATOR

* Remember Exchange ... essentially that.

Producer 1

\‘ Consumer 1
Producer 2 .

‘V Consumer 2

(J
Consumer k

Producer n

https://cloud.google.com/blog/products/bigquery/in-memory-query-execution-in-google-bigquery

Two key issues with a typical shuftle:

1.
2.

The communication is O(n?).
MapReduce Shuffle: The shuffle

has to complete before consumers
can start.

Was a big deal as MapReduce
dominated the big data space for
(way) too long.

20

A TYPICAL SHUFFLE OPERATOR

Workers

Jawnsuo)

J180npoid

—_—p
Shuffle (n—1)

[Jawnsuo)]

J190npoid]

[

[Jawnsuo)]

[J99npold

[lawnsuo)]

| Jeonpoid I

In-memory values

Local RAM
Workers
Q)
2 g >
Local RAM 3 g
* g 7 Shuffle (n+1)
Distributed -l B
Disk
Local Disk —
Q o
z g ——>
3 g
Local Disk

Specialized shulffle
infrastructure in
Dremel/BigQuery.

Can optimize the
memory/disk requirement

for the shuffle infrastructure.

CLX can potentially help in
the future?

21

IN SITU DATA ANALYSIS

* Instead of loading data into the warehouse than then querying the data, what if the
initial data was self-descriptive?

* Now can simply run queries on this data — no explicit ETL.
* There may be extra overhead, but the flexibility makes this worth while.

* Also, once the data engine does not need to “own the data,” there is bigger emphasis
on building ways to bring in external data via wrappers, or APIs to other data
sources. This is a federated data systems now.

New issue: Data Governance. | | New issue: QO may have no stats on data.

22

STRAGGLERS

* When you have 100s or 1000s of servers for a single query, high chance that some

P (service latency > 1s)

worker may fail or fall behind.

1
0.9
0.8
0.7
0.6
0.5
0.4
018
0.2
0.1

0

* For a server in a service, assume a 10ms

=== 1in100 === 1in1000 === 1in10,000

//— — response time but 99 percentile latency of 1 sec.
[_— .
o // * [f a task needs 100 server, 63% requests will need
// more than 1 sec., i.e. end up on a server that has
/ 01 a service time of 1 sec.
/ M
' ' ' ' ¢ Ways out:
Humbers ofServers 1. Detect a straggler, and assign that work to

Jeffrey Dean, Luiz André Barroso: The tail at scale. Commun. ACM, 2013. another WOI‘keI'. Need the taSk tO be idempotent.

2. Speculate and duplicate tasks, and when one

of them completes, kill the other task.

23

QUERY EXECUTION IN DREMEL

* Coordinator: Receives queries and

client query execution tree
uses a multi-level serving tree. 1 [1
root server »
* Also, the root server can query the c)
metadata server, instead of each _ , “ ,,,,, ¥ “
. intermediate 5 " Y IEE
leaf server doing that servers SO
independently. The latter can i1 ™ ”
overload the metadata server l(eqzhs:awcelrs . @ @ ~~~~~~~~ e -
with loca 946
when the query first starts. storage) “ l] n

I

storage layer (e.g., GFS)

Original source of the following slides: Andy Pavlo

DREMEL: STORAGE

* DBMS relies on Google's distributed file system (Colossus) to scale

out storage capacity.

* Relies on Capacitor's columnar encoding scheme for nested

relational and semi-structured data.
* Think of it as JSON/YAML without the slowness.

* Capacitor also provides access libraries with basic filtering.
* Similar to Parquet vs. ORC formats.
* Repetition and definition fields are embedded in columns to avoid

having to retrieve/access ancestor attributes.

25

https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/bigquery/inside-capacitor-bigquerys-next-generation-columnar-storage-format

DREMEL: SCHEMA REPRESENTATION

* Dremel's internal storage format is self-describing
* Everything the DBMS needs to understand what is in a file is contain
within the file.

* But the DBMS must parse a file's embedded schema whenever it
wants to read that a file.

* Tables can have thousands of attributes. Most queries only need a subset of

attributes.

e DBMS stores schemas in a columnar format to reduce overhead

when retrieving meta-data.

26

DREMEL: QUERY EXECUTION

* DBMS converts a logical plan into stages (pipelines) that contain
multiple parallel tasks.

* Each task must be deterministic and idempotent to support restarts.

* Root node (Coordinator) retrieves all the meta-data for target files in

a batch and then embeds it in the query plan.

* Each worker node has its own local memory and can spill to local

disk if needed.

27

DREMEL: QUERY EXECUTION

Worker

Worker

Worker

({0 @ (0 [@)

. \

Worker

Worker

SELECT language, MAX(views)

*-ERQM\yE§ipedia
WHERE..tTxle. LIKE

‘GROUP BY 1 ORDER B

LIMIT 100

"%Steveny" ‘

Y 2 I

Stage #1

Distributed
File System

Source: H.Ahmadi + A.Surna

Partial Group By

Stage #2
Group By, Sort, Limit

In-Memory
Shuffle

S

Stage #3

Sort, Limit

In-Memory

Shuffle

(0 (@ (0 [@

Distributed
File System

28

https://youtu.be/Zk5_RcRg3nA

DREMEL: IN-MEMORY SHUFFLE

* Producer/consumer model for transmitting intermediate

results from each stage to the next using dedicated nodes.

* Workers send output to shuffle nodes.
* Shuffle nodes store data in memory in hashed partitions.
* Workers at the next stage retrieve their inputs from the shuffle

nodes.

* Shuffle nodes store this data in memory and only spill to disk
storage if necessary.

29

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

Distributed
Source: H.Ahmadi + A.Surna F’ile SyStem

: Worker 3

o g
: Worker : S

Stage n+1

30

https://youtu.be/Zk5_RcRg3nA

DREMEL: IN-MEMORY SHUFFLE

* The shuftle phases represent checkpoints in a query's lifecycle where
that the coordinator makes sure that all tasks are completed.

* Fault Tolerance / Straggler Avoidance:

* [f a worker does not produce a task's results within a deadline, the

coordinator speculatively executes a redundant task.

* Dynamic Resource Allocation:

e Scale up / down the number of workers for the next stage depending size of

a stage's output.

31

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

SE

Distributed
File System

2 ¥
: Worker

g <
: Worker

Stage n+1

32

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

S
: 2
ﬁ_ s

S
: 2
q s

SE

Distributed
File System

2 ¥
: Worker

g <
: Worker

Stage n+1

33

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

i—

=
3y

SE

Distributed
File System

2 ¥
: Worker

g <
: Worker

Stage n+1

34

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

W

=
3y

SE

Distributed
File System

2 ¥
: Worker

g <
: Worker

Stage n+1

35

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

W

=
3y

SE

Distributed
File System

Stage n+1

36

DREMEL: IN-MEMORY SHUFFLE

In-Memory
Storage

Stagen | @ @

Distributed
File System

W

Statistics

N: Worker

: Worker

Stage n+1

37

DREMEL: QUERY OPTIMIZATION

* Dremel's optimizer uses a stratified approach with rule-based + cost-
based optimizer passes to generate a preliminary physical plan to

start execution.
* Rules for predicate pushdown, star schema constraint propagation,
primary/foreign key hints, join ordering.
* Cost-based optimizations only on data that the DBMS has statistics

available (e.g., materialized views).

* To avoid the problems with bad cost model estimates, Dremel uses
adaptive query optimization...

Source: H.Ahmadi + A.Surna

38

https://youtu.be/Zk5_RcRg3nA

DREMEL: ADAPTIVE QUERY OPTIMIZATION

* Dremel changes the query plan before a stages starts based on
observations from the preceding stage.

* Avoids the problem of optimizer making decisions with inaccurate (or non-
existing) data statistics.

* Optimization Examples:
* Change the # of workers in a stage.
* Switch between shuffle vs. broadcast join.
* Change the physical operator implementation.

* Dynamic repartitioning.

39

DREMEL: ADAPTIVE JOIN

In-Memory
Storage

S :
5 S
s § :

) H
3 3 i
S H
: Worker : B
8 s i

« H
3 R i

:
3y

: Worker

: Worker

: Worker :

Stagen | @ @

Distributed
File System

(@)
: Worker

Stage n+1

40

DREMEL: ADAPTIVE JOIN

In-Memory
Storage

: Worker

: Worker

: Worker

Stagen

Distributed
File System

(@)
: Worker

Stage n+1

41

DREMEL: ADAPTIVE JOIN

In-Memory
Storage

% Table A Table B

: Worker

% Table A Table B

: Worker

: Worker

Stagen

Distributed
File System

(@)
: Worker

Stage n+1

42

DREMEL: ADAPTIVE JOIN

In-Memory
Storage

% Table A Table B
I i

% Table A Table B

: Worker

: Worker

: Worker

Stagen

Distributed
File System

(@)
: Worker

Stage n+1

43

DREMEL: ADAPTIVE JOIN

In-Memory

Table A

Storage

Table B

: Worker

: Worker

: Worker

Distributed
File System

(@)
: Worker

Stage n+1

44

DREMEL: ADAPTIVE JOIN

In-Memory
Storage

Table A| Table B

: Worker

Table B

hash(A.key)

: Worker

: Worker

Stagen

Distributed
File System

hash(A.key)

(@)
N: Worker

Stage n+1

45

DREMEL: ADAPTIVE JOIN

In-Memory

Storage

Table A| Table B

Broadcast(A)

: Worker

Table A| Table B

(@)
: Worker

- Broadcast(A)
: Worker
: Worker :
Stagen Stage n+1
Distributed
File System

46

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load

balances and adjusts

intermediate result partitioning Partiion #1 Partition 42

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then

instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

47

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load

balances and adjusts
intermediate result partitioning Partiion #1 Partition 42

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then

instructs workers to adjust their

Worker Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

48

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts

Gordinaor Bl

Statistics

intermediate result partitioning Partition #1 Partition 2

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their

Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

Worker

49

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts
intermediate result partitioning Partiion o

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their

Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Worker

Statistics

Partition #4

50

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts
intermediate result partitioning Partiion o

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their

Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

Coordinator

Partition #2 Partition #3

il

Statistics

Partition #4

51

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts
intermediate result partitioning Partiion o

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their

Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Worker

Statistics

Partition #4

52

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts
intermediate result partitioning Partiion o

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their

Worker

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Worker

Statistics

Partition #4

53

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts
intermediate result partitioning Partiion o

to adapt to data skew.

* DBMS detects whether shuftle
partition gets too full and then
instructs workers to adjust their —

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Worker

Statistics

Partition #4

Repartition

54

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts

intermediate result partitioning Partition 1

to adapt to data skew. i

e DBMS detects whether shuffle

o hash(key)
partition gets too full and then

instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Statistics

Partition #4

Repartition

55

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts

intermediate result partitioning Partition 1

to adapt to data skew. i

* DBMS detects whether shuftle
partition gets too full and then

hash,(key)

instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

Gordinaor Bl

Partition #2

Partition #3

Statistics

Partition #4

Repartition

56

https://youtu.be/Zk5_RcRg3nA

DREMEL: DYNAMIC REPARTITIONING

* Dremel dynamically load
balances and adjusts

intermediate result partitioning Partition 1

to adapt to data skew. i

e DBMS detects whether shuffle

o hash(key)
partition gets too full and then

instructs workers to adjust their

partitioning scheme.

Source: H.Ahmadi + A.Surna

Partition #3

il

Statistics

Partition #4

Repartition

57

https://youtu.be/Zk5_RcRg3nA

OBSERVATION

* Since the 2011 VLDB paper, there are DBMS projects that are copies
or inspired by Dremel.
* Apache Drill (MapR)
* Presto (Meta)
* Apache Impala (Cloudera)

e Dremio

* There are also shuffle-as-a-service systems:
* Apache Celeborn (Alibaba)
* Apache Uniffle (Tencent)
* Remote Shuffle Service (Uber)

58

https://drill.apache.org/
https://prestodb.io/
https://impala.apache.org/
https://www.dremio.com/
https://celeborn.apache.org/
https://uniffle.apache.org/
https://github.com/uber/RemoteShuffleService

SUMMARY AND OUTLOOK

Gremel became BigQuery, a key GCP offering.

* Lead the way in disaggregated: compute, storage, shuftle layer.
* Columnar storage for nested nested data. Mimicked in Parquet.
* In-situ data analytics, essentially the foundation for data lakes.

* Lead the way in making SQL the key query language for structured and
nested data at Google and beyond. Including for Spanner, and other non-
Google projects like Hive, Spark, Presto, ...

* Snowflake recognized this trend early to build a cloud-native data

warehousing solution ... next class.

59

DREMEL: SQL

* In the early 2010s, many of Google's internal DBMS projects each
had their own SQL dialect.

* The GoogleSQL project unified these redundant efforts to build a
data model, type system, syntax, semantics, and function library.

* (Zombie?) Open-Source Version: ZetaSQL

60

https://cloud.google.com/spanner/docs/reference/standard-sql/overview
https://github.com/google/zetasql

