
Advanced Database
Systems (15-721)

Fall 2024 Prof. Jignesh Patel

Lecture #08

Granularities
of Locks and
Degrees of
Consistency

2

ANNOUNCEMENTS

• Talk from Oracle on Tuesday, October 1, @ noon in 6501 GHC.
• Unifying relational and document/JSON management.

•Exam: Oct 9th in GHC 8102 between 1-4 pm. Open book.
• Start anytime. Stop 90 minutes later.
• Let me know if you have a conflict by the end of next week 9/20.

3

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Revisit	your	introduction	to	DB	class	material	if	needed.

4

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Read	Balance:	$100
You

Revisit	your	introduction	to	DB	class	material	if	needed.

5

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Sufficient	funds?

Read	Balance:	$100
You

Revisit	your	introduction	to	DB	class	material	if	needed.

6

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Sufficient	funds?

Read	Balance:	$100
You

Pay	$25
Yes

Revisit	your	introduction	to	DB	class	material	if	needed.

7

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Sufficient	funds?

New	balance:	$75

Bank	Balance	:	$75!

Read	Balance:	$100
You

Pay	$25
Yes

Revisit	your	introduction	to	DB	class	material	if	needed.

8

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Sufficient	funds?

New	balance:	$75

Bank	Balance	:	$75!

Read	Balance:	$100
You

Pay	$25
Yes

Revisit	your	introduction	to	DB	class	material	if	needed.

9

TRANSACTION MANAGEMENT

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Bank	Balance	:	$100

Sufficient	funds?

New	balance:	$75

Bank	Balance	:	$75!

Read	Balance:	$100
You

Pay	$25
Yes

Revisit	your	introduction	to	DB	class	material	if	needed.

10

TRANSACTION MANAGEMENT

Bank	Balance	:	$100
You Your	Significant	OtherRead	(A);

Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

11

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	OtherRead	(A);

Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

12

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Sufficient	funds?Sufficient	funds?

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	OtherRead	(A);

Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

13

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Sufficient	funds?Sufficient	funds?

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	Other

Pay	$25
Yes

Pay	$25
Yes

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

14

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Sufficient	funds?Sufficient	funds?

New	balance:	$75New	balance:	$75

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	Other

Pay	$25
Yes

Pay	$25
Yes

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

15

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Sufficient	funds?Sufficient	funds?

New	balance:	$75New	balance:	$75

Bank	Balance	:	$75!

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	Other

Pay	$25
Yes

Pay	$25
Yes

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

16

TRANSACTION MANAGEMENT

Bank	Balance	:	$100

Sufficient	funds?Sufficient	funds?

New	balance:	$75New	balance:	$75

Bank	Balance	:	$75!

Read	Balance:	$100 Read	Balance:	$100
You Your	Significant	Other

Pay	$25
Yes

Pay	$25
Yes

Read	(A);
Check	(A	>	$25);
Pay	($25);
A	=	A	–	25;
Write	(A);

Revisit	your	introduction	to	DB	class	material	if	needed.

17

TRANSACTION MANAGEMENT

Atomicity All actions in txn happen, or none happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Redo/Undo
mechanism

Integrity
Constraints

Concurrency
Control

Redo/Undo
mechanism

Key	constraints,	CHECKS,	TRIGGERS,	…	
hold	before	and	after	the	txn	completes.

Revisit	your	introduction	to	DB	class	material	if	needed.

18

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

19

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

20

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

21

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A
Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

22

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

23

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph

reveals the problem.

The output of T
1
 depends on

T
2
, and vice-versa.

Schedule

T1 T2

Dependency Graph
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

24

SERIALIZABLE SCHEDULE

• A schedule that is equivalent to some serial execution of the transactions.

• Need to reason about conflicting operations.

• Two operations conflict if:
• They are by different transactions,

• They are on the same object and one of them is a write.

• Interleaved Execution Anomalies
• Read-Write Conflicts (R-W). Also called Unrepeatable Read.

• Write-Read Conflicts (W-R). Also called Dirty Read.

• Write-Write Conflicts (W-W). Also called Lost Update.

Revisit	your	introduction	to	DB	class	material	if	needed.

25

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

26

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Granted (T1→A)

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

27

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

28

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

29

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

30

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T1 T2
T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

31

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.

• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

32

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

33

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

34

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

ColumnsHigh

Low

35

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

High

Low

36

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

High

Low

37

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

Only	allow	
database	
level-locks

High

Low

38

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

Only	allow	
database	
level-locks

High

Low

39

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

Only	allow	
database	
level-locks

Only	allow	
column-	
level	locks

High

Low

40

GRANULARITIES PAPER: KEY CHALLENGE

• Correct (provably so) locking
protocol that balances.
• # locks that are acquired.
• Amount of concurrency that

is allowed by the protocol.

• Key metric is the transaction
(txn) throughput: how many
txns can we commit per second?

• Want throughput, but
simple methods result in
throughput.

A	Resource	Hierarchy

Database

Tables

Rows

Columns

#	Locks

Co
nc
ur
re
nc
y

Only	allow	
database	
level-locks

Only	allow	
column-	
level	locks

Can	we	find	some	
“green”	(high-

throughput)	space,	like	
this	area?

High

Low

41

THE SOLUTION (DECEPTIVELY SIMPLE, AND HENCE BRILLIANT)

• Work with complex/DAG resource graphs.

• Use a well-formed protocol to acquire locks in top-
down manner.

• Introduce the notion of “intention” locks to allow a txn
to indicate that they will grab are “regular” lock (S or X)
on a resource below in the hierarchy.

• Develop a novel lock-compatibility matrix that allows
balancing # locks with the “granularity” of locking.

• Can offer different degrees of consistency (trading
performance for lower consistency), allowing
concurrent transaction to operate at different
consistency levels.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns
1998	ACM	Turing	Award

42

INTENTION LOCKS

• An intention lock allows a higher-
level node to be locked in shared or
exclusive mode without having to
check all descendent nodes.

• If a node is locked in an intention
mode, then some txn is doing explicit
locking at a lower level in the tree.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

43

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

44

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

IX

45

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

IX

An	X	lock	will	be	acquired	somewhere	in	the	gray	region.
An	intention	lock	discloses	the	intent	to	do	additional	locking	below.

46

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

47

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

X

48

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

X

Now,	this	entire	gray	region	is	considered	locked	in	X	mode.	No	need	to	
acquire	X	locks	here.	The	lock	at	the	top	level	“covers”	this	whole	region.	

49

INTENTION LOCKS

• Intention-Shared (IS)

• Indicates explicit locking at lower level with S locks.
• Intent to get S lock(s) at finer granularity.

• Intention-Exclusive (IX)

• Indicates explicit locking at lower level with X locks.
• Intent to get X lock(s) at finer granularity.

• Shared+Intention-Exclusive (SIX)

• The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

50

COMPATIBILITY MATRIX

IS IX S SIX X
IS ✔ ✔ ✔ ✔ ×
IX ✔ ✔ × × ×
S ✔ × ✔ × ×

SIX ✔ × × × ×
X × × × × ×

T
1
 H

ol
ds

T
2
 Wants

51

LOCKING PROTOCOL: WELL FORMED

• Each txn obtains an appropriate lock at the highest level
of the hierarchy.

• To get S or IS lock on a node, the txn must hold at least
IS on parent node.

• To get X, IX, or SIX on a node, must hold at least IX on
parent node.

• All lock are acquired top-down, so if a txn has an
intention lock, every other txn will see that before they
acquire lock at a lower level in the resource hierarchy.

• Locks released leaf to root, or all at once at the end of
the txn.

• Need non-intention locks somewhere in the resource
hierarchy (so can’t have txns that only do intention
locks).

A	Resource	Hierarchy

Database

Areas

Rows

IndicesTable	Files

Columns

The	partial	ordering	
of	the	lock	modes.	
Higher	is	more	
restrictive.

X

SIX

IS

IXS

NL

52

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

53

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read Alice’s
record in R.

54

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

Read

Read Alice’s
record in R.

55

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

IS
T1

Read

Read Alice’s
record in R.

56

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

Read

Read Alice’s
record in R.

57

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

Write

Update Bob’s
record in R.

58

EXAMPLE

• T1 – Get the balance of Alice’s account.

• T2 – Increase Bob’s account by 1%.

• What locks should these txns obtain?
• Exclusive + Shared for leaf nodes of lock

tree.
• Special Intention locks for higher levels.

Table R

Tuple 2Tuple 1 Tuple n…

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update Bob’s
record in R.

59

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

60

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
locationv

61

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
locationv

62

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
location

X
v

63

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
location

X
v

X

64

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
location

X
v

X

65

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
location

X
v

X

IX

66

DYNAMIC LOCK GRAPH

• Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to
another.

• Now in the new area, we may not have the
appropriate locks on the ancestors.

• Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved
so that top-down traversal by another txn
does not grab a conflicting lock.

B-tree

Page:	new	
location

Page:	old	
location

X
v

X

IX

67

LOCK SCHEDULES AND UPGRADES

• A single resource may have multiple locks. Group mode
is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

• Some notion of fairness (e.g., FIFO) is needed so some
txn does not wait forever on a lock request.

• Lock upgrade request: Give priority to a txn in the
pending queue if it is already part of the granted group.

This txn is already holding a resource. Try to get this txn to finish
quickly, and free up this resource.

Group	Mode:	IX
IX
T3

IX
T8

IS
T1

Granted	Group

X
T7

S
T9

X
T5

Pending

68

New Mode

C
u

r
r

e
n

t

M

o
d

e

LOCK SCHEDULES AND UPGRADES

• A single resource may have multiple locks. Group mode
is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

• Some notion of fairness (e.g., FIFO) is needed so some
txn does not wait forever on a lock request.

• Lock upgrade request: Give priority to a txn in the
pending queue if it is already part of the granted group.

This txn is already holding a resource. Try to get this txn to finish
quickly, and free up this resource.

The	partial	ordering	of	the	lock	modes.	

X

SIX

IS

IXS

NL

Group	Mode:	IX
IX
T3

IX
T8

IS
T1

Granted	Group

X
T7

S
T9

X
T5

Pending

IS IX S SIX X

IS IS IX S SIX X

IX IX IX SIX SIX X

S S SIX S SIX X

SIX SIX SIX SIX SIX X

X X X X X X

69

New Mode

C
u

r
r

e
n

t

M

o
d

e

LOCK SCHEDULES AND UPGRADES

• A single resource may have multiple locks. Group mode
is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

• Some notion of fairness (e.g., FIFO) is needed so some
txn does not wait forever on a lock request.

• Lock upgrade request: Give priority to a txn in the
pending queue if it is already part of the granted group.

This txn is already holding a resource. Try to get this txn to finish
quickly, and free up this resource.

The	partial	ordering	of	the	lock	modes.	

X

SIX

IS

IXS

NL

Group	Mode:	IX
IX
T3

IX
T8

IS
T1

Granted	Group

X
T7

S
T9

X
T5

Pending

IS IX S SIX X

IS IS IX S SIX X

IX IX IX SIX SIX X

S S SIX S SIX X

SIX SIX SIX SIX SIX X

X X X X X X

70

DEADLOCKS

• We can now have deadlocks.

• Need a mechanism to either detect deadlocks, or
prevent deadlocks.

• Deadlock detection: Construct and periodically
examine the wait-for-graph. Pick a victim (oldest
tnx or newest txn) to break the deadlock. Abort
the victim txn and restart it (perhaps after some
sleep/delay).

• Deadlock prevention: Abort a txn as soon as it
waits for another txn.

Wound-wait or wait-die (see the intro DB class for details).

Group	Mode:	S
S
T1

Granted	Group

X
T2

Pending

Resource	1

Group	Mode:	S
S
T2

Granted	Group

X
T1

Pending

Resource	2

71

DEADLOCKS

• We can now have deadlocks.

• Need a mechanism to either detect deadlocks, or
prevent deadlocks.

• Deadlock detection: Construct and periodically
examine the wait-for-graph. Pick a victim (oldest
tnx or newest txn) to break the deadlock. Abort
the victim txn and restart it (perhaps after some
sleep/delay).

• Deadlock prevention: Abort a txn as soon as it
waits for another txn.

Wound-wait or wait-die (see the intro DB class for details).

Group	Mode:	S
S
T1

Granted	Group

X
T2

Pending

Resource	1

Group	Mode:	S
S
T2

Granted	Group

X
T1

Pending

Resource	2

T1 T2

Waits-For Graph

72

DEADLOCKS

• We can now have deadlocks.

• Need a mechanism to either detect deadlocks, or
prevent deadlocks.

• Deadlock detection: Construct and periodically
examine the wait-for-graph. Pick a victim (oldest
tnx or newest txn) to break the deadlock. Abort
the victim txn and restart it (perhaps after some
sleep/delay).

• Deadlock prevention: Abort a txn as soon as it
waits for another txn.

Wound-wait or wait-die (see the intro DB class for details).

Group	Mode:	S
S
T1

Granted	Group

X
T2

Pending

Resource	1

Group	Mode:	S
S
T2

Granted	Group

X
T1

Pending

Resource	2

T1 T2

Waits-For Graph

73

DEADLOCKS

• We can now have deadlocks.

• Need a mechanism to either detect deadlocks, or
prevent deadlocks.

• Deadlock detection: Construct and periodically
examine the wait-for-graph. Pick a victim (oldest
tnx or newest txn) to break the deadlock. Abort
the victim txn and restart it (perhaps after some
sleep/delay).

• Deadlock prevention: Abort a txn as soon as it
waits for another txn.

Wound-wait or wait-die (see the intro DB class for details).

Group	Mode:	S
S
T1

Granted	Group

X
T2

Pending

Resource	1

Group	Mode:	S
S
T2

Granted	Group

X
T1

Pending

Resource	2

T1 T2

Waits-For Graph

74

TWO PHASE LOCKING (2PL)

• Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.

#

o

f

L

o
c

k
s

TIME

Growing Phase Shrinking Phase

Transaction Lifetime

Revisit	your	introduction	to	DB	class	material	if	needed.

75

TWO PHASE LOCKING (2PL)

• Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.

• Can’t acquire a lock after the first lock is released.

TIME

Transaction Lifetime

#

o

f

L

o
c

k
s

2PL Violation!

Growing Phase Shrinking Phase

Revisit	your	introduction	to	DB	class	material	if	needed.

76

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

Revisit	your	introduction	to	DB	class	material	if	needed.

77

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

Revisit	your	introduction	to	DB	class	material	if	needed.

78

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

Revisit	your	introduction	to	DB	class	material	if	needed.

79

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

Revisit	your	introduction	to	DB	class	material	if	needed.

80

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

T
IM

E

ABORT

Revisit	your	introduction	to	DB	class	material	if	needed.

81

2PL PERMITS CASCADING ABORTS

Schedule

T1 T2
• This is a permissible schedule in 2PL,

but the DBMS has to also abort T2
when T1 aborts.

• Any information about T1 cannot be
“leaked” to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
 ⋮

BEGIN
X-LOCK(A)
R(A)
W(A)
 ⋮

This is all wasted work!

T
IM

E

ABORT

Revisit	your	introduction	to	DB	class	material	if	needed.

82

STRONG STRICT TWO PHASE LOCKING

• Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.

• Can’t acquire a lock after the first lock is released.

• Txn holds all locks till the end (abort or commit) and drops them then.

TIME

Transaction Lifetime

#

o

f

L

o
c

k
s

Growing Phase Shrinking Phase

Release all locks

at end of txn.

Allows	only	“conflict	serializable”	schedules.	
ACA	–	Avoids	Cascading	Aborts.

83

PHANTOMS

BEGIN

COMMIT

BEGIN

COMMIT

INSERT INTO people
(age=30, status='lit')

99

100

Schedule

T1 T2

SELECT COUNT(age)
 FROM people
 WHERE status='lit'

CREATE TABLE people (
 id SERIAL,
 name VARCHAR,
 age INT,
 status VARCHAR
);

SELECT COUNT(age)
 FROM people
 WHERE status='lit'

T
IM

E

Lock	key	ranges	in	the	B-tree	to	prevent	phantoms,	
aka.	predicate	locking.

Revisit	your	introduction	to	DB	class	material	if	needed.

84

WEAKER LEVELS OF ISOLATION

• Want to allow various “degrees of consistency” in the same system and concurrent
txns.

• Some txns may be ok with lower levels of consistency; e.g., statistics update query.

Dirty

Read

Unrepeatable

Read Phantom

SERIALIZABLE No No No

REPEATABLE READ No No Maybe

READ COMMITTED No Maybe Maybe

READ UNCOMMITTED Maybe Maybe Maybe

Revisit	your	introduction	to	DB	class	material	if	needed.

85

ISOLATION LEVELS

• SERIALIZABLE: Obtain all locks first; plus index locks, plus strong strict 2PL.

• REPEATABLE READS: Same as above, but no index locks.

• READ COMMITTED: Same as above, but S locks are released immediately.

• READ UNCOMMITTED: Same as above but allows dirty reads (no S locks).

Part	of	SQL,	and	you	can	explicitly	
set	the	isolation	levels.

SET TRANSACTION ISOLATION LEVEL
 <isolation-level>;

BEGIN TRANSACTION ISOLATION LEVEL
 <isolation-level>;

Revisit	your	introduction	to	DB	class	material	if	needed.

86

ISOLATION LEVELS AND ANOMALIES

Hal	Berenson,	Philip	A.	Bernstein,	Jim	Gray,	Jim	Melton,	Elizabeth	J.	O'Neil,	Patrick	E.	O'Neil:
A	Critique	of	ANSI	SQL	Isolation	Levels.	SIGMOD	1995

87

ISOLATION LEVELS
Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

CockroachDB SERIALIZABLE SERIALIZABLE

Google Spanner STRICT SERIALIZABLE STRICT SERIALIZABLE

MSFT SQL Server READ COMMITTED SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

PostgreSQL READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE

YugaByte SNAPSHOT ISOLATION SERIALIZABLE

Revisit	your	introduction	to	DB	class	material	if	needed.

88

SUMMARY AND OUTLOOK

• This paper directionally set the way concurrency control is
implemented in a data platforms (granularity of locking and
degrees of consistency), and influenced the SQL standard.

• For the longest time, many database platforms only used pure
locking-based protocols for concurrency control.

• But, there were other approaches, including OCC.

• Also, MVCC influences that concurrency protocol. MVCC is
about creating versions of data on an update rather than update-
in-place and can be used with Locking (or OCC).
• Revise MVCC from your intro to DB class if you have forgotten it.

• Lot of different way to do concurrency control today with
various tradeoffs in the “degree of consistency” and performance.

89

https://jepsen.io/consistency

https://jepsen.io/consistency

