- FOUIA]
LI D R A

Wi

= >
2
v...u,
e
=
-

|
- g g C W —y L
oan - weasnlBoo

- - " = Q-2 - L]

Q

(Vg

ad 2
T N I
S5 o 8
AW 4
350 & O -
52 I PN N =
nm an omm x
=%, O 2
25 U = mD.

O I

e = 3
22 O V o . &
#9200 =

ANNOUNCEMENTS

* Building blocks seminar (today) on Monday, September 30 @ 4:30pm

* Accelerating Apache Spark workloads with Apache DataFusion Comet

 https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/

e Talk from Oracle on (tomorrow) Tuesday, October 1, @ noon in 6501 GHC.

* Unifying relational and document/JSON management.

* https://cmu.zoom.us/my/jignesh

* Initial project meeting. You should have scheduled a 15-minute meeting slot. If

not do that ASAP (@ https://calendly.com/pateljm/initial-discussion-for-class-project

* Exam: Oct 9th in GHC 8102 between 1-4 pm. Open book.

 Start anytime. Stop 90 minutes later.

https://db.cs.cmu.edu/events/building-blocks-apache-datafusion-comet-andy-grove/
https://cmu.zoom.us/my/jignesh
https://calendly.com/pateljm/initial-discussion-for-class-project

BACKGROUND: SQL SERVER (BACK THEN) AND OLTP

|
* Many OLTP databases fit in memory. Now memory accesses can become the new
bottleneck. Needs to rethink design choices.

* Analysis of transactional workloads: Where does time go in SQL Server?
e CPI: Cycles per instructions
* IR: Instructions Required:
 SF: Scalability factor

 CPI: Influenced by code (e.g., fewer branches is better), and hardware.

* Was 1.6 already in SQL Server — not much room to improve.

* SF: Property of the CC method and implementation
e 1.89 (Ideal is 2). So not too far.

* Big gains will come from IR reduction: reduce instructions/txn.

IN-MEMORY OLTP: RETHINK R (0 l=Bitnqieinlo) s Weto)0bs WMo ¢ b

e

No need to partition the database across cores.

Integrated with SQL server, but need to
explicitly mark tables as in-memory.

In-memory data structures (no buffer
pool overhead).

In-memory hash and range indices.
Checkpoint and Log main tables to
disk (needed for recovery).

"~~‘

*Data Structures

i Compile statement and stored

’
s
s’
s’
s’
7’
’/
7

Latch-free data structures |

(no locks). ~ ‘Concurrenc
Optimistic MVCC i y ‘{Code
Protocol. 5 Control eneration
i : 8
.................................... i Mechanisms

INDICES

Header Links Payload
— Begin| End | e+ | Pointer | Name | City | Amount
* In-memory, latch-free, hash and B- Record format 5
.9 : rdered index
tree indices. Hash index on City
. ' A 10 | 20 | John |London | 100 <= -
* The B-tree version is called Bw-tree. !
N
* Node changes stored as delta records. . 15 | inf | |,| Jane | Paris | 150 <~ —
* Compare-and-swap (CAS) for atomic *V
20 | Tx75 John | London | 110 I
updates. A e
100 || !V old @
* Log-structured page storage. + @
: Tx75] Inf John | London | 130
* Key points: need a fast concurrent 1’:)0 " onnpRenden o
o L i
index structure, so that each Ly 30 T7e Larry | Rome | 170 4= —
transaction can read/update indices 100 li Old
qul(:kly' TX75| inf Larry | Rome | 150
100 New

LevandoskKi et al. : The Bw-Tree: A B-tree for new hardware platforms. ICDE 2013
Wang et al.: Building a Bw-Tree Takes More Than Just Buzz Words. SIGMOD 2018

T-SQL Stored Procedure

HEKATON: CODE COMPILER i)

[] Parser
Name Resolution

* Codegen: T-SQL to C to machine code. :ﬁ’ Type Derivation
* Table creation also requires codegen. a " Query Optimizer)
: i
* To the compller, records are opaque. Table and Index DDL Tree with Query Plans
* Functions like compareRecords() needs to be generated {77 </
(Catalogs > < MAT Generator >
as schema changes. 7
Metadata Mixed Abstract Tree (MAT) -
* Type mismatch between T-SQL and C-types. 7 LA
g MATto PITT f ti
e Stored Procedure -> MAT -> PIT -> Code. w C s)
"'C" Pure Imperative Tree (PIT)
. 8
* Other differences between C and SQL g (ce P —)
I
* NULLSs: Special handling for operations like outerjoins. C Code
 Semantics of exceptions (e.g. divide by zero) differs in T- AV
< Compiler/Linker >
SQL and C. B
DLL
e : .
* Note: Can’t access regular (non in-memory) tables © OStoader

from a compiled stored procedure.

T-SQL is SQL Server’s procedural programming language, similar to Oracle’s PL/SQL and PostgreSQL's PL/pgSQL.

WHILE (@li_no < @o_ol_cnt) i

BEGIN IF (@@rowcount > @)

SET QUOTED_IDENTIFIER OFF SELECT @li_no = @li_no + 1 BEGIN

GO INSERT INTO order_line

SET ANSI_NULLS ON : i C VALUES (@o_id, @d_id, @w_id, @li_no, @li_id, 'dec 31, 1899',

GO SELECT @li_id = CASE @li_no @i_price * @li_qgty, @li_s_w_id, @li_qty, @s_dist)
WHEN 1 THEN @i_idl WHEN 2 THEN @i_id2

USE tpcc WHEN 3 THEN @i_id3 WHEN 4 THEN @i_id4

GO WHEN 5 THEN @i_id5 WHEN 6 THEN @i_idé SELECT @i_name, @s_quantity,
WHEN 7 THEN @i_id7 WHEN 8 THEN @i_id8 b_g = CASE WHEN (PATINDEX('S%0RIGINALS', @i_data) > @ AND

IF EXISTS (SELECT name FROM sysobjects WHERE name = 'tpcc neworder') WHEN 9 THEN @i_id9 WHEN 10 THEN @i_id10 PATINDEX('%0RIGINALS', @s_data) > @)

DROP PROCEDURE tpcc_neworder WHEN 11 THEN @i_id11 WHEN 12 THEN @i_id12 THEN 'B' ELSE 'G' END,

GO WHEN 13 THEN @i_id13 WHEN 14 THEN @i_id14 @i_price, @i_price * @li_qty

WHEN 15 THEN @i_id15 END

ELSE

@i_id int, @li_s_w_id = CASE @li_no BEGIN

@d_id tinyint, WHEN T @s_w_idl WHEN 2 THEN @s_w_id2

@c_id int, WHEN T @s_w_id3 WHEN 4 THEN @s_w_id4 SELECT '', @0, '', 0, 0

@o_ol_cnt tinyint, WHEN T @s_w_id5 WHEN 6 THEN @s_w_idé SELECT @commit_flag = @

@o_all_local tinyint, WHEN T @s_w_id7 WHEN 8 THEN @s_w_id8 END

@i_idl int = @, @s_w_idl @1l_gtyl smallint = WHEN T @s_w_id9 WHEN 10 THEN @s_w_id1@

@i_id2 int = @s_w_id2 @ol_qty2 smallin WHEN @s_w_id11 WHEN 12 THEN @s_w_id12

@i_id3 int = @s_w_id3 @ol_qty3 smallin WHEN @s_w_id13 WHEN 14 THEN @s_w_id14 unt, a

@i_id4 int @s_w_id4 @ol_qty4 s 0s & WHEN T @s_w_id15 CT @_last = c_last, @c_discount = c_discount, @c_credit = c_credit,

@i_id5 int @s_w_id5 @l_qty5 s int = END, @c_id_local = c_id

@i_id6 int @s_w_id6 @1_qty6 smallint @li_qty = CASE @li_no FROM customer WITH (repeatableread)

@i_id7 int @s_w_id7 @l _qty7 smallint WHEN 1 THEN @l_qtyl WHEN 2 THEN @ol_gty2 WHERE c_id = @c_id AND c_w_id = @w_id AND c_d_id = @d_id

@i_id8 int = @s_w_id8 int @ol_qty8 sr i WHEN 3 THEN @ol_qty3 WHEN THEN @ol_qty4

@i_id9 int = @s_w_id9 int = @ol_qty9 smallin WHEN 5 THEN @ol_qty5 WHEN THEN @ol_qty6

@i_id1@ int = @s_w_id10 int @l_qtyl® smallint = WHEN 7 THEN @ol_qty7 WHEN THEN @ol_gty8 INSERT INTO orders

@i_id1l int @s_w_id11 int @1_qgtyll WHEN 9 THEN @ol_qty9 WHEN THEN @ol_qty1@ VALUES (@o_id, @d_id, @w_id, @c_id_local, @, @o_ol_cnt, @o_all_local, @o_entry_d)

@i_id12 int @s_w_id12 int @ol_qtyl2 smallin WHEN 11 THEN @ol_qtyll WHEN THEN @ol_qtyl12

@i_id13 int @s_w_id13 int @l_qty13 N WHEN 13 THEN @ol_qtyl3 WHEN THEN @ol_qtyl4

@i_id14 int @s_w_id14 int @1_qtyl4 smallint WHEN 15 THEN @ol_qty15 INSERT INTO new_order

@i_id15 int @s_w_id15 int @ol_qtyl5 smallint END VALUES (@o_id, @d_id, @w_id)

CREATE PROCEDURE tpcc_neworder END,

oS o000

oS00 00 -~

S o o000

S o000 -~

)
BEGIN ‘
DECLARE @w_tax smallmoney, @d_tax smallmoney, SELECT @i_price = i_price, @i_name = i_name, @i_data = i_data SELECT @w_tax = w_tax

@t dirr(i) EcBcred L eRehan (i FROM item WITH (repeatableread) WHERE i_id = @li_id FROM warehouse WITH (repeatableread) WHERE w_id = @w_id
@c_discount smallmoney, @i_price smallmoney

@i_name char(24), @i_data char(50), 3
@o_entry_d datetime, @remote_flag int, UPDATE stock IF (@commit_flag = 1)
@s_quantity smallint, @s_data char(5@), SET s_ytd = s_ytd + @li_qgty, OMMIT TRANSACTION n
@s_dist char(24), @li_no int, @s_quantity = s_quantity = s_quantity - @li_qgty + LSE
@o_id int, @commit_flag tinyint, CASE WHEN (s_quantity - @li_qty < 10) THEN 91 ELSE @ END, ROLLBACK TRANSACTION n
@li_id int, @li_s_w_id int, s_order_cnt = s_order_cnt + 1,
@li_qty smallint, @ol_number int, s_remote_cnt = s_remote_cnt + | i
@c_id_local int CASE WHEN (@li_s_w_id = @w_id) THEN @ ELSE 1 END, SELECT @w_tax, @d_tax, @o_id, @c_last, @c_discount, @c_credit,
@s_data = s_data, @o_entry_d, @commit_flag
BEGIN TRANSACTION n @s_dist = CASE @d_id END
WHEN 1 THEN s_dist_01 WHEN 2 THEN s_dist_02 GO
WHEN 3 THEN s_dist_03 WHEN 4 THEN s_dist_04
WHEN 5 THEN s_dist_05 WHEN 6 THEN s_dist_06 SET QUOTED_IDENTIFIER OFF
7
9

as a T-SQL Stored Procedure

=
=
=
—
3]
%
=
1)
.
-
=
D
g=)
o
<
=
D
Z
<
)
B
=

UPDATE district WHEN THEN s_dist_07 WHEN 8 THEN s_dist_08 GO

SET @d_tax = d_tax, @o_id = d_next_o_id, d_next_o_id = d_next_o_id + 1, WHEN THEN s_dist_09 WHEN 10 THEN s_dist_10 SET ANSI_NULLS ON
@o_entry_d = GETDATE(), @li_no = @, @commit_flag = 1 END GO

WHERE d_w_id = @w_id AND d_id = @d_id WHERE s_i_id = @li_id AND s_w_id = @li_s_w_id

HEKATON’S APPROACH

* MVCC + Optimistic

* Supports multiple isolation levels without locking, including snapshot

isolation.
* Recall Snapshot Isolation is a weaker form of isolation than Weaker than
Serializable.
* Reads are as of the start of the txn.
* Writes as of the end of the txn.

TRANSACTION = UNIT OF WORK

Example: A bank rewards old customers with a high balance

5 1. Look up George’s account balance Atomicity
; 2. Look up Alice’s account balance

z 3. Look up Bob’s account balance

é 4. Add $5 to account with highest balance [solation

Concurrency control ensures these properties

DESIGNING FOR IN-MEMORY OLTP

Disk-friendly data structures: Pages, B-tree Latch-free hash table / B-trees stores individual
index. records.

10

COMPARE HEKATON ToO OTHER APPROACHES (H-STORE)

Scales out.

Communication across
partitions is expensive.

One CPU can access a given
record.

TXSs that span partitions
participate in 2PC.

Perfect for partitionable
workloads.

Scales up.

Main memory is shared and
coherent.

Any CPU can access a given
record.

TXs validate their reads to
enforce isolation.

Generic, no need to specify
partitions.

H-Store is an example of an
approach that partitions the data
and optimizes for txns that touch a
single partition. The motivation for
that approach is that many txns can
be made to work in a single
partition, and can we make those go
as fast as we can.

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

* TXs have two unique timestamps: BEGIN, END.

BEGIN END
%I
1 2 3 4 5

Logical time

12

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

* TXs have two unique timestamps: BEGIN, END.
* Read as of BEGIN timestamp.

END

Logical time

13

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

* TXs have two unique timestamps: BEGIN, END.
* Read as of BEGIN timestamp.

* Write as of END timestamp.

END

Logical time

14

MULTI-VERSION OPTIMISTIC SCHEME: SNAPSHOT ISOLATION

* TXs have two unique timestamps: BEGIN, END.

* Read as of BEGIN timestamp. Sufficient for

* Write as of END timestamp. Read Committed.

But not for

END Serializable.

Logical time

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

BEGIN END

1 2 3 4 5
Logical time

Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, Alan D. Fekete: One-copy serializability with snapshot isolation under the hood. ICDE 2011

16

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

* Read as of BEGIN timestamp.

END

Logical time

Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, Alan D. Fekete: One-copy serializability with snapshot isolation under the hood. ICDE 2011

17

MAKING SNAPSHOT ISOLATION (SI) SERIALIZABLE

* Read as of BEGIN timestamp.

* Repeat Read as of END timestamp, verify no change.

* Write as of END timestamp.

Logical time

Mihaela A. Bornea, Orion Hodson, Sameh Elnikety, Alan D. Fekete: One-copy serializability with snapshot isolation under the hood. ICDE 2011

18

SUPPORT MULTIPLE ISOLATION LEVELS

* SQL has multiple isolation levels, and we want to support that.

* These trade isolation for performance.

Serializable

Repeatable Read

e Want to allow concurrent transaction with different isolation levels.

Read Committed

* Can a multi-version optimistic CC protocol support these isolation

levels?

Read
Uncommitted

MV/O can offers this choice too!

19

MV/O: WHAT NEEDS TO BE VALIDATED?

* Depends on the isolation level.

e Read Committed: No validation needed.
* Versions were committed at BEGIN, will still be committed at END.

* Repeatable Read: Read versions again.

* Ensure no versions have disappeared from the view.

* Serializable: Repeat scans with same predicate.

* Ensure no phantoms have appeared in the view.

20

TRANSACTION STATES

TRANSACTION STATES

—
Get Begin I ‘

Timestamp

X T

\-l_)

22

TRANSACTION STATES

—
Get Begin I ‘

Timestamp

e Acive

\-l_)

23

TRANSACTION STATES

—
Get Begin I ‘

Timestamp

e Acive

User abort\ l
or
o -

24

TRANSACTION STATES

Get Begin Get End
Timestamp Timestamp

w MActive | Validating

User abort\ l
or
o -

o o

25

TRANSACTION STATES

Get Begin Get End
Timestamp Timestamp

e (Rctive’ i Validating

User abort\ l
or
o -

e e

26

TRANSACTION STATES

Get Begin Get End
Timestamp Timestamp

e (Rctive’ i Validating

User abort\ l
or
o -

Serializability
violation

27

TRANSACTION STATES

Get Begin Get End
Timestamp Timestamp

ﬂ-ﬂ

User abort\
or

o -

f
!

Log updates,
wait for I/0

Serializability
violation

28

TRANSACTION STATES

Get Begin Get End
Timestamp Timestamp

ﬂ-ﬂ

User abort\
or

o -

I
!

Log updates,
wait for I/0

Serializability
violation

29

TRANSACTION STATES

Read only

transaction

Get Begin Get End
Timestamp Timestamp

ﬂ-ﬂ

User abort\
or

o -

I
!

Log updates,
wait for I/0

Serializability
violation

30

TRANSACTION STATES

Postprocessing

Read only

transaction

Log updates,
wait for I/0

Get Begin Get End
Timestamp Timestamp

I
~ TRave - |Validating

User abort\ l
or
o -

Serializability
violation

31

TRANSACTION STATES

Read only

transaction

Get Begin Get End
Timestamp Timestamp

ﬂ-ﬂ

User abort\
or

o -

I
!

Log updates,
wait for I/0

Serializability
violation

Postprocessing

Terminated

32

EXAMPLE

* Bank stores (customer, account balance).

* Bank wants to reward good customers.

e Transaction:

1.
2.

Lookup balance for George, Alice, Bob.
Add $5 to the account with the highest balance.

Alice $75
Bob $92
David $106
Frank $31
George $98

33

COMPARE MV WITH SINGLE VERSION

1V

MV/O

* Traditional algorithm, optimized
for memory-resident data.

* Keeps a single version.

* Synchronization via locks:
* Acquired on access.

e Released after commit.

* New concurrency control
algorithm.

* Keeps multiple versions.

e Jdentifies correct version to read

from timestamp information.

* Needs garbage collection.

34

1V

<— hash bucket —>

A Alice $75
B Bob $92
C

D David $106
2

F Frank $31
G George $98

MV/O

A Alice $75
B Bob $92
C

D David $106
2

F Frank $31
G George $98

35

1V

MV/O

A Alice $75
B Bob $92
C

D David $106
2

F Frank $31
G George $98

A Alice $75
B Bob $92
C

D David $106
2

F Frank $31
G George $98

36

1V MV/O

—

Alice $75 Alice $75

) ‘M j

ﬂ-
—

Bob $92 Bob $92

-

ﬂ
—

|

|

David $106 David $106

ﬂ
—

|

—

Frank $31 Frank $31

)| D

ﬂ
—

Q| ™| m| O 0w | >

|

George $98 George $98

Q|| m | 9| 0| W | >

1V

—
—

Alice $75

MV/O

| D

==
—

Bob $92

|

. _
.M
—

—=
—

David $106

|

. _
.M
—

—
—

Frank $31

)| D

. _
.”
—

Q| ™| m| O 0w | >

George $98

A oo Alice $75
B o0 Bob $92
C

D oo David $106
E

F oo Frank $31
G o0 George $98

38

1V MV/O

'ﬂm

{;1\ A Alice $75 A 1 oo Alice $75
M) Bob $92 1 oo Bob $92
= B B

M

= |C C

(;w\ D David $106 D 1 oo David $106
— < /

()

_ . /

'Q | Fank 83l 1 atches vs. timestamps | ©9 Framk 831
M G George $98 1 oo George $98

G

1V

—
—

Alice $75

MV/O

| D

==
—

Bob $92

|

. _
.M
—

—=
—

David $106

|

. _
.M
—

—
—

Frank $31

)| D

. _
.”
—

Q| ™| m| O 0w | >

George $98

A oo Alice $75
B o0 Bob $92
C

D oo David $106
E

F oo Frank $31
G o0 George $98

40

1V

TX5

Read George

MV/O

oo Alice

$75

Read Alice

o0 Bob

$92

Read Bob

Update George

Commit

oo David $106

Postprocessing

A Alice $75
B Bob $92
C

D David $106
2

F Frank $31
G George $98

o0 Frank

$31

Q|| m | OO0 | W | >

o0 George

$98

41

1V

TX5

Read George

MV/O

1 oo Alice $75

Read Alice

1 oo Bob $92

Read Bob

Update George

Commit

1 oo David $106

Postprocessing

A Alice $75

B Bob $92

C

D David $106

2

F Frank $31
g G George $98

1 oo Frank $31

Q|| m | OO0 | W | >

1 oo George $98

42

1V MV/O

.fr;\ A Alice $75 TXS A 1 oo Alice $75
Bob $92 Read George 1 oco Bob $92
B . B
Read Alice
C Read Bob C
p| David $106 Update George D 1 oo David $106
Commit
E 1 |E
Postprocessing
Frank $31 1 oo Frank $31
F F
M George $98 1 oo George $98
2 G G

1V MV/O

A Alice $75 TX5S A 1 oo Alice $75
Bob $92 || ReadGeorge 1 oo Bob $92
s B _ B
Read Alice
C Read Bob C
D David $106 | | Update George D 1 oo David $106
Commit
E _ E
Postprocessing
Frank $31 1 oo Frank $31
F F
George $98 1 oo George $98
G G

1V

MV/O

1 oo Alice $75

1 oo Bob $92

1 oo David $106

oo Frank $31

.r;\\ A Alice $75 TXE A
M) Bob $92 Read George
® B — |B
_ Read Alice
C Read Bob C
D David $106 | | Update George D
Commit
E Updates
Frank 93 in-place vs. new version
K 7
\
() George $103
=G G

\ 1 TX5 George $98

TX5 oo George $103

45

1V

MV/O

1 oo Alice $75

1 oo Bob $92

&

1 oo David $106

1 oo Frank $31

(f;\\ A Alice $75 TXS
e Bob = $92 Read George
g B _
_ Read Alice /
C Read Bob / /
D David $106 Update Georg/y
Commi}7
Postproggssing
Frank MV /O repeats
K o
reads for validation
M George $103
2G| T

Q[| m|

1 TX5 George $98

TX5 0o George $103

46

1V MV/O

é Alice $75 TX5S A 1 oo Alice $75
B\ Bob $92 Read George B 1 oo Bob $92
\\ Read Alice
C\\ Read Bob C
David\@o&x Update George 1 oo David $106
D D
\E& Commit
2 o . =
Postprocessing:
F Frank unlock vs. fix timestamp |1 ©o | Frank @ $31
_— N
//George $103 1 | 4 | George $98
G G 00 George $103

MEMORY ACCESSES ON CRITICAL PATH

1V

* Read operation:
1 mem read to record.

1 mem write to lock.

* Update operation:

1 mem write to record.

In 1V, readers
write to memory!

MV/O

* Read operation:

1 mem read to version.

* Update operation:

1 mem write to new version.
1 mem write to old version.

48

RW CONFLICTS

1V

TX5

Read George

‘ D \“
'm]
-

George

$103

Read Alice

MV/O

Read Bob

TX5

George

$98

Update George

TX5

George

$103

Commit

Postprocessing

49

RW CONFLICTS

1V

TX5

Read George

m \
-

George

$103

Read Alice

MV/O

Read Bob

TX5

George

$98

Update George

TX5

George

$103

Commit

Postprocessing

TX6

Read George

Commit

50

RW CONFLICTS

1V

TX5

Read George

—
—

G

|W_

George

$103

Read Alice

MV/O

Read Bob

TX6 waits for lock

Update George

G

1 |TX5] George $98

TX5| 00 | George | $103

Commit

Postprocessing

TX6

Read George

Commit

TX6 reads old version

and commits

51

RW CONFLICTS

1V

TX5

Read George

M
L d

G

George

$103

Read Alice

MV/O

Read Bob

TX6 waits for lock

Update George

G 1 |TX5| George $98
TX5| 00 | George | $103

Commit

Postprocessing

TX6

Read George

TX6 reads old version

and commits

MV/O isolates readers
from writers

Commit

52

MULTI-VERSION OPTIMISTIC SUMMARY

e There are no latches or locks:

* Txn reads don't cause memory writes.

* Txns will never wait during the ACTIVE phase.

e [solates readers from writers.
* Supports all isolation levels.

[ower isolation level = less work.

* No deadlock detection is needed.

53

TRANSACTION STATES

Read only

transaction

Get Begin Get End
Timestamp Timestamp

ﬂ-ﬂ

User abort\
or

o -

I
!

Log updates,
wait for I/0

Serializability
violation

Postprocessing

54

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

N/A

55

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

2 N/A

56

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

ACTIV 2 N/A

57

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

ACTIV 2 N/A

58

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

ACTIV 2

59

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

VALID

60

TRANSACTION MAP

* Stores transaction state, timestamps.

* Globally visible.

Transaction Map

COM

61

DETERMINING VERSION VISIBILITY

Transaction Map

1 oo John $100 ACTIV 2 NJ/A

8 bytes
—N

\

timestamp

DETERMINING VERSION VISIBILITY

8 bytes Transaction Map
Jud i
1 TX5 John $100 ACTIV. 2 N/A

timestamp, or transaction 1D

DETERMINING VERSION VISIBILITY

8 butes Transaction Map
Ju

1 TX5 John @ $100 ACTIV 2 N/A

T~

timestamp, or transaction 1D

Visibility as of time T is determined by: version timestamps and txn state.

DETERMINING VERSION VISIBILITY

8 butes Transaction Map
i -

1 TX5 John @ $100 ACTIV 2 N/A

T~

timestamp, or transaction 1D

Visibility as of time T is determined by: version timestamps and txn state.

Generate timestamps efficiently using Atomic Addition (CAS).

Can also use a hardware clock (see previous lectures).

65

EXAMPLE: UPDATE TO $150

Transaction Map

1 |00, John | $100
5 N/A N/A N/A

Postprocessing

Committed

Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

ﬁ Active Validating Terminated

66

EXAMPLE: UPDATE TO $150

Transaction Map

1 |00, John | $100
5 N/A 2 N/A

Postprocessing

Committed

Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

ﬁ Active Validating Terminated

67

EXAMPLE: UPDATE TO $150

Transaction Map

1 |00, John | $100
5 N/A 2 N/A

Postprocessing

Committed

Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

[Active } Validating Terminated

68

EXAMPLE: UPDATE TO $150

Transaction Map

ES T

ACTIV 2

1 oo John $100

Postprocessing

Committed

Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

[Active } Validating Terminated

69

EXAMPLE: UPDATE TO $150

Transaction Map

ES T

ACTIV 2

1 oo John $100

Postprocessing

Committed

Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

E Active Validating Terminated

70

EXAMPLE: UPDATE TO $150

1 TX5 John $100
Get Begin Get End
Timestamp Timestamp
[Active }

Transaction Map

ES T

ACTIV 2

Postprocessing

Committed

" Log updates, wait for I/O

Validating Terminated

71

EXAMPLE: UPDATE TO $150

Transaction Map

-
TX5 co John 8150 | i —

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

L Active Validating Terminated

72

EXAMPLE: UPDATE TO $150

Transaction Map

-
TX5 co John 8150 | i —

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

L Active Validating Terminated

73

EXAMPLE: UPDATE TO $150

Transaction Map

-
TX5 co John 8150 | i —

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active j> Validating Terminated

74

EXAMPLE: UPDATE TO $150

Transaction Map

-
TX5 co John 8150 | i —

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active j> Validating Terminated

75

EXAMPLE: UPDATE TO $150

Transaction Map

-
TX5 co John 8150 | i —

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active L Validating Terminated

76

EXAMPLE: UPDATE TO $150

Transaction Map

T
TX5 0o John $150 | VALID

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active L Validating Terminated

77

EXAMPLE: UPDATE TO $150

Transaction Map

T
TX5 0o John $150 | VALID

1 TX5 John $100

Postprocessing

Committed

Get Begin Get End ﬁ Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

78

EXAMPLE: UPDATE TO $150

Transaction Map

I TX5 John $100 T

TX5 oo John $150 VALID
Postprocessing
L Committed
Get Begin Get End ‘t Log updates, wait for I/O
Timestamp Timestamp

Active Validating Terminated

79

EXAMPLE: UPDATE TO $150

Transaction Map

L [TXS| Jobn | 5100
5 COM 2 4

TX5 co John $150

Postprocessing

LCommitted

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

80

EXAMPLE: UPDATE TO $150

Transaction Map

L [TXS| Jobn | 5100
5 COM 2 4

TX5 co John $150

Postprocessing

Committed
Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

81

EXAMPLE: UPDATE TO $150

Transaction Map

5 COM 2 4

1 TX5 John $100

TX5 co John $150

Postprocessing

Committed
Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

82

EXAMPLE: UPDATE TO $150

Transaction Map

5 COM 2 4

1 4 John $100

TX5 co John $150

Postprocessing

Committed
Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

83

EXAMPLE: UPDATE TO $150

Transaction Map

L4 John $100
5 COM 2 4

4 oo John $150

Postprocessing

Committed
Get Begin Get End " Log updates, wait for I/O

Timestamp Timestamp

Active Validating Terminated

84

EXAMPLE: UPDATE TO $150

Transaction Map

L4 John $100
5 COM 2 4

4 o0 John $150

Postprocessing

Committed

Get Begin Get End ‘t Log updates, wait for I/O

Timestamp Timestamp

Active Validating L Terminated J

85

WW CONFLICTS

TX2 updates

First writer wins $100 to $75

A TXZ aborts

CAS\ CAS

TX5 John $100

—

TX3 Bpes John $150

86

WR CONFLICTS

TX5 oo John

$150

Q: When is a version visible?
A: Depends on the txn state.

87

WR CONFLICTS

Q: When is a version visible?
h 150
IX5 00 John 3 A: Depends on the txn state.

ACTIVE No, the version is uncommitted.

VALIDATING
COMMITTED Maybe, check TX5 END timestamp.
ABORTED No, this version is garbage.

88

WR CONFLICTS

Q: When is a version visible?
h 150
IX5 00 John 3 A: Depends on the txn state.

ACTIVE No, the version is uncommitted.

VALIDATING Speculate YES now, confirm at the end.
COMMITTED Maybe, check TX5 END timestamp.
ABORTED No, this version is garbage.

89

CoOMMIT DEPENDENCIES

* Impose constraint on serialization order:
Commit B only if A has committed.

* Implementation: register-and-signal.
* Transform multiple waits on every record

access to a single wait at the end of the txn.

* Dependency wait time “added” to log latency.

* But: Cascading aborts are now possible.

90

CoMMIT DEPENDENCIES

Read only

transaction COmmltted
Log updates,
Get Begin Get End wait for I/O
Timestamp Timestamp

Active :> Validating

Serializability
User abort violation
or
W conflict

Aborted

Postprocessing

Terminated

91

CoMMIT DEPENDENCIES

Read only
transaction

Get Begin
Timestamp

Active

User abort
or

WW conflict

Committed

Wait for

dependencies

to clear, then Log updates,
Get End wait for I/O

Timestamp
~ Validating
Serializability
violation

Aborted

Postprocessing

Terminated

92

CoMMIT DEPENDENCIES

Read only
transaction

Get Begin
Timestamp

Active

User abort
or

WW conflict

Committed
Wait for
dependencies
to clear, then Log updates,
Get End wait for I/0O
Timestamp

Validating

Aborted

Serializability
violation

Postprocessing

Terminated

93

CoMMIT DEPENDENCIES

Read only
transaction

Get Begin
Timestamp

Active

User abort
or

WW conflict

Committed
Wait for
dependencies
to clear, then Log updates,
Get End wait for I/0O
Timestamp

Validating

Aborted

Serializability
violation

Release dependents
Postprocessing

Terminated

94

EVALUATION

e 2-socket X 6-core Xeon X5650 with 48GB RAM.

e All transactions run under Serializable isolation.

MV /O Multi-version optimistic

1V Single-version two-phase locking

95

EVALUATION: TATP BENCHMARK

* Simulates a telecommunications application.

e 4 tables, 7 different transactions, sized for 20M subscribers.

* Very short transactions: Less than 5 ops/txn on average.

* Very little contention.

Throughput (txn/sec)

MV/O 3,121,494

1V 4,220,119

96

SCALABILITY: EXTREME CONTENTION (1000 ROWS SYNTHETIC DATABASE)

N 1V MV/O
— 23> 180% R=10 e S +MV/C
5 239 1200 R=10, W=2 |
Q — 0 =) —
2 =25 /L 2 X
% 20 — (—" 5 x
a 15 f(—
- .]
0.0
0 6 12 18 24

MV /O does not break under contention.
MV /O does not need throttling for max pertf.

97

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

o 825 R=1,000,000

2 9)0 R=10, W=2

=

= 15 —

2 6 TXs long readers.
%" 1.0 18 TXs short updaters.
= /

E 0.5

: /

Q.

=)

All active TXs
short updaters.

Active long read TXs

0.0 |
ﬂ) 2 4 6 8 10 12 14 16 18 20 22 24

All active TXs
long readers.

98

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

R=1,000,000 <1V

+MV/O

R=10, W=2

If all TXs do updates, 1V 1.9x faster. |

o =
v o

\

T

= 22'5

& O

> =20 W‘
£ S

= 1.5 J
Q.

=

(o7]

-

@)

S

i -

)

Q

ofd

((°]

©

Q.

)

¢

4 6 8 10 12 14 16 18 20 22 24

All active TXs
short updaters.

Active long read TXs

All active TXs
long readers.

99

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

N
u

Millions
=N
ol o
__»

R=1,000,000
R=10, W=2

-1V

+MV/O

1.0
2.3x z\.ﬁm if 1 long reader, MV/O 2.3x faster.

U.J *

Update throughput (txns/sec)

0.0
/o 2

All active TXs
short updaters.

¢

4 6 8 10 12 14 16 18 20 22 24
Active long read TXs

All active TXs
long readers.

100

EFFECT OF LONG READERS (10M ROW TABLE SYNTHETIC DATABASE)

R=1,000,000
R=10, W=2

-1V

+MV/O

MV/O does not penalize updates in the
presence of long-running reads.

T

2.5
'a (7))

2 520
£32°1
= 1.5
Q.

i -

@ 10 %
o

i

= 0.5
=

ge)

Q. .

- |

All active TXs
short updaters.

l

\

¢

4 6 8 10 12 14 16 18 20 22 24
Active long read TXs

All active TXs
long readers.

101

OTHER NOTES

* Other aspects like checkpointing and recovery still have be performed. Can optimize

these for the in-memory case.
e Create “data” files, and “delta” files.
* Data files: inserts and updates covering a specific time range.
* Delta files: which version in the data files have been deleted.

* Rebuild indices from these files.
* To reduce the size of these files, periodically merge the data files, and apply delta (sort of like the

compaction in LSM trees).
* Garbage collection is now critical.

* Hekaton creates new version (the chains are oldest-to-newest). Can do the reverse
too, and can be more efficient for accesses to the new values.

102

HTAP

* Huge interest in Hybrid OLTP + OLAP system:s.

* Storage formats clash: OLTP wants a row-store, and OLAP wants a column-store.

* Can support both storage formats in the same engine.
* Can be further optimized so that the row-store part is in-memory (as we just saw in Hekaton).

e Often a notion of “delta” is used, where the changed/uncommitted values are stored.

e We saw these in the version chains in Hekaton.

* The re-scan cost in the MVCC can be expensive. A clever ideas it to use “Precison

Locks” (see the Hyper paper)
* Remember the predicate in the WHERE clause of the SQL query.
* Run that predicate against the deltas (new versions) of records created by transactions that
committed after the current txn started.
* This delta set is much smaller, so the rescan can be significantly faster.

Alfons Kemper, Thomas Neumann: HyPer: A hybrid OLTP&OLAP main memory database system based on virtual memory snapshots. ICDE 2011
103

SUMMARY AND OUTLOOK

* Multi-version schemes are necessary for high OLTP performance.
* Readers don’t block writers.

* MV schemes + OCC is a nice combination for in-memory OLTP.
* No waiting on locks, and latch-free data structures.
* Also can use codegen.
e Want a low instruction count / txn for high performance.

* Orthogonally need a disaster recovery method.

* OLTP on clusters bring new challenges. Need to run a commit protocol like 2PC. Need to
have a replication method like RAFT.

* HTAP systems need to find a way to do both row and column store in the same engine.

* Building OLTP systems in a disaggregated cloud ecosystem bring additional challenges,
including rethinking the storage layer.

104

