Q

G

el m
mn/_
S
-
%S
=
wc D
Vt
52
<O
& =
= o) un
2E:
==
S=5

L ecture #08
Granular

1S

of Locks and
Degrees of

istency

}) Prof. Jignesh Patel

Cons

Fall 2024

o
.L(\[ > SANMLECAE - 4 .

ALY L5
A A

&

N OO WAL

s i

=1
-l
e

N
¥\ 1§

A




ANNOUNCEMENTS

* Talk from Oracle on Tuesday, October 1, @ noon in 6501 GHC.

* Unifying relational and document/JSON management.

e Exam: Oct 9™ in GHC 8102 between 1-4 pm. Open book.

 Start anytime. Stop 90 minutes later.

* Let me know if you have a conflict by the end of next week 9/20.



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A); Bank Balance : $100
Check (A > $25); /

Pay ($25);

A=A-25;

Write (A);



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
’ ou

Check (A > $25); Read Balance: $100 4/

Pay ($25);

A=A-25;

Write (A);



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
) ou

Check (A > $25); < Read Balance: $100 ‘/

Pay ($25); Sufficient funds?

A=A-25;

Write (A);



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
) ou

Check (A > $25); < Read Balance: $100 ‘/

Pay ($25); < Sufficient funds?

A=A-25; Yes Pay $25

Write (A);



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
) ou

Check (A > $25); < Read Balance: $100 ‘/
Pay ($25); < Sufficient funds?

= A-25: Y
Write (), ) Pay 25

ricte ]

(A) < New balance: $75

\\* Bank Balance : $75!




Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
) ou
Check (A > $25); < Read Balance: $100 ‘/
Pay ($25); Sufficient funds?
A=A-25; Yes <
Write (A); - =
\, New balance: $75

\* Bank Balance : $75!




Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

Read (A) v Bank Balance : $100
) ou
Check (A > $25); < Read Balance: $100 ‘/
Pay ($25); < Sufficient funds?
A=A-25: v Yes
4 Pay $25
Write (A); bl - = %
\, New balance: $75

\* Bank Balance : $75!




TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay ($25);
A=A-25;
Write (A);

You

Revisit your introduction to DB class material if needed.

Bank Balance : $100

.

Your Significant Other

10



TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay ($25);
A=A-25;
Write (A);

Revisit your introduction to DB class material if needed.

Bank Balance : $100

You

Your Significant Other

T

Read Balance: $100

Read Balance: $100

11



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

I
Read (A) Bank Balance : $100

) You A Your Significant Other
Check (A > $2 5); ( Read Balance: $100 Read Balance: $100 >
Pay ($25); Sufficient funds? Sufficient funds?
A=A-25;

Write (A);

12



TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay ($25);
A=A-25;
Write (A);

Revisit your introduction to DB class material if needed.

Bank Balance : $100

You

Your Significant Other

Read Balance: $100

T

Read Balance: $100

Q

)

Sufficient funds?

Sufficient funds?

> Yes

Yes (

Pay $25

Pay $25

13



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

I
Read (A) Bank Balance : $100

) You A Your Significant Other
Check (A > $2 5); Read Balance: $100 Read Balance: $100 >

- A — : Yes
A .A 25; Pay $25 Pay $25
Write (A); )
New balance: $75 New balance: $75

Pay ($25); ( Sufficient funds? Sufficient funds? >
Yes

14



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

]
Read (A) Bank Balance : $100
) You A Your Significant Other
Check (A > $25)} ( Read Balance: $100 Read Balance: $100 >
Pay ($25); Sufficient funds? Sufficient funds?
- A — : Yes ( > Yes

A .A 25; Pay $25 Pay $25

Write (A); ( >
New balance: $75 New balance: $75

\' Bank Balance : $75!

15



TRANSACTION MANAGEMENT

Read (A);

Check (A > $25);
Pay ($25);
A=A-25;
Write (A);

Yes

Revisit your introduction to DB class material if needed.

Bank Balance : $100

You

Your Significant Other

Read Balance: $100

T

Read Balance: $100

)

Sufficient funds?

Sufficient funds?

Pay $25

Pay $25

> Yes

Q
Q
C

New balance: $75

New balance: $75

b

S~

Bank Balance : $75!

_

16



Revisit your introduction to DB class material if needed.

TRANSACTION MANAGEMENT

[ Redo/Undo

mechanism

Atomicity All actions in txn happen, or none happen.
“All or nothing...”

Integrity
[C"“Stmims Consistency If each txn is consistent and the DB starts

Rey constraints, CHECKS, TRIGGERS, .. = cqngistent, then it ends up consistent.
hold before and after the txn completes. »”
It looks correct to me...

[Concurrency
Control _+ Jsolation Execution of one txn is isolated from that

of other txns.
"All by myself...”
[Redo/Undo

mechanism 3 Durability  If a txn commits, its effects persist.
“Twill survive...”

17



’—-----------~

Schedule
T1 T2
BEGIN BEGIN
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
COMMIT
R(B)
W(B)
COMMIT

\------------_/

Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

’_____________-

Dependency Graph

® @)

———————————————————————

\-------

18



’—-----------~

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
D YO8
W(A)
R(B)
W(B)
COMMIT
R(B)
W(B)
COMMIT

\------------_/

Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

’_____________‘

Dependency Graph

® @)

———————————————————————

\-------

19



’—-----------~

Schedule
T, T,
BEGIN BEGIN
R(A)
W(A)
D YO8
W(A)
R(B)
W(B)
COMMIT
R(B)
W(B)
COMMIT

\------------_/

Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

’_____________‘

Dependency Graph

———————————————————————

\-------

20



Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

’—-----------~

Schedule
T1 T2
BEGIN BEGIN
R(A)
W(A)
‘h""‘R(A)
W(A)
R(B)
W(B)
/COMMIT
R(B)
W(B)
COMMIT

\------------_/

’_____________‘

Dependency Graph

———————————————————————

\-------

21



’_-----------~

Schedule

————————————————————

BEGIN BEGIN
RCA)

W(A)
\R<A>

W(A)

Q.
R(B
A - A (B)

W(B)
R(B)

7| commrT
W(B)

COMMIT

------------_/

Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

’_____________‘

__Dependency Graph
A
B

———————————————————————

\-------

22



Revisit your introduction to DB class material if needed.

CONCURRENCY CONTROL AND DEPENDENCE GRAPHS

Schedule Dependency Graph
- oo oEEEEEEEEEmm—_———— - yemrmrmmEEEEmEmmmEmmmmEmmmmEmEs
T T, ] A )
| | BEGIN BEGIN | i I
1 [ W(CA) ' | I
o \R<A> | | :
i WCA i I I
I ( ) I I B I
! R(B) : \ ;
oW Ly || e
i / COMMIT E The cycle in the graph
I |R(B) | reveals the problem.
: \géﬁlb)m I The output of T, depends on
I\ ___________________ /' \Tz, and vice-versa. y

23



Revisit your introduction to DB class material if needed.

SERIALIZABLE SCHEDULE

* A schedule that is equivalent to some serial execution of the transactions.
* Need to reason about conflicting operations.

* Two operations conflict if:

* They are by different transactions,

* They are on the same object and one of them is a write.
* Interleaved Execution Anomalies

* Read-Write Conflicts (R-W). Also called Unrepeatable Read.
e Write-Read Conflicts (W-R). Also called Dirty Read.
e Write-Write Conflicts (W-W). Also called Lost Update.

24



Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

Schedule A Lock Manager
____________________ 4 )

BEGIN
X-LOCK(A)
R(A)

W(A)
UNLOCK(A)
BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)
S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT COMMIT

’___—_—_—_—_—_—_—_—_—_—_—_—_~

25



Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL
Schedule A Lock Manager

————————————————————

’ A a )

BEGIN
X-LOCK(A) j—————TT—————T* |Granted (T,A)
RCA)
WCA)
UNLOCK(A)

BEGIN
X-LOCK(A)
W(A)

UNLOCK(A)
S-LOCK(A)
R(A)

UNLOCK(A)
COMMIT COMMIT

’___—_—_—_—_—_—_—_—_—_—_—_—_~

-----------

26



Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL
Schedule A Lock Manager

————————————————————

’ A a )

BEGIN
X-LOCK(A) j—————TT—————T* |Granted (T,A)
RCA)
WCA)
UNLOCK(A)

Released (T,»A)

BEGIN
X-LOCK(A)
W(A)

UNLOCK(A)
S-LOCK(A)
R(A)

UNLOCK(A)
COMMIT COMMIT

’___—_—_—_—_—_—_—_—_—_—_—_—_~

---------

27



Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL
Schedule A Lock Manager

————————————————————

’ A a )

BEGIN
X-LOCK(A) " [Granted (T,*A)
R(A) !
W(A) !
UNLOCK(A) _:—-> Released (T,»A)
BEGIN |

X-LOCK(A) J—————® [Granted (T,%A)

W(A)
UNLOCK(A) Released (T,?A)

|

S-LOCK(A)
R(A)

UNLOCK(A)
COMMIT COMMIT

’___—_—_—_—_—_—_—_—_—_—_—_—_~

-----

28



Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL
Schedule A Lock Manager

————————————————————

’ A a )

BEGIN
X-LOCK(A) "> [Granted (T,>A)
R(A) :
W(A) :
UNLOCK(A) _:—-> Released (T,»A)
BEGIN I
X-LOCK(A) J———————I® [Granted (T,%A)
W(A) I -
UNLOCK(A) et |Re 125 (T,2A)

S-LOCK(A) =" [Granted (TA)
R(A)

COMMIT | COMMIT |

N ————————————— S - Y,

’___—_—_—_—_—_—_—_—_—_—_—_—_~

29



’___—_—_—_—_—_—_—_—_—_—_—_—_~

Schedule

————————————————————

BEGIN

X-LOCK(A)

R(A)

W(A)
LOCK(A)

QQO
oW

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)

UNLOCK(A)
LOCKAA)

COMMIT

Revisit your introduction to DB class material if needed.

LOCKING WITH S AND X LOCKS AT THE ROW-LEVEL

A Lock Manager

e

Granted (T,»A)

Released (T,»A)

Granted (T,»A)

Released (T,?A)

Granted (T,»A)

Released (T,»A)

\

30



GRANULARITIES PAPER: KEY CHALLENGE

A Resource Hierarchy

Database

i

Tables

i

Rows

i

Columns




GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking A Resource Hierarchy

protocol that balances.

* # locks that are acquired. Database
* Amount of concurrency that i
is allowed by the protocol. Tables
Rows

i

Columns




GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking A Resource Hierarchy

protocol that balances.

e # locks that are acquired. Database
* Amount of concurrency that i
is allowed by the protocol. Tables
* Key metric is the transaction l
(txn) throughput: how many Rows
txns can we commit per second? i

Columns




GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking A Resource Hierarchy

protocol that balances.

* # locks that are acquired. Database
* Amount of concurrency that i
is allowed by the protocol. Tables
* Key metric is the transaction l
(txn) throughput: how many Rows
txns can we commit per second? i
* Want throughput, but Columns

simple methods result in
throughput.




GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Database

i

Tables

i

Rows

i

Columns

Concurrency

# Locks

35



GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Database

Concurrency

# Locks

36



GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Database

Concurrency

Only allow

database
level-locks

# Locks

37



GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Database

i

Tables

i

Rows

i

Columns

Concurrency

Only allow

database
level-locks

# Locks

38



GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Columns

Concurrency

Only allow

database
level-locks

Only allow

column-
level locks

# Locks

39



GRANULARITIES PAPER: KEY CHALLENGE

* Correct (provably so) locking
protocol that balances.
* # locks that are acquired.
* Amount of concurrency that
is allowed by the protocol.

* Key metric is the transaction
(txn) throughput: how many

txns can we commit per second?

* Want throughput, but
simple methods result in
throughput.

A Resource Hierarchy

Database

i

Tables

i

Rows

i

Columns

Concurrency

Only allow
column-
level locks

Can we find some
“green” (high-

throughput) space, like
this area?

Only allow

database
level-locks

# Locks

40



THE SOLUTION (DECEPTIVELY SIMPLE, AND HENCE BRILLIANT)

* Work with complex/DAG resource graphs.

* Use a well-formed protocol to acquire locks in top-

down manner.

* Introduce the notion of “intention” locks to allow a txn
to indicate that they will grab are “regular” lock (S or X)
on a resource below in the hierarchy.

* Develop a novel lock-compatibility matrix that allows
balancing # locks with the “granularity” of locking.

* Can offer different degrees of consistency (trading

1998 ACM Turing Award

performance for lower consistency), allowing

concurrent transaction to operate at different
consistency levels.

41



INTENTION LOCKS

* An intention lock allows a higher-

level node to be locked in shared or
exclusive mode without having to

check all descendent nodes.

e If a node is locked in an intention
mode, then some txn is doing explicit

locking at a lower level in the tree.

A Resource Hierarchy

Database

l

Table Files

i

=

Indices

—» Rows [€&——

Columns

42



INTENTION LOCKS

e Intention-Shared (IS)

* Indicates explicit locking at lower level with S locks.

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A Resource Hierarchy

Database

l

Table Files

i

=

Indices

—» Rows [€&——

Columns

43



INTENTION LOCKS

e Intention-Shared (IS)

* Indicates explicit locking at lower level with S locks.

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A Resource Hierarchy

Database

Table Files

i

Areas —l

Indices

—» Rows [€&——

Columns

44



INTENTION LOCKS

* Intention-Shared (IS) A Resource Hierarchy

* Indicates explicit locking at lower level with S locks.

Database

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

An X lock will be acquired somewhere in the gray region.
An intention lock discloses the intent to do additional locking below.

45



INTENTION LOCKS

e Intention-Shared (IS)

* Indicates explicit locking at lower level with S locks.

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A Resource Hierarchy

Database

l

Table Files

i

=

Indices

—» Rows [€&——

Columns

46



INTENTION LOCKS

e Intention-Shared (IS)

* Indicates explicit locking at lower level with S locks.

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A Resource Hierarchy

Database

r Area

Table Files

i

Indices

—» Rows [€&——

Columns

47



INTENTION LOCKS

* Intention-Shared (IS) A Resource Hierarchy

* Indicates explicit locking at lower level with S locks.

Database

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

Now, this entire gray region is considered locked in X mode. No need to
acquire X locks here. The lock at the top level “covers” this whole region.

48



INTENTION LOCKS

e Intention-Shared (IS)

* Indicates explicit locking at lower level with S locks.

* Intent to get S lock(s) at finer granularity.

* Intention-Exclusive (IX)

* Indicates explicit locking at lower level with X locks.

* Intent to get X lock(s) at finer granularity.

e Shared+Intention-Exclusive (SIX)

* The subtree rooted by that node is locked explicitly in S mode
and explicit locking is being done at a lower level with X locks.

A Resource Hierarchy

Database

l

Table Files

i

=

Indices

—» Rows [€&——

Columns

49



COMPATIBILITY MATRIX

X X X X X X
><
H| S X X X X
)
N
<+
o NS X S X X
%
ZHJJXXX
)
NS 5 5 5 X
v X N X X
- - =]
(V)

SploH 'L

‘-----------------------------------------------------'

50



LOCKING PROTOCOL: WELL FORMED

Each txn obtains an appropriate lock at the highest level
of the hierarchy.

To get S or IS lock on a node, the txn must hold at least
IS on parent node.

To get X, IX, or SIX on a node, must hold at least IX on

parent node.

All lock are acquired top-down, so if a txn has an
intention lock, every other txn will see that before they

acquire lock at a lower level in the resource hierarchy.

Locks released leaf to root, or all at once at the end of
the txn.

Need non-intention locks somewhere in the resource

hierarchy (so can’t have txns that only do intention

locks).

The partial ordering
of the lock modes.
Higher is more

restrictive.

X
v

SIX

S

—> IS
v
NL

4

A Resource Hierarchy

Database
Areas
\ 4
Table Files

—» Rows [&——

i

\ 4

Indices

Columns

51



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Table R

]

Tuple 1 Tuple2 | - Tuplen

52



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Read Alice’s
record in R.

Table R

53



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Read Alice’s
record in R.

Table R
Tuple 1 Tuple2 | - Tuplen

Read

54



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Read Alice’s
record in R.

B Table R
Tuple 1 Tuple2 | - Tuplen

55



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Read Alice’s
record in R.

B Table R
aTupIe 1 Tuple2 | - Tuplen

56



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

Update Bob’s
record in R.

B Table R

57



EXAMPLE

* T, — Get the balance of Alice’s account.
* T, — Increase Bob’s account by 1%.

e What locks should these txns obtain?

e Exclusive + Shared for leaf nodes of lock
tree.

* Special Intention locks for higher levels.

T,

Update Bob’s
record in R.

Table R

aTupIe 1

58



DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to

another.

DATA BASE

AREAS
|
|
FILE
!
|
I l
1 INDICES
{ |
| |
| INDEX
| INTERVALS
| N
| | |
| | 1
| | | [
| | | 11
| It
UN-INDEXED KECORD INDEXED

FIELDS IDENTIFIERS FIELDS

59



DYNAMIC LocK GRAPH

DATA BASE

AREAS

I 'l

FILE
!

* Data can move around (in the resource graph) | E—
. . { |
in the same transaction; e.g., an update that .‘ nber

Il INT?RVALS
moves data from one part of an index to | T
| | | i
| [ Lo
anOther' UN‘IN:)EXED RECORIlJ 1ND£XED
FIELDS IDENTIFIERS FIELDS

Page: new Page: old
location location

60



DATA BASE

DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)

|| INDICES
. . { |
in the same transaction; e.g., an update that .‘ nber

|l ) INT?RVALS
moves data from one part of an index to | L

| | | i

| [ Lo
another. UN—IN:)EXED RéCORIlJ 1ND£XED

FIELDS IDENTIFIERS FIELDS

Page: neW@ Page: old
location location




DATA BASE

DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)

|| INDICES
. . { |
in the same transaction; e.g., an update that .‘ nber

|l ) INT?RVALS
moves data from one part of an index to | L

| | | i

| [ Lo
another. UN—IN:)EXED RéCORIlJ 1ND£XED

FIELDS IDENTIFIERS FIELDS

Page: neW@ Page: old n

location location




DATA BASE

DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)

|| INDICES
. . { |
in the same transaction; e.g., an update that .‘ nber

|l ) INT?RVALS
moves data from one part of an index to | L

| | | i

| [ Lo
another. UN—IN:)EXED RéCORIlJ 1ND£XED

FIELDS IDENTIFIERS FIELDS

Page: neW@ Page: old n

location location

63



DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to

another.

* Now in the new area, we may not have the
appropriate locks on the ancestors.

Page: ne
location

X}

()

DATA BASE

|
1
{
|
|
|
|
|
|
|

INDICES
|
|
INDEX
INTERVALS

UN-INDEXED
FIELDS

KECORD
IDENTIFIERS

Page: oldQ

location

|
I
I
INDEXED
FIELDS

64



DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)
in the same transaction; e.g., an update that
moves data from one part of an index to

another.

* Now in the new area, we may not have the
appropriate locks on the ancestors.

Page: ne
location

()

DATA BASE

|
1
{
|
|
|
|
|
|
|

INDICES
|
|
INDEX
INTERVALS

UN-INDEXED
FIELDS

KECORD
IDENTIFIERS

Page: oldQ

location

|
I
I
INDEXED
FIELDS

65



DATA BASE

DYNAMIC LocK GRAPH

* Data can move around (in the resource graph)

INDICES
|

|
. . i
in the same transaction; e.g., an update that .‘ nber
| } INTERVALS
'.
|
|

moves data from one part of an index to

| | |
| | | | |

another. ! R
UN-INDEXED KECORD INDEXED
FIELDS IDENTIFIERS FIELDS

* Now in the new area, we may not have the
appropriate locks on the ancestors.

* Solution: Before moving data, both the old
and new locations must have an X lock, and
the well-formed protocol must be preserved

Page: neW@ Page: old n

location

so that top-down traversal by another txn location

does not grab a conflicting lock.

66



LOCK SCHEDULES AND UPGRADES

* A single resource may have multiple locks. Group mode

is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

- Granted Group — H Pending I
Group Mode: IX

DO~m—a)-1-Co-{s)-{0)

Iry; Tg T I; To Ts




LOCK SCHEDULES AND UPGRADES New Mode

IS IX S SIX

* A single resource may have multiple locks. Group mode IS| IS IX S SIX

IX| IX IX SIX SIX
S| § SIX S SIX
SIX | SIX SIX SIX SIX

is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

- Granted Group — H Pending I
Group Mode: IX

____@__@__@ X| X X X X

Iry; Tg T I; To Ts

Current Mode

The partial ordering of the lock modes.

X

v

FSIX_l
—>13<J

NL

X X X X X |X



LOCK SCHEDULES AND UPGRADES New Mode

IS IX S SIX

* A single resource may have multiple locks. Group mode IS| IS IX S SIX

IX| IX IX SIX SIX
S| § SIX S SIX
SIX | SIX SIX SIX SIX

is the highest level of lock on that resource.

e.g., if a group has an mix of IS and IX locks, the group mode is IX.

- Granted Group — H Pending I
Group Mode: IX

____@__@__@ X| X X X X

Iry; Tg T I; To Ts

Current Mode

The partial ordering of the lock modes.

* Some notion of fairness (e.g., FIFO) is needed so some .
txn does not wait forever on a lock request. v
. . . . SIX
* Lock upgrade request: Give priority to a txn in the r _l
pending queue if it is already part of the granted group. > X
This txn is already holding a resource. Try to get this txn to finish —> S <J
quickly, and free up this resource. v

NL

X X X X X |X



DEADLOCKS

* We can now have deadlocks.

—I Granted Group

Group Mode: S

@-remeee ®

—| Granted Group

Pending |7
T,
Resource 1
Pending |7

Group Mode: S

Resource 2

70



DEADLOCKS

* We can now have deadlocks.

—I Granted Group Pending |7
Group Mode: S
T, T,
Resource 1
—| Granted Group Pending |7
Group Mode: S
T, T,
Resource 2
Waits-For Graph
e o e

®)

\ T T LT

71



DEADLOCKS

* We can now have deadlocks.

* Need a mechanism to either detect deadlocks, or
prevent deadlocks.

—I Granted Group Pending |7
Group Mode: S
T, T,
Resource 1
—| Granted Group Pending |7
Group Mode: S
T, T,
Resource 2

Waits-For Graph

\ T T LT

72



DEADLOCKS

* We can now have deadlocks.

* Need a mechanism to either detect deadlocks, or

prevent deadlocks.

* Deadlock detection: Construct and periodically
examine the wait-for-graph. Pick a victim (oldest
tnx or newest txn) to break the deadlock. Abort

the victim txn and restart it (perhaps after some

sleep/delay).

* Deadlock prevention: Abort a txn as soon as it

waits for another txn.

Wound-wait or wait-die (see the intro DB class for details).

—I Granted Group

Pending |7
Group Mode: S

@-remeee ®

T T,

Resource 1

Pending |7

—| Granted Group
Group Mode: S

Resource 2

Waits-For Graph

I BN N .-
\ T T LT

73



Revisit your introduction to DB class material if needed.

Two PHASE LOCKING (2PL)

* Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.

Transaction Lifetime

# of Locks

Growing Phase Shrinking Phase

_ TIME____ 2

74



Revisit your introduction to DB class material if needed.

Two PHASE LOCKING (2PL)

* Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.

* Can't acquire a lock after the first lock is released.

: o son!
Transaction Lifetime QZPL Violation! ]

e

# of Locks

Growing Phase Shrinking Phase

_ TIME____ 2

75



2PL PERMITS CASCADING ABORTS

Schedule

i EEN BN EEN NN NN DN N DN N D D B B S D S .y,

’--------------

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)

BEGIN
X-LOCK(A)
R(A)
W(A)

4

Revisit your introduction to DB class material if needed.

76



Revisit your introduction to DB class material if needed.

2PL PERMITS CASCADING ABORTS

Schedule
A
| | BEGIN |
|| X-LOCK(A) |
| | X-LOCK(B) i
| [RGA) |
! W(A) |
| | UNLOCK(A) | BEGIN I
I X-LOCK(A) | 1
| R(A) :
I W(A) :
i [R(B) : :
i W(?) i

‘ |
| | ABORT !
\ J

/4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
\

77



2PL PERMITS CASCADING ABORTS

Schedule
L
| | BEGIN |
I | X-LOCK(A) |
| | X-LOCK(B) |
| RCA) :
1| WCA) :
i | UNLO ) | BEGIN l
: Ek<é\\‘§—LOCK(A) :
: (A) I
: W(A) !
 IR(B) : :
i W(B) \ R 4 :

: |
| ‘ |
| | ABORT oWy !
\s ___________________ ,I

Revisit your introduction to DB class material if needed.

78



Revisit your introduction to DB class material if needed.

2PL PERMITS CASCADING ABORTS

’--------------

Schedule
T, T,
BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLO ) | BEGIN
X-LOCK(A)
(A)
W(A)
R(B) :
W(B) \ R
ABORT & L %

4

\_-------------—

* This is a permissible schedule in 2PL,
but the DBMS has to also abort T,
when T, aborts.

79



Revisit your introduction to DB class material if needed.

2PL PERMITS CASCADING ABORTS

’--------------

Schedule
T, T,
BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)

UNLOCMA) | BEGIN
X-LOCK(A)
(A)

W(A)

o

4

\_-------------—

* This is a permissible schedule in 2PL,
but the DBMS has to also abort T,
when T, aborts.

* Any information about T, cannot be
“leaked” to the outside world.

80



Revisit your introduction to DB class material if needed.

2PL PERMITS CASCADING ABORTS

N * This is a permissible schedule in 2PL,
but the DBMS has to also abort T,

’--------------

Schedule
T, T,
BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)

UNLOCMA) | BEGIN
X-LOCK(A)
(A)

W(A)

when T, aborts.

* Any information about T, cannot be
“leaked” to the outside world.

/

i Thas is all wasted work! ]

9@0
oWy

4

81



Allows only “conflict serializable” schedules.
STRONG STRICT TWO PHASE LOCKING ACA - Avorts Cascadin Abonts.

* Txn has 2 phases: a growing (acquire lock phase) and a subsequent drop lock phase.
* Can't acquire a lock after the first lock is released.

* Txn holds all locks till the end (abort or commit) and drops them then.

Transaction Lifetime

# of Locks

at end of txn.

Release all locks}

Growing Phase Shrinking Phase

_ TIME____ 2

82



Revisit your introduction to DB class material if needed.

Lock key ranges in the B-tree to prevent phantoms,

CREATE TABLE people (
id SERIAL,
name VARCHAR,
age INT,
status VARCHAR

);

PHANTOMS
— aka. predicate locking.
Schedule
) XN
[T Lo
: BEGIN BEGIN :
1 [
I SELECT COUNT(age) [
I FROM people I
| || WHERE status='lit' # 99 :
I I
| INSERT INTO people :
: (age=30, status='lit') :
| COMMIT !
I | | SELECT COUNT(age) i
: FROM people -‘] @@ ’@’ :
I WHERE status='lit' [
I A ¢ I
: COMMIT :
\ ]

83



Revisit your introduction to DB class material if needed.

WEAKER LEVELS OF ISOLATION

* Want to allow various “degrees of consistency” in the same system and concurrent

txXns.

* Some txns may be ok with lower levels of consistency; e.g., statistics update query.

Dirty  Unrepeatable
Read Read Phantom
SERIALIZABLE No No No
REPEATABLE READ No No Maybe
READ COMMITTED No Maybe Maybe
READ UNCOMMITTED| Maybe  Maybe  Maybe

84



Revisit your introduction to DB class material if needed.

ISOLATION LEVELS

* SERIALIZABLE: Obtain all locks first; plus index locks, plus strong strict 2PL.
 REPEATABLE READS: Same as above, but no index locks.

* READ COMMITTED: Same as above, but S locks are released immediately.

* READ UNCOMMITTED: Same as above but allows dirty reads (no S locks).

SET TRANSACTION ISOLATION LEVEL
Part of SQL, and you can explicitly <isolation-level>;

set the isolation levels.

BEGIN TRANSACTION ISOLATION LEVEL
<isolation-level>;

85



ISOLATION LEVELS AND ANOMALIES

[ ]
Table 4. Isolation Types Characterized by Possible Anomalies Allowed. _
PO P1 P4C P4 P2 P3 AS5A A5B
Isolation Dirty Dirty |Cursor Lost Lost Fuzzy Phantom Read Write
level Write Read Update Update Read Skew Skew
| READ UNCOMMITTED Not Possible Possible Possible Possible Possible| Possible | Possible
== Degree 1 Possible
READ COMMITTED Not Not Possible Possible Possible Possible| Possible | Possible
== Degres 2 Possible | Possible |
Cursor Stability Not Not Not Sometimes | Sometimes | Possible| Possible Sometimesl
Possible | Possible Possible Possible Possible Possible
REPEATABLE READ Not Not Not Not Not Possible Not Not
Possible | Possible | Possible Possible Possible Possible | Possible |
Snapshot Not Not Not Not Not Sometimes Not Possible |
Possible | Possible Possible Possible Possible Possible | Possible
ANSI SQL Not Not Not Not Not Not Not Not
SERIALIZABLE Possible | Possible Possible Possible Possible Possible| Possible | Possible
== Degree 3
== Repeatable Read
Date, |BM,

Tandem, ...

%

I

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O'Neil, Patrick E. O'Neil:
A Critique of ANSI SQL Isolation Levels. SIGMOD 1995




ISOLATION LEVELS

Revisit your introduction to DB class material if needed.

Default Maximum
Actian Ingres| SERIALIZABLE | SERIALIZABLE
IBM DB2 CURSOR STABILITY SERIALIZABLE
CockroaChDB SERIALIZABLE
Google Spanner| ~STRICT SERIALIZABLE ~ STRICT SERIALIZABLE |
MSFT SQL Server READ COMMITTED SERIALIZABLE
MySQL REPEATABLE READS SERIALIZABLE
Oracle READ COMMITTED |SNAPSHOT ISOLATION |
PostgreSQL READ COMMITTED SERIALIZABLE
SAP HANA READ COMMITTED SERIALIZABLE
VoltDB| SERIALIZABLE | SERIALIZABLE
YugaByte  SNAPSHOT ISOLATION SERIALIZABLE

87



SUMMARY AND OUTLOOK ContudencyCantrol

and Recovery

* This paper directionally set the way concurrency control is in Database Systems

implemented in a data platforms (granularity of locking and
degrees of consistency), and influenced the SQL standard.

* For the longest time, many database platforms only used pure
locking-based protocols for concurrency control.

* But, there were other approaches, including OCC.

* Also, MVCC influences that concurrency protocol. MVCC is
about creating versions of data on an update rather than update-

in-place and can be used with Locking (or OCC).
* Revise MVCC from your intro to DB class if you have forgotten it.

* Lot of different way to do concurrency control today with

various tradeoffs in the “degree of consistency” and performance.

P.A. BERNSTEIN « V.HADZILACOS + N.GOODMAN

Multiversion Concurrency Control—Theory
and Algorithms

PHILIP A. BERNSTEIN and NATHAN GOODMAN
Harvard University

Concurrency control is the activity of iz ions issued by
programs o a shared database. The gal roduce an executios hahasth same effect as a
serial ! one.Ina i d tabase system, each wnte a data item produces a
py (or verswn) of h data item. ’I'h paper presents a heoryfo analyzlng the correctness of
ontrol for ion database systems. We use the theory to analyze some
new ithms and some i blished ones.
Categories and Subject Descrij H.2.4 [Datab. Systems.

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Transaction processing

1. INTRODUCTION

A database system (DBS) is a process that executes read and write operations on
data items of a database. A transaction is a program that issues reads and writes
to a DBS. When transactions execute concurrently, the interleaved execution of
their reads and writes by the DBS can produce undesirable results. Concurrency
control is the activity of avoiding such undesirable results. Specifically, the goal
of concurrency control is to produce an execution that has the same effect as a
serial (noninterleaved) one. Such executions are called serializable.

A DBS attains a serializable execution by controlling the order in which reads
and writes are executed. When an operation is submitted to the DBS, the DBS
can either execute the operation immediately, delay the operation for later
processing, or reject the operation. If an operation is rejected, then the transaction
that issued the operation is aborted, meaning that all of the transaction’s writes
are undone, and transactions that read any of the values produced by those writes
are also aborted.

The principal reason for rejecting an operation is that it arrived “too late.” For

This work was supported by N.S.F. Grant MCS-79-07762, by the Office of Naval Research under

Contract N00014-80-C-647, by RomeAer elo] menC nter under Contract F30602-81-C-0028, and

by Digital Equipment Corporal

Athrs ddreMP Bemxtem Seq omSystemsl ., 1 Metropolitan Corp. Center, Boston Park
h, MA 01752; N. G Comp ter Science Department, Boston University,

Boxum MA 0221

anmo wcopywﬂh feeall pm fthmmatenahsgrmbed rovndedi,h the copies are ne

made d for ACM cc dth title ft.h

publl tion &nd its daf m ppenr and notice is gives Lh t copying is by permms of the Association

f . To copy ise, or to blish, requires a f snd/ specific

@ 1983 ACM 0362-5915/83/1200-0465 $00.75
ACM Transactions on Database Systems, Vol. 8, No. 4, December 1983, Pages 465-483.

88



Consistency Models

This clickable map (adapted from Bailis, Davidson, Fekete et al and Viotti & Vukolic) shows the
relationships between common consistency models for concurrent systems. Arrows show the rela-
tionship between consistency models. For instance, strict serializable implies both serializability
and linearizability, linearizability implies sequential consistency, and so on. Colors show how
available each model is, for a distributed system on an asynchronous network.

Strict Serializable
Serializable Linearizable
Repeatable Snapshot Sequential
Read Isolation

f

https://jepsen.io/consistency

Legend

Not available during some types of network failures. Some
or all nodes must pause operations in order to ensure safety.

Unavailable

Available on every non-faulty node, even when the network

Available on every non-faulty node, so long as clients only
talk to the same servers, instead of switching to new ones.

is completely down.

89


https://jepsen.io/consistency

