
Advanced Database
Systems (15-721)

Fall 2024  Prof. Jignesh Patel

Lecture #03

The Extensible 
Cascades/ 
Volcano Query 
Optimizer



2

ANNOUNCEMENT

• Join Piazza.

• Class notes schedule has been updated. Check here.

• Snowflake talk on Tue, Sept 10, noon-1 pm in GHC 6501. 
Also, free lunch!

• DB IAP on Mon 9/16 in GHC 4405 from 9am–3pm, in 
GHC 6101 after 3pm. To meet the companies, fill this 
form.

• Add your resumes to this form (and the associated drive).

https://docs.google.com/spreadsheets/d/17GQ98VrlZYKscipcpKb4gjoo8b2hA1x5y-hyW64Uc1k
https://forms.gle/J5iif4NbwMm235g66
https://forms.gle/J5iif4NbwMm235g66
https://docs.google.com/spreadsheets/d/1JqLnNtIbklLl9e4auSYvcGQVBrN5JDdEKIeEwsQO7AU/edit?gid=0
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BACKDROP

• Selinger’s QO was widely adopted.

• A new direction was extensibility.
• Want to add new types/objects and manage them 

in the database engine.

• With all the good things that database offers, 
including declarative query processing and 
transaction management.

• New QO “rules” were being discovered.

• It was cumbersome to add these new rules to 
the Selinger-style QO.
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RULES

• sP1 (sP2(R)) ≡ sP2 (sP1(R))  (s commutativity)

• sP1⋀P2 … ⋀Pn (R) ≡ sP1(sP2( … sPn(R)))  (cascading s)

• ∏a1(R) ≡ ∏a1(∏a2(…∏ak (R)…)), ai ⊆ ai+1 (cascading ∏)

• R ⋈ S ≡ S ⋈ R (join commutativity)

• R ⋈ (S ⋈ T) ≡ (R ⋈ S) ⋈ T (join associativity)

• sP (R X S) ≡ (R ⋈P S), if P is a join predicate

• sP (R X S) ≡ sP1 (sP2(R) ⋈P4  sP3(S)) , where P = p1 ∧ p2 ∧ p3 ∧ p4

• ∏A1,A2,…An(sP (R)) ≡ ∏A1,A2,…An(sP (∏A1,…An, B1,… BMR)), where B1 … BM 
are columns in P
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EXAMPLE OF A NEW RULE: GROUP BY BEFORE A JOIN

Emp(EmpID, LastName, FirstName, DeptID) 
Dept (DeptID, Name)

SELECT D.DeptID, D.Name, COUNT(E.EmpID) 
FROM Employee E, Department D
WHERE E.DeptID = D.DeptID 
GROUP BY D.DeptID, D.Name
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ANOTHER EXAMPLE: OUTERJOINS

Jun	Rao,	Bruce	G.	Lindsay,	Guy	M.	Lohman,	Hamid	Pirahesh,	David	E.	Simmen:	Using	EELs,	
a	Practical	Approach	to	Outerjoin	and	Antijoin	Reordering.	ICDE	2001:	585-594

• Not associative or commutative 
like inner joins.
• Nulls make it complicated.

• Similarly, issues with anti-joins 
• Only inner joins and full outer 

joins are commutative.

Also need robust ways to deal 
with materialized views and 
CTEs.
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BACKDROP

• The “rule book” was growing. 
• One could enhance the System R optimizer (e.g., expand 

the search space to look for bushy plans), but the code 

change was cumbersome.

• Can we get use abstractions in the query optimizer code? 

• Queries were getting more complex (more joins).

• The traditional System R optimization method 
finds an optimal plan only at the “end.”
• Would like to find a “reasonable” plan earlier, and stop 

the QO when a “good enough” plan is found.



8

BACKDROP
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STATE MANAGEMENT

• In bottom-up (also called construction-based) approach, 
one can “forget” subplans from the past
• Only keep the cheapest or “interesting” plans. 

• So, for the nth join, we just need to know the best + interesting 
n-1 join subplans to proceed. 

• Can forget about the n-2, n-3, … join subplans that don’t 
contribute to the best + interesting n-1 plans.

• In top-down (also called transformation-based), we will 
walk all over the plan space.
• Now, we have to remember all the subplans we have visited.

• Need a compact data structure to represent sub-plans: 
Memoization!
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)
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THE MEMO STRUCTURE

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)



13

THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

Have	a	plan	at	hand	now.

Plan	1:	(R	⋈	S)	⋈	TR S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Plan	1:	(R	⋈	S)	⋈	T
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

ß	Already	have	this	part	(in	a	“memo”)

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Plan	1:	(R	⋈	S)	⋈	T
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Plan	1:	(R	⋈	S)	⋈	T
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

ß	Already	have	this	part	(in	a	“memo”)

Plan	1:	(R	⋈	S)	⋈	TR S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

Have	a	second	plan	now.

Plan	2:	R	⋈	(S	⋈	T)R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Plan	1:	(R	⋈	S)	⋈	T
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THE MEMO STRUCTURE

Group Subgroups
{R,	S,	T} {R,	S}⋈T,	T⋈{R,	S},	{R,	T}⋈S,	

S⋈{R,	T},	{S,	T}⋈R,	R⋈{S,	T}
{R,	S} {R}⋈{S},	{S}⋈{R}
{R,	T} {R}⋈{T},	{T}⋈{R}
{S,	T} {S}⋈{T},	{T}⋈{S}
{R} R
{S} S
{T} T

Conceptual	map	of	what	we	need	to	“memorize.”

Note:	Here	the	search	did	not	proceed	in	a	pure	top-down,	
depth-first	order	(for	that	see	Figure	2.4	in	the	paper).

R S T

⋈

⋈

Execution Plan

R S

T

Join Graph (usually a hypergraph)

Plan	2:	R	⋈	(S	⋈	T)Plan	1:	(R	⋈	S)	⋈	T



22

THE MEMO STRUCTURE
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VOLCANO/CASCADES QO: CORE CONCEPTS

• Idea: “Optimizer generator” à The optimizer reads a set/sequence of rules 
and explores plans based on matching the rules.
• Adding a new rule is easy. The core optimizer enumeration method remains the same. 

• Rule types:
• Logical transformation rules: Equivalent SQL/RA expressions, e.g., join 

associativity. 

• Implementation:  Logical to physical operator mapping; e.g., Inner Join -> Hash Join.

• Notes:
• An expression (next slide) may be partly in logical form and partly in a physical form.

• Still have to pick some enumeration order, and need cost-based optimization. 
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VOLCANO/CASCADES QO: CORE CONCEPTS

• Expressions: Logical or Physical
• e.g.: R⋈S is a logical expr., and HashJoin(TableScan(R), TableScan(S)) is a physical expr.

• A logical expression can have many corresponding physical expressions.

• An expression has two types of properties: Logical and Physical
• Logical property: what is true of the expression regardless of the physical expression; 

e.g., output cardinality.

• Physical property: properties associated with the physical implementation; 
e.g., sort order, number of threads used to execute the expression, …

• Enforcers: a class of physical operators that enforce physical properties, e.g. 
sortedness or degree of parallelism.
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VOLCANO/CASCADES QO: CORE CONCEPTS

• Note: Still have to pick some enumeration order, and need cost-based 
optimization.
• Still need good histograms/sketches and cost estimation methods.
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CASCADES QO: CORE CONCEPTS

• Mix generation & cost estimation phases.
• Find a “good” physical plan without exhaustive 

exploring the logical search space.

• Improved guidance.
• Use heuristics to reduce the search space for common 

join graph shapes to known “efficient” plans.
• Deactivate specific rules.

• Switch from recursive calling to a non-
recursive, task-based style.
• Avoid program stack overflow, which is capped by 

the OS to a fraction of the DRAM space.
• More control over the search direction; 

e.g., derive the best plan of a parent expression after 
its inputs' best plans are derived.

D1 D2

D4 D3

F

Schema Left-deep plan

D1F

D2

D3

D4

Common Join Graph Shapes

Star LinearSnowflake Clique
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CASCADES QO: TASKS
Generate the best physical 
plan for the group.

Generate the best physical 
plan for an expression. 
Use guidance to constrain 
the generated “moves.”

Group
Logical Physical

Expression

{R,	S,	T}

	 1.	(RTblScan⋈HJSTblScan)⋈HJTTblScan	;	Cost	100
(R⋈S)⋈T	 2.	(RTblScan⋈INLSIdxScan)⋈HJTTblScan	;	Cost	250
Cost:	100	 3.	(RIdxScan⋈SMJSIdxScan)⋈SMTIdxScan	;	Cost	150

R⋈(S	⋈T)
	

Generate logical 
expressions for a group.

Generate logical 
transformations for an 
expression (follow the 
promise order); use 
guidance to skip some 
rules. 

Apply a rule to an input 
expression. Add new expressions 
to the memo, sorted by promise. 
Update cost if an implementation 
rule or enforcer is applied.

Generate the best 
physical plan for an 
expression. Update 
memo with best 
plans, including 
visited sub-
expressions.

M
em

o	
En
tr
y

Transformation	rules	are	
matched	here.

Implementation	and	
enforcer	rules	are	
matched	here.
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CASCADES QO: 
EXAMPLE

Rule Promise Guidance

R1

Join 
Commutativity 1

No consecutive 
application

R2

Join Right 
Associativity 2 No cross product

R3

Join to Hash 
Join 3 N/A

R4

Get to Table 
Scan 4 N/A

Expression Cardinality

A 100
B 1000
C 200
A⋈B 800
A⋈C 20,000
A⋈B⋈C 400

Cross product 
here, but we may 
have a better 
estimate using 
histograms or 
sketches.

Physical Op Cost function

HashJoin (X, Y) 3 · |X| + |Y| + |X⋈Y| 

TableScan(X) |X|

I
m
p
l
e
m
e
n
t
a
t
i
o
n

T
r
a
n
s
f
o
r
m
a
t
i
o
n

Lo
gi
ca
l	T
ra
ns
fo
rm
at
io
ns
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CASCADES: MULTI-STAGE OPTIMIZATION

• There may be a large number of rules 
over time.
• QO time may be too large even for simple 

queries.

• OLTP databases are heavily indexed. 
Common paths are effectively “hot-wired,” 
and the optimal plan is easy to find. 

• OLTP queries are often “simple.”

• Optimize in stages, and only do the full 
QO in the last stage.

TPC-C	schema

TPC-C	query	(part	of	a	bigger	query)
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CASCADES: OTHER CONSIDERATIONS

• Parallelize an individual search.
• The task-oriented approach provides a framework, 

but have to track task dependencies and coordinate.

• ORCA (Cascades QO from Greenplum) does this. But, 
there are many open problems related to efficiency. 

• Recall processor parallelism (# cores) is growing and is 
projected to continue to grow in the future.

• Parallel query operators.
• Exchange operator.

• Use enforcers to change the degree of parallelism.

The Exchange Operator

Exchange	
Operator

Inp	ut

Outputs

D1F

D2
D1F

D2

Parallelize	the	
last	join	operator.
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TRANSFORMATION-BASED QUERY OPTIMIZATION SUMMARY

• A different approach to QO v/s the Selinger bottom-up approach.
• Based on transformation. 

• It also uses dynamic programming.

• With a task queue and guidance to shape the exploration of the search space.

• Still need good cost estimation.

• Dealing with nested queries requires special transformation rules, but these are 
easier to add in a transformation-based QO.

• Many open problems, including efficiency, extensibility, and explainability. 
• Also, can we rethink where the optimization happens? Can it happen during query execution?


