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ANNOUNCEMENTS

• Building blocks seminar (today) on Monday, September 30 @ 4:30pm 
• Accelerating Apache Spark workloads with Apache DataFusion Comet
• https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/ 

• Talk from Oracle on (tomorrow) Tuesday, October 1, @ noon in 6501 GHC.
• Unifying relational and document/JSON management.
• https://cmu.zoom.us/my/jignesh 

• Initial project meeting. You should have scheduled a 15-minute meeting slot. If 
not do that ASAP @ https://calendly.com/pateljm/initial-discussion-for-class-project  

• Exam: Oct 9th in GHC 8102 between 1-4 pm. Open book.
• Start anytime. Stop 90 minutes later. 

https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/
https://cmu.zoom.us/my/jignesh
https://calendly.com/pateljm/initial-discussion-for-class-project
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BACKGROUND: SQL SERVER (BACK THEN) AND OLTP

• Many OLTP databases fit in memory. Now memory accesses can become the new 
bottleneck. Needs to rethink design choices. 

• Analysis of transactional workloads: Where does time go in SQL Server?
• CPI: Cycles per instructions
• IR: Instructions Required: 
• SF: Scalability factor 

• CPI: Influenced by code (e.g., fewer branches is better), and hardware. 
• Was 1.6 already in SQL Server – not much room to improve.

• SF: Property of the CC method and implementation
• 1.89 (Ideal is 2). So not too far.

• Big gains will come from IR reduction: reduce instructions/txn.
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IN-MEMORY OLTP: RETHINK

Data	Structures

Code	
generation

Concurrency	
Control	

Mechanisms

H

• In-memory data structures (no buffer 
pool overhead).

• In-memory hash and range indices. 
• Checkpoint and Log main tables to 

disk (needed for recovery).
• Don’t log indices – rebuild on crash.

• Latch-free data structures 
(no locks).

• Optimistic MVCC 
Protocol.

Reduce	instruction	count	/	txn.

Compile statement and stored 
procedures to native code.

No	need	to	partition	the	database	across	cores.
Integrated	with	SQL	server,	but	need	to	
explicitly	mark	tables	as	in-memory.
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INDICES

• In-memory, latch-free, hash and B-
tree indices.

• The B-tree version is called Bw-tree. 
• Node changes stored as delta records. 
• Compare-and-swap (CAS) for atomic 

updates. 
• Log-structured page storage.

• Key points: need a fast concurrent 
index structure, so that each 
transaction can read/update indices 
quickly.

Levandoski	et	al.	:	The	Bw-Tree:	A	B-tree	for	new	hardware	platforms.	ICDE	2013
Wang	et	al.:	Building	a	Bw-Tree	Takes	More	Than	Just	Buzz	Words.	SIGMOD	2018
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HEKATON: CODE COMPILER

• Codegen: T-SQL to C to machine code.

• Table creation also requires codegen.
• To the compiler, records are opaque.
• Functions like compareRecords() needs to be generated 

as schema changes. 

• Type mismatch between T-SQL and C-types.
• Stored Procedure -> MAT -> PIT -> Code.

• Other differences between C and SQL
• NULLs: Special handling for operations like outerjoins.
• Semantics of exceptions (e.g. divide by zero) differs in T-

SQL and C.

• Note: Can’t access regular (non in-memory) tables 
from a compiled stored procedure.

T-SQL	is	SQL	Server’s	procedural	programming	language,	similar	to	Oracle’s	PL/SQL	and	PostgreSQL’s		PL/pgSQL.
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HEKATON’S APPROACH

• MVCC + Optimistic

• Supports multiple isolation levels without locking, including snapshot 
isolation.
• Recall Snapshot Isolation is a weaker form of  isolation than Weaker than 

Serializable. 
• Reads are as of the start of the txn. 
• Writes as of the end of the txn. 
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TRANSACTION = UNIT OF WORK

Example: A bank rewards old customers with a high balance

Atomicity

Isolation

1. Look up George’s account balance
2. Look up Alice’s account balance
3. Look up Bob’s account balance
4. Add $5 to account with highest balance

Concurrency control ensures these properties
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DESIGNING FOR IN-MEMORY OLTP

Traditional	disk-oriented	engine In-memory	engine

Disk-friendly	data	structures:	Pages,	B-tree	
index.

Latch-free	hash	table	/	B-trees	stores	individual	
records.

Absorbs	high	disk	latency	by	frequent	context	
switching.

Minimizes	context	switching:	Usually	1,	at	most	2	
per	txn.

Thread	spins	for	latches. Eliminates	latches.

Txn	may	yield	for	locks. Txn	never	waits	for	locks.

Critical	sections	are	thousands	of	instructions	
long,	and	limit	scalability.

Only	1	critical	section:	atomic	increment	counter.
Many	txns	finish	in	thousands	of	instructions.
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COMPARE HEKATON TO OTHER APPROACHES (H-STORE)

H-Store Hekaton

Scales out. Scales up.

Communication across 
partitions is expensive.

Main memory is shared and 
coherent.

One CPU can access a given 
record.

Any CPU can access a given 
record.

TXs that span partitions 
participate in 2PC.

TXs validate their reads to 
enforce isolation.

Perfect for partitionable 
workloads.

Generic, no need to specify 
partitions.

H-Store	is	an	example	of	an	
approach	that	partitions	the	data	
and	optimizes	for	txns	that	touch	a	
single	partition.	The	motivation	for	
that	approach	is	that	many	txns	can	
be	made	to	work	in	a	single	
partition,	and	can	we	make	those	go	
as	fast	as	we	can.
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MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

BEGIN END
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MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R
BEGIN END
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MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R W
BEGIN END
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MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

• TXs have two unique timestamps: BEGIN, END.

• Read as of BEGIN timestamp.

• Write as of END timestamp.

1 2 3 4 5
Logical	time

R W But not for 
Serializable.

Sufficient for 
Read Committed. 

BEGIN END
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MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp.

BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011
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MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

R

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp.

R W
BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011
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MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

R

• Read as of BEGIN timestamp.

• Repeat Read as of END timestamp, verify no change.

• Write as of END timestamp. R
W

BEGIN END

1 2 3 4 5
Logical	time

Mihaela	A.	Bornea,	Orion	Hodson,	Sameh	Elnikety,	Alan	D.	Fekete:	One-copy	serializability	with	snapshot	isolation	under	the	hood.	ICDE	2011
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SUPPORT MULTIPLE ISOLATION LEVELS

• SQL has multiple isolation levels, and we want to support that. 
• These trade isolation for performance.
• Want to allow concurrent transaction with different isolation levels.

• Can a multi-version optimistic CC protocol support these isolation 
levels?

SQL	level

Serializable

Repeatable	Read

Read	Committed

Read	
Uncommitted

MV/O can offers this choice too!
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MV/O: WHAT NEEDS TO BE VALIDATED?

• Depends on the isolation level.

• Read Committed: No validation needed.
• Versions were committed at BEGIN, will still be committed at END.

• Repeatable Read: Read versions again.
• Ensure no versions have disappeared from the view.

• Serializable: Repeat scans with same predicate.
• Ensure no phantoms have appeared in the view.
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TRANSACTION STATES

Committed

Active Validating

Aborted

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Active Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

User abort
or

WW conflict

Active Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Validating Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Validating Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Committed

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

CommittedRead only
transaction

Terminated
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

TerminatedTerminated

Postprocessing
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EXAMPLE

• Bank stores (customer, account balance).

• Bank wants to reward good customers.

• Transaction:
1. Lookup balance for George, Alice, Bob.

2. Add $5 to the account with the highest balance. George $98

Alice $75

Bob $92

David $106

Frank $31
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COMPARE MV WITH SINGLE VERSION

1V MV/O
• Traditional algorithm, optimized 

for memory-resident data.

• Keeps a single version.

• Synchronization via locks:
• Acquired on access.

• Released after commit.

• New concurrency control 
algorithm.

• Keeps multiple versions.

• Identifies correct version to read 
from timestamp information.

• Needs garbage collection.
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hash bucket

MV/O
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MEMORY ACCESSES ON CRITICAL PATH

• Read operation:
1 mem read to record.

1 mem write to lock.

• Update operation:
1 mem write to record.

• Read operation:
1 mem read to version.

• Update operation:
1 mem write to new version.
1 mem write to old version.

1V MV/O

In 1V, readers 

write to memory!
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RW CONFLICTS

TX6 waits for lock TX6 reads old version 
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞



50

RW CONFLICTS

TX6 waits for lock TX6 reads old version 
and commits

G G
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RW CONFLICTS

TX6 waits for lock TX6 reads old version 
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5
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RW CONFLICTS

TX6 waits for lock TX6 reads old version 
and commits

G G

1V MV/O
TX5

Read	George

Read	Alice

Read	Bob

Update	George		

Commit

Postprocessing

George $103 George $981 TX5

George $103TX5 ∞

TX6
Read	George

Commit

MV/O isolates readers 

from writers
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MULTI-VERSION OPTIMISTIC SUMMARY

• There are no latches or locks:
• Txn reads don’t cause memory writes.
• Txns will never wait during the ACTIVE phase.

• Isolates readers from writers.

• Supports all isolation levels.

• Lower isolation level = less work.

• No deadlock detection is needed.
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TRANSACTION STATES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Committed

Active Validating

Read only
transaction

TerminatedTerminated

Postprocessing
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A



56

TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4
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TRANSACTION MAP

• Stores transaction state, timestamps.

• Globally visible.

Transaction Map
TXID STATE BEGIN END

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4
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DETERMINING VERSION VISIBILITY

Transaction Map

John $1001 ∞
timestamp

8 bytes
TXID STATE BEGIN END

5 ACTIV 2 N/A
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DETERMINING VERSION VISIBILITY

Transaction Map

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5
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DETERMINING VERSION VISIBILITY

Transaction Map

Visibility as of time T is determined by: version timestamps and txn state.

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5
TXID STATE BEGIN END

5 ACTIV 2 N/A1 TX5
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DETERMINING VERSION VISIBILITY

Transaction Map

Visibility as of time T is determined by: version timestamps and txn state.

John $1001

timestamp

8 bytes

, or transaction ID

TXID STATE BEGIN END

5 ACTIV 2 N/ATX5
TXID STATE BEGIN END

5 ACTIV 2 N/A1 TX5

Generate timestamps efficiently using Atomic Addition (CAS). 

Can also use a hardware clock (see previous lectures).
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001 ∞

TXID STATE BEGIN END

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150
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Postprocessing
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EXAMPLE: UPDATE TO $150
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EXAMPLE: UPDATE TO $150
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EXAMPLE: UPDATE TO $150
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EXAMPLE: UPDATE TO $150
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EXAMPLE: UPDATE TO $150

Transaction Map
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EXAMPLE: UPDATE TO $150

Transaction Map
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EXAMPLE: UPDATE TO $150
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Validating

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Validating

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

CommittedCommitted

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

CommittedCommitted

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4

TX5

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150TX5 ∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 4

4

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 44

4

Log updates, wait for I/O

Terminated

Postprocessing
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EXAMPLE: UPDATE TO $150

Transaction Map
John $1001

TXID STATE BEGIN END

John $150∞

Active Validating

Get Begin
Timestamp

Get End
Timestamp

Committed

5 N/A N/A N/A5 N/A 2 N/A5 ACTIV 2 N/A5 ACTIV 2 N/A5 ACTIV 2 45 VALID 2 45 COM 2 45 COM 2 44

4

Log updates, wait for I/O

TerminatedTerminated

Postprocessing
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WW CONFLICTS

John $150TX5 ∞
John $1001 ∞

TX5 updates 
$100 to $150

TX2 updates
$100 to $75

TX5 TX2

CAS CAS

∞TX5TX5

TX2 aborts

8 bytes

TX5TX5

First writer wins
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WR CONFLICTS

John $150TX5 ∞ Q: When is a version visible? 
A: Depends on the txn state.
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WR CONFLICTS

TX5	State Visible?

ACTIVE

VALIDATING

COMMITTED

ABORTED

John $150TX5 ∞ Q: When is a version visible? 

No, the version is uncommitted.

Maybe, check TX5 END timestamp.

No, this version is garbage.

?

A: Depends on the txn state.
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WR CONFLICTS

TX5	State Visible?

ACTIVE

VALIDATING

COMMITTED

ABORTED

John $150TX5 ∞ Q: When is a version visible? 

No, the version is uncommitted.

Maybe, check TX5 END timestamp.

No, this version is garbage.

Speculate YES now, confirm at the end.

A: Depends on the txn state.
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COMMIT DEPENDENCIES

• Impose constraint on serialization order:
 Commit B only if A has committed.

• Implementation: register-and-signal.
• Transform multiple waits on every record 

access  to a single wait at the end of the txn.
• Dependency wait time “added” to log latency.

• But: Cascading aborts are now possible.
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COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing
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COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

Wait for
 dependencies 
to clear, then
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COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing

Wait for
 dependencies 
to clear, then
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COMMIT DEPENDENCIES

Committed

Active Validating

Aborted

Get Begin
Timestamp

Get End
Timestamp

User abort
or

WW conflict

Serializability
violation

Log updates,
wait for I/O

Read only
transaction

Terminated

Postprocessing
Release dependents

Wait for
 dependencies 
to clear, then
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EVALUATION

• 2-socket × 6-core Xeon X5650 with 48GB RAM.

• All transactions run under Serializable isolation.

MV/O Multi-version	optimistic

1V Single-version	two-phase	locking
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EVALUATION: TATP BENCHMARK 

• Simulates a telecommunications application.
• 4 tables, 7 different transactions, sized for 20M subscribers.

• Very short transactions: Less than 5 ops/txn on average.

• Very little contention.

Scheme Throughput (txn/sec)

MV/O 3,121,494

1V 4,220,119
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SCALABILITY: EXTREME CONTENTION (1000 ROWS SYNTHETIC DATABASE)
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2×
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EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)
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EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)
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EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)
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EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)
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OTHER NOTES

• Other aspects like checkpointing and recovery still have be performed. Can optimize 
these for the in-memory case. 
• Create “data” files, and “delta” files. 
• Data files: inserts and updates covering a specific time range. 
• Delta files: which version in the data files have been deleted.
• Rebuild indices from these files.
• To reduce the size of these files, periodically merge the data files, and apply delta (sort of like the 

compaction in LSM trees).

• Garbage collection is now critical.

• Hekaton creates new version (the chains are oldest-to-newest). Can do the reverse 
too, and can be more efficient for accesses to the new values.
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HTAP

• Huge interest in Hybrid OLTP + OLAP systems.

• Storage formats clash: OLTP wants a row-store, and OLAP wants a column-store.
• Can support both storage formats in the same engine.
• Can be further optimized so that the row-store part is in-memory (as we just saw in Hekaton). 

• Often a notion of “delta” is used, where the changed/uncommitted values are stored.
• We saw these in the version chains in Hekaton.

• The re-scan cost in the MVCC can be expensive. A clever ideas it to use “Precison 
Locks” (see the Hyper paper)
• Remember the predicate in the WHERE clause of the SQL query. 
• Run that predicate against the deltas (new versions) of records created by transactions that 

committed after the current txn started.
• This delta set is much smaller, so the rescan can be significantly faster. 

Alfons	Kemper,	Thomas	Neumann:	HyPer:	A	hybrid	OLTP&OLAP	main	memory	database	system	based	on	virtual	memory	snapshots.	ICDE	2011
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SUMMARY AND OUTLOOK

• Multi-version schemes are necessary for high OLTP performance.
• Readers don’t block writers. 

• MV schemes + OCC is a nice combination for in-memory OLTP.
• No waiting on locks, and latch-free data structures.
• Also can use codegen.
• Want a low instruction count / txn for high performance.

• Orthogonally need a disaster recovery method. 

• OLTP on clusters bring new challenges. Need to run a commit protocol like 2PC. Need to 
have a replication method like RAFT.

• HTAP systems need to find a way to do both row and column store in the same engine.

• Building OLTP systems in a disaggregated cloud ecosystem bring additional challenges, 
including rethinking the storage layer.


