
Advanced Database
Systems (15-721)

Fall 2024 Prof. Jignesh Patel

Lecture #10

Memory-
Optimized
OLTP

2

ANNOUNCEMENTS

• Building blocks seminar (today) on Monday, September 30 @ 4:30pm
• Accelerating Apache Spark workloads with Apache DataFusion Comet
• https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/

• Talk from Oracle on (tomorrow) Tuesday, October 1, @ noon in 6501 GHC.
• Unifying relational and document/JSON management.
• https://cmu.zoom.us/my/jignesh

• Initial project meeting. You should have scheduled a 15-minute meeting slot. If
not do that ASAP @ https://calendly.com/pateljm/initial-discussion-for-class-project

• Exam: Oct 9th in GHC 8102 between 1-4 pm. Open book.
• Start anytime. Stop 90 minutes later.

https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/
https://cmu.zoom.us/my/jignesh
https://calendly.com/pateljm/initial-discussion-for-class-project

3

BACKGROUND: SQL SERVER (BACK THEN) AND OLTP

• Many OLTP databases fit in memory. Now memory accesses can become the new
bottleneck. Needs to rethink design choices.

• Analysis of transactional workloads: Where does time go in SQL Server?
• CPI: Cycles per instructions
• IR: Instructions Required:
• SF: Scalability factor

• CPI: Influenced by code (e.g., fewer branches is better), and hardware.
• Was 1.6 already in SQL Server – not much room to improve.

• SF: Property of the CC method and implementation
• 1.89 (Ideal is 2). So not too far.

• Big gains will come from IR reduction: reduce instructions/txn.

4

IN-MEMORY OLTP: RETHINK

Data	Structures

Code	
generation

Concurrency	
Control	

Mechanisms

H

• In-memory data structures (no buffer
pool overhead).

• In-memory hash and range indices.
• Checkpoint and Log main tables to

disk (needed for recovery).
• Don’t log indices – rebuild on crash.

• Latch-free data structures
(no locks).

• Optimistic MVCC
Protocol.

Reduce	instruction	count	/	txn.

Compile statement and stored
procedures to native code.

No	need	to	partition	the	database	across	cores.
Integrated	with	SQL	server,	but	need	to	
explicitly	mark	tables	as	in-memory.

5

INDICES

• In-memory, latch-free, hash and B-
tree indices.

• The B-tree version is called Bw-tree.
• Node changes stored as delta records.
• Compare-and-swap (CAS) for atomic

updates.
• Log-structured page storage.

• Key points: need a fast concurrent
index structure, so that each
transaction can read/update indices
quickly.

Levandoski	et	al.	:	The	Bw-Tree:	A	B-tree	for	new	hardware	platforms.	ICDE	2013
Wang	et	al.:	Building	a	Bw-Tree	Takes	More	Than	Just	Buzz	Words.	SIGMOD	2018

6

HEKATON: CODE COMPILER

• Codegen: T-SQL to C to machine code.

• Table creation also requires codegen.
• To the compiler, records are opaque.
• Functions like compareRecords() needs to be generated

as schema changes.

• Type mismatch between T-SQL and C-types.
• Stored Procedure -> MAT -> PIT -> Code.

• Other differences between C and SQL
• NULLs: Special handling for operations like outerjoins.
• Semantics of exceptions (e.g. divide by zero) differs in T-

SQL and C.

• Note: Can’t access regular (non in-memory) tables
from a compiled stored procedure.

T-SQL	is	SQL	Server’s	procedural	programming	language,	similar	to	Oracle’s	PL/SQL	and	PostgreSQL’s		PL/pgSQL.

7

TP
C-
C	
N
ew
-O
rd
er
	T
ra
ns
ac
ti
on
	

as
	a
	T
-S
Q
L	
St
or
ed
	P
ro
ce
du
re
	

8

HEKATON’S APPROACH

• MVCC + Optimistic

• Supports multiple isolation levels without locking, including snapshot
isolation.
• Recall Snapshot Isolation is a weaker form of isolation than Weaker than

Serializable.
• Reads are as of the start of the txn.
• Writes as of the end of the txn.

9

T
R
A
N
SA

C
T
IO

N

TRANSACTION = UNIT OF WORK

Example: A bank rewards old customers with a high balance

Atomicity

Isolation

1. Look up George’s account balance
2. Look up Alice’s account balance
3. Look up Bob’s account balance
4. Add $5 to account with highest balance

Concurrency control ensures these properties

10

DESIGNING FOR IN-MEMORY OLTP

Traditional	disk-oriented	engine In-memory	engine

Disk-friendly	data	structures:	Pages,	B-tree	
index.

Latch-free	hash	table	/	B-trees	stores	individual	
records.

Absorbs	high	disk	latency	by	frequent	context	
switching.

Minimizes	context	switching:	Usually	1,	at	most	2	
per	txn.

Thread	spins	for	latches. Eliminates	latches.

Txn	may	yield	for	locks. Txn	never	waits	for	locks.

Critical	sections	are	thousands	of	instructions	
long,	and	limit	scalability.

Only	1	critical	section:	atomic	increment	counter.
Many	txns	finish	in	thousands	of	instructions.

11

COMPARE HEKATON TO OTHER APPROACHES (H-STORE)

H-Store Hekaton

Scales out. Scales up.

Communication across
partitions is expensive.

Main memory is shared and
coherent.

One CPU can access a given
record.

Any CPU can access a given
record.

TXs that span partitions
participate in 2PC.

TXs validate their reads to
enforce isolation.

Perfect for partitionable
workloads.

Generic, no need to specify
partitions.

H-Store	is	an	example	of	an	
approach	that	partitions	the	data	
and	optimizes	for	txns	that	touch	a	
single	partition.	The	motivation	for	
that	approach	is	that	many	txns	can	
be	made	to	work	in	a	single	
partition,	and	can	we	make	those	go	
as	fast	as	we	can.

12

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

BEGIN END

13

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R
BEGIN END

14

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R W
BEGIN END

15

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R W But not for
Serializable.

Sufficient for
Read Committed.

BEGIN END

16

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp.

BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011

17

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

R

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp.

R W
BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011

18

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

R

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp. R
W

BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011

19

SUPPORT MULTIPLE ISOLATION LEVELS

• SQL has multiple isolation levels, and we want to support that.
• These trade isolation for performance.
• Want to allow concurrent transaction with different isolation levels.

• Can a multi-version optimistic CC protocol support these isolation
levels?

SQL	level

Serializable

Repeatable	Read

Read	Committed

Read	
Uncommitted

MV/O can offers this choice too!

20

MV/O: WHAT NEEDS TO BE VALIDATED?

• Depends on the isolation level.

• Read Committed: No validation needed.
• Versions were committed at BEGIN, will still be committed at END.

• Repeatable Read: Read versions again.
• Ensure no versions have disappeared from the view.

• Serializable: Repeat scans with same predicate.
• Ensure no phantoms have appeared in the view.

21

TRANSACTION STATES

Committed

Active Validating

Aborted

Terminated

22

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Terminated

23

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Active Terminated

24

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

User abort
or

WW conflict

Active Terminated

25

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Terminated

26

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Validating Terminated

27

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Validating Terminated

28

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Terminated

29

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Committed

Terminated

30

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

CommittedRead only
transaction

Terminated

31

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

32

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

TerminatedTerminated

Postprocessing

33

EXAMPLE

• Bank stores (customer, account balance).

• Bank wants to reward good customers.

• Transaction:
1. Lookup balance for George, Alice, Bob.

2. Add $5 to the account with the highest balance. George $98

Alice $75

Bob $92

David $106

Frank $31

34

COMPARE MV WITH SINGLE VERSION

1V MV/O
• Traditional algorithm, optimized

for memory-resident data.

• Keeps a single version.

• Synchronization via locks:
• Acquired on access.

• Released after commit.

• New concurrency control
algorithm.

• Keeps multiple versions.

• Identifies correct version to read
from timestamp information.

• Needs garbage collection.

35

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

hash bucket

MV/O

36

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

MV/O

37

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

MV/O

38

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 ∞

MV/O

39

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 ∞

Latches vs. timestamps

MV/O

40

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 ∞

MV/O

41

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 ∞

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

42

A

B

C

D

E

F

G George

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

$98 ∞

43

A

B

C

D

E

F

G George

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

$98 ∞

44

A

B

C

D

E

F

G George

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

$98 ∞

45

A

B

C

D

E

F

G George $103

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 TX5

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

George $103TX5 ∞

Updates
in-place	vs.	new	version

46

A

B

C

D

E

F

G George $103

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

George $103∞

MV/O	repeats	
reads	for	validation

TX5
TX5

47

A

B

C

D

E

F

G George $103

Alice $75

Bob $92

David $106

Frank $31

1V

A

B

C

D

E

F

G George $98

Alice $75

Bob $92

David $106

Frank $31

1 ∞

1 ∞

1 ∞

1 ∞

1 4

TX5
Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

MV/O

George $1034 ∞

Postprocessing:
unlock vs. fix timestamp

48

MEMORY ACCESSES ON CRITICAL PATH

• Read operation:
1 mem read to record.

1 mem write to lock.

• Update operation:
1 mem write to record.

• Read operation:
1 mem read to version.

• Update operation:
1 mem write to new version.
1 mem write to old version.

1V MV/O

In 1V, readers

write to memory!

49

RW CONFLICTS

TX6 waits for lock TX6 reads old version
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞

50

RW CONFLICTS

TX6 waits for lock TX6 reads old version
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞

TX6
Read	George

Commit

51

RW CONFLICTS

TX6 waits for lock TX6 reads old version
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞

TX6
Read	George

Commit

52

RW CONFLICTS

TX6 waits for lock TX6 reads old version
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞

TX6
Read	George

Commit

MV/O isolates readers

from writers

53

MULTI-VERSION OPTIMISTIC SUMMARY

• There are no latches or locks:
• Txn reads don’t cause memory writes.
• Txns will never wait during the ACTIVE phase.

• Isolates readers from writers.

• Supports all isolation levels.

• Lower isolation level = less work.

• No deadlock detection is needed.

54

TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Committed

Active Validating

Read only
transaction

TerminatedTerminated

Postprocessing

55

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A

56

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A

57

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A

58

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

59

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4

60

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

61

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4

62

DETERMINING VERSION VISIBILITY

Transaction Map

John $1001 ∞
timestamp

8 bytes
TXID STATE BEGIN END

5 ACTIV 2 N/A

63

DETERMINING VERSION VISIBILITY

Transaction Map

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5

64

DETERMINING VERSION VISIBILITY

Transaction Map

Visibility as of time T is determined by: version timestamps and txn state.

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5
TXID STATE BEGIN END

5 ACTIV 2 N/A1 TX5

65

DETERMINING VERSION VISIBILITY

Transaction Map

Visibility as of time T is determined by: version timestamps and txn state.

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5
TXID STATE BEGIN END

5 ACTIV 2 N/A1 TX5

Generate timestamps efficiently using Atomic Addition (CAS).

Can also use a hardware clock (see previous lectures).

66

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A

Log updates, wait for I/O

Terminated

Postprocessing

67

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A

Log updates, wait for I/O

Terminated

Postprocessing

68

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A

Log updates, wait for I/O

Terminated

Postprocessing

69

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A

Log updates, wait for I/O

Terminated

Postprocessing

70

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

Log updates, wait for I/O

Terminated

Postprocessing

71

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

TX5

Log updates, wait for I/O

Terminated

Postprocessing

72

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

TX5

Log updates, wait for I/O

Terminated

Postprocessing

73

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Active

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

TX5

Log updates, wait for I/O

Terminated

Postprocessing

74

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A

TX5

Log updates, wait for I/O

Terminated

Postprocessing

75

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

76

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Validating

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

77

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Validating

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

78

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

79

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

CommittedCommitted

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

80

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

CommittedCommitted

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

81

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

82

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing

83

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4

4

Log updates, wait for I/O

Terminated

Postprocessing

84

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 44

4

Log updates, wait for I/O

Terminated

Postprocessing

85

EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 44

4

Log updates, wait for I/O

TerminatedTerminated

Postprocessing

86

WW CONFLICTS

John $150TX5 ∞
John $1001 ∞

TX5 updates
$100 to $150

TX2 updates
$100 to $75

TX5 TX2

CAS CAS

∞TX5TX5

TX2 aborts

8 bytes

TX5TX5

First writer wins

87

WR CONFLICTS

John $150TX5 ∞ Q: When is a version visible?
A: Depends on the txn state.

88

WR CONFLICTS

TX5	State Visible?

ACTIVE

VALIDATING

COMMITTED

ABORTED

John $150TX5 ∞ Q: When is a version visible?

No, the version is uncommitted.

Maybe, check TX5 END timestamp.

No, this version is garbage.

?

A: Depends on the txn state.

89

WR CONFLICTS

TX5	State Visible?

ACTIVE

VALIDATING

COMMITTED

ABORTED

John $150TX5 ∞ Q: When is a version visible?

No, the version is uncommitted.

Maybe, check TX5 END timestamp.

No, this version is garbage.

Speculate YES now, confirm at the end.

A: Depends on the txn state.

90

COMMIT DEPENDENCIES

• Impose constraint on serialization order:
 Commit B only if A has committed.

• Implementation: register-and-signal.
• Transform multiple waits on every record

access to a single wait at the end of the txn.
• Dependency wait time “added” to log latency.

• But: Cascading aborts are now possible.

91

COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

92

COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

Wait for
 dependencies
to clear, then

93

COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

Wait for
 dependencies
to clear, then

94

COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing
Release dependents

Wait for
 dependencies
to clear, then

95

EVALUATION

• 2-socket × 6-core Xeon X5650 with 48GB RAM.

• All transactions run under Serializable isolation.

MV/O Multi-version	optimistic

1V Single-version	two-phase	locking

96

EVALUATION: TATP BENCHMARK

• Simulates a telecommunications application.
• 4 tables, 7 different transactions, sized for 20M subscribers.

• Very short transactions: Less than 5 ops/txn on average.

• Very little contention.

Scheme Throughput (txn/sec)

MV/O 3,121,494

1V 4,220,119

97

SCALABILITY: EXTREME CONTENTION (1000 ROWS SYNTHETIC DATABASE)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 6 12 18 24

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

M
ill

io
ns

Threads

1V MV/O80%	R=10
20%	R=10,	W=2

5×

MV/O	does	not	break	under	contention.
MV/O	does	not	need	throttling	for	max	perf.

2×

98

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24U
pd

at
e

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

M
ill

io
ns

Active long read TXsAll active TXs
short updaters.

All active TXs
long readers.

6 TXs long readers.
18 TXs short updaters.

R=1,000,000
R=10, W=2

99

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24U
pd

at
e

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

M
ill

io
ns

Active long read TXs

1V MV/OR=1,000,000
R=10, W=2

If all TXs do updates, 1V 1.9× faster.

All active TXs
short updaters.

All active TXs
long readers.

100

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24U
pd

at
e

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

M
ill

io
ns

Active long read TXs

1V MV/OR=1,000,000
R=10, W=2

Even if 1 long reader, MV/O 2.3× faster.2.3×

All active TXs
short updaters.

All active TXs
long readers.

101

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8 10 12 14 16 18 20 22 24U
pd

at
e

th
ro

ug
hp

ut
 (t

xn
s/

se
c)

M
ill

io
ns

Active long read TXs

1V MV/OR=1,000,000
R=10, W=2

MV/O does not penalize updates in the
presence of long-running reads.

All active TXs
short updaters.

All active TXs
long readers.

102

OTHER NOTES

• Other aspects like checkpointing and recovery still have be performed. Can optimize
these for the in-memory case.
• Create “data” files, and “delta” files.
• Data files: inserts and updates covering a specific time range.
• Delta files: which version in the data files have been deleted.
• Rebuild indices from these files.
• To reduce the size of these files, periodically merge the data files, and apply delta (sort of like the

compaction in LSM trees).

• Garbage collection is now critical.

• Hekaton creates new version (the chains are oldest-to-newest). Can do the reverse
too, and can be more efficient for accesses to the new values.

103

HTAP

• Huge interest in Hybrid OLTP + OLAP systems.

• Storage formats clash: OLTP wants a row-store, and OLAP wants a column-store.
• Can support both storage formats in the same engine.
• Can be further optimized so that the row-store part is in-memory (as we just saw in Hekaton).

• Often a notion of “delta” is used, where the changed/uncommitted values are stored.
• We saw these in the version chains in Hekaton.

• The re-scan cost in the MVCC can be expensive. A clever ideas it to use “Precison
Locks” (see the Hyper paper)
• Remember the predicate in the WHERE clause of the SQL query.
• Run that predicate against the deltas (new versions) of records created by transactions that

committed after the current txn started.
• This delta set is much smaller, so the rescan can be significantly faster.

Alfons	Kemper,	Thomas	Neumann:	HyPer:	A	hybrid	OLTP&OLAP	main	memory	database	system	based	on	virtual	memory	snapshots.	ICDE	2011

104

SUMMARY AND OUTLOOK

• Multi-version schemes are necessary for high OLTP performance.
• Readers don’t block writers.

• MV schemes + OCC is a nice combination for in-memory OLTP.
• No waiting on locks, and latch-free data structures.
• Also can use codegen.
• Want a low instruction count / txn for high performance.

• Orthogonally need a disaster recovery method.

• OLTP on clusters bring new challenges. Need to run a commit protocol like 2PC. Need to
have a replication method like RAFT.

• HTAP systems need to find a way to do both row and column store in the same engine.

• Building OLTP systems in a disaggregated cloud ecosystem bring additional challenges,
including rethinking the storage layer.

