: L
& 0 T
S -
2, £ERO
5.3 9
ant Oo
SEF X8 C
AW%E@G.
cr o O N o=
st 0 € @O
E D =0 >

IMIZer

Opt

Fall 2024

o
.L(\[> SANMLECAE - 4 .

ALY L5
A A

&

N OO WAL

s i

=1
-l
e

IR
¥\ 1§

A

}) Prof. Jignesh Patel

ANNOUNCEMENT

* Join Piazza.

* Class notes schedule has been updated. Check here. FIREBOLT 1 ClickHouse

~
* Snowtflake talk on Tue, Sept 10, noon-1 pm in GHC 6501. “ dbt " NEON

Also, free lunch! W Weaviate o\ A STANC

* DBIAP on Mon 9/16 in GHC 4405 from 9am-3pm, in <> Relationalar - StArstree
GHC 6101 after 3pm. To meet the companies, fill this & conFLuENT m TiDB

form.

* Add your resumes to this form (and the associated drive).

https://docs.google.com/spreadsheets/d/17GQ98VrlZYKscipcpKb4gjoo8b2hA1x5y-hyW64Uc1k
https://forms.gle/J5iif4NbwMm235g66
https://forms.gle/J5iif4NbwMm235g66
https://docs.google.com/spreadsheets/d/1JqLnNtIbklLl9e4auSYvcGQVBrN5JDdEKIeEwsQO7AU/edit?gid=0

BACKDROP

* Selinger’s QO was widely adopted.

* A new direction was extensibility.

* Want to add new types/objects and manage them
in the database engine.

e With all the good things that database offers,
including declarative query processing and
transaction management.

* New QO “rules” were being discovered.

e [t was cumbersome to add these new rules to
the Selinger-style QO.

The EXODUS Extensible DBMS Project: An Overview

Michael J. Carey, David J. DeWitt,
Goetz Graefe, David M. Haight,
Joel E. Richardson, Daniel T. Schuh,
Eugene J. Shekita, and Scott L. Vandenberg

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

ABSTRACT

This paper presents an overview of EXODUS, an extensible database system project that is
addressing data management problems posed by a variety of challenging new applications. The
goal of the project is to facilitate the fast development of high-performance, application-specific
database systems. EXODUS provides certain kernel facilities, including a versatile storage
manager. In addition, it provides an architectural framework for building application-specific
database systems; powerful tools to help automate the generation of such systems, including a
rule-based query optimizer generator and a persistent programming language; and libraries of
generic software components (e.g., access methods) that are likely to be useful for many appli-
cation domains. We briefly describe each of the components of EXODUS in this paper, and we
also describe a next-generation DBMS that we are now building using the EXODUS tools.

1. INTRODUCTION

Until fairly recently, research and development efforts in the database systems area have focused primarily on
supporting traditional business applications. The design of database systems capable of supporting non-traditional
application areas, such as computer-aided design and manufacturing, scientific and statistical applications, large-
scale Al systems, and image/voice applications, has now emerged as an important research direction. Such new
applications differ from conventional database applications and from each other in a number of important ways.
First of all, their data modeling requirements vary widely. The kinds of entities and relationships relevant to a VLSI
circuit design are quite different from those of a banking application. Second, each new application area has a dif-
ferent, specialized set of operations that must be efficiently supported by the database system. For example, it
makes little sense to talk about doing joins between satellite images. Efficient support for such specialized opera-
tions also requires new types of storage structures and access methods. For applications like VLSI design, involving
spatial objects, R-Trees [Gutt84] are a useful access method for data storage and manipulation; to manage image
data efficiently, the database system needs to provide large arrays as a basic data type. Finally, a number of new
application areas require support for multiple versions of their entities [Snod85, Daya86, Katz86].

A number of research projects are addressing the needs of new applications by developing approaches to
making a database system extensible [DBE87]. These projects include EXODUS! at the University of Wisconsin
[Care86a, Carey86¢], PROBE at CCA [Daya86, Mano86], POSTGRES at UC Berkeley [Ston86b, Rowe87], STAR-
BURST at IBM Almaden Research Center [Schw86, Lind87], and GENESIS at the University of Texas-Austin
[Bato88a, Bato88b]. Although the goals of these projects are similar, and each uses some of the same mechanisms
to provide extensibility, their overall approaches are quite different. For example, POSTGRES is a complete

This research was partially supported by the Defense Advanced Research Projects Agency under contract N00014-85-K-0788, by the Na-
tional Science Foundation under grant IRI-8657323, by IBM through two Fellowships, by DEC through its Incentives for Excellence program,
and by donations from Apple Corporation, GTE Lat ies, the Mi lectronics and Comp Technology Corporation (MCC), and Texas In-
struments.

! EXODUS: A departure; in this case, from traditional approaches to database management. Also an EXtensible Object-oriented Data-
base System.

RULES

* 6p; (6p2(R)) = op, (6p1(R)) (0 commutativity)

* Gpiap2 . Apn (R) = Opi(Gpa(... 0py(R))) (cascading o)

* [La(R) = [ar (I La(- -] Lax (R)....)), a; € @iy (cascading | [)

* R ¥ S=S x R (Join commutativity)

*Rx (SxT)=(R xS)x T (join associativity)
* 6p (R X S)=(R ™ S), 1f P 1s a join predicate
* 6p (R X S) =op; (0pr(R) Mp, op3(S)), where P=pl A p2 A p3 A pd

y HAl,Az,...An(GP (R)) = HAl,Az,...An(GP (HAI,...An, B1,... smR)), where B1 ... BM
are columns in P

EXAMPLE OF A NEW RULE: GROUP BY BEFORE A JOIN

Emp(EmpID, LastName, FirstName, DeptID)
Dept (DeptID, Name)

SELECT D.DeptID, D.Name, COUNT(E.EmpID)
FROM Employee E, Department D

WHERE E.DeptID = D.DeptID

GROUP BY D.DeptID, D.Name

} 100
E.DeptlD,D.Name

G B E.DeptiD=D.DeptID
cour A 0 100x100

E.DeptiD=D.DeptID

Join 10000 x 100 10000 D: 100

E: 10000 D: 100

E: 10000

Plan 1: Group by after join

Plan 2: Group by before join

Performing Group-By before Join

Weipeng P. Yan

Per-Ake Larson

Department of Computer Science, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

email: {pwyan,palarson}@bluebox.uwaterloo.ca

Abstract

Assume that we have an SQL query containing joins
and a group-by. The standard way of evaluating this
type of query is to first perform all the joins and then
the group-by operation. However, it may be possible to
perform the group-by early, that is, to push the group-
by operation past one or more joins. Early grouping
may reduce the query pr ing cost by reducing the
amount of data participating in joins. We formally
define the problem, adhering strictly to the semantics
of NULL and duplicate elimination in SQL2, and prove
necessary and sufficient conditions for deciding when
this transformation is valid. In practice, it may be ex-
pensive or even impossible to test whether the condi-
tions are satisfied. Therefore, we also present a more
practical algorithm that tests a simpler, sufficient con-
dition. This algorithm is fast and detects a large sub-
class of transformable queries.

1 Introduction

SQL queries containing joins and group-by are fairly
common. The standard way of evaluating such a query
is to perform all joins first and then the group-by op-
eration. However, it may be possible to interchange
the evaluation order, that is, to push the group-by
operation past one or more joins.

Example 1 : Assume that we have the two tables:

Employee (EmpID, LastName, FirstName, DeptID)
Department (DeptID, Name)

EmpID is the primary key in the Employee table
and DeptID is the primary key of Department. Each
Employee row references the department (DeptID) to
which the employee belongs. Consider the following
query:

SELECT D.DeptID, D.Name, COUNT(E.EmpID)
FROM Employee E, Department D

1063-6382/94 $3.00 © 1994 IEEE

89

WHERE E.DeptID = D.DeptID
GROUP BY D.DeptID, D.Name

Plan 1 in Figure 1 illustrates the standard way of eval-
uating the query: fetch the rows in tables E and D,
perform the join, and group the result by D.DeptID
and D.Name, while at the same time counting the
number of rows in each group. Assuming that there
are 10000 employees and 100 departments, the input
to the join is 10000 Employee rows and 100 Depart-
ment rows and the input to the group-by consists of
10000 rows. Now consider Plan 2 in Figure 1. We
first group the Employee table DeptID and perform
the COUNT, then join the resulting 100 rows to the
100 Department rows. This reduces the join from
(10000 x 100) to (100 x 100). The input cardinality of
the group-by remains the same, resulting in an overall

duction of query p ing time. a]

In the above example, it was both possible and ad-
vantageous to perform the group-by operation before
the join. However, it is also easy to find examples
where this is (a) not possible or (b) possible but not
advantageous. This raises the following general ques-
tions:

1. Exactly under what conditions is it possible to
perform a group-by operation before a join?

2. Under what conditions does this transformation
reduce the query processing cost?

This paper concentrates on answering the first ques-
tion. Our main theorem provides sufficient and neces-
sary conditions for deciding when this transf ti
is valid. The conditions cannot always be tested effi-
ciently so we also propose a more practical algorithm
which tests a simpler, sufficient condition.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes related research work. Section 3
defines the class of queries that we ider. Section 4
presents the formalism that our results are based on.
Section 4.1 presents an SQL2 algebra whose operations

ANOTHER EXAMPLE: OUTERJOINS

e Not associative or commutative
like inner joins.

* Nulls make it complicated.

* Similarly, issues with anti-joins

* Only inner joins and full outer

joins are commutative.

Also need robust ways to deal

with materialized views and
CTEs.

S
R -
tid [a “ld 2 '1° T
1 |1 S tid { b
s2 112
r2 3 t1 1
3 5 s3 313
! s4 314

Figure 1: Contents of table R, S and T

rl | s1 | tl
2 | - - rl | st | t1

rd | -
— =1, a=—9. s.b:Tb
@) RF=S (s) () (RFE=ECs) T

Figure 2: Query Results (- represents a null value)

Jun Rao, Bruce G. Lindsay, Guy M. Lohman, Hamid Pirahesh, David E. Simmen: Using EELSs,
a Practical Approach to Outerjoin and Antijoin Reordering. ICDE 2001: 585-594

BACKDROP

* The “rule book” was growing.

* One could enhance the System R optimizer (e.g., expand
the search space to look for bushy plans), but the code

change was cumbersome.

* Can we get use abstractions in the query optimizer code?

* Queries were getting more complex (more joins).

* The traditional System R optimization method
finds an optimal plan only at the “end.”

* Would like to find a “reasonable” plan earlier, and stop

the QO when a “good enough” plan is found.

The EXODUS Extensible DBMS Project: An Overview

Michael J. Carey, David J. DeWitt,
Goetz Graefe, David M. Haight,
Joel E. Richardson, Daniel T. Schuh,
Eugene J. Shekita, and Scott L. Vandenberg

Computer Sciences Department
University of Wisconsin
Madison, WI 53706

ABSTRACT

This paper presents an overview of EXODUS, an extensible database system project that is
addressing data management problems posed by a variety of challenging new applications. The
goal of the project is to facilitate the fast development of high-performance, application-specific
database systems. EXODUS provides certain kernel facilities, including a versatile storage
manager. In addition, it provides an architectural framework for building application-specific
database systems; powerful tools to help automate the generation of such systems, including a
rule-based query optimizer generator and a persistent programming language; and libraries of
generic software components (e.g., access methods) that are likely to be useful for many appli-
cation domains. We briefly describe each of the components of EXODUS in this paper, and we
also describe a next-generation DBMS that we are now building using the EXODUS tools.

1. INTRODUCTION

Until fairly recently, research and development efforts in the database systems area have focused primarily on
supporting traditional business applications. The design of database systems capable of supporting non-traditional
application areas, such as computer-aided design and manufacturing, scientific and statistical applications, large-
scale Al systems, and image/voice applications, has now emerged as an important research direction. Such new
applications differ from conventional database applications and from each other in a number of important ways.
First of all, their data modeling requirements vary widely. The kinds of entities and relationships relevant to a VLSI
circuit design are quite different from those of a banking application. Second, each new application area has a dif-
ferent, specialized set of operations that must be efficiently supported by the database system. For example, it
makes little sense to talk about doing joins between satellite images. Efficient support for such specialized opera-
tions also requires new types of storage structures and access methods. For applications like VLSI design, involving
spatial objects, R-Trees [Gutt84] are a useful access method for data storage and manipulation; to manage image
data efficiently, the database system needs to provide large arrays as a basic data type. Finally, a number of new
application areas require support for multiple versions of their entities [Snod85, Daya86, Katz86].

A number of research projects are addressing the needs of new applications by developing approaches to
making a database system extensible [DBE87]. These projects include EXODUS' at the University of Wisconsin
[Care86a, Carey86c], PROBE at CCA [Daya86, Mano86], POSTGRES at UC Berkeley [Ston86b, Rowe87], STAR-
BURST at IBM Almaden Research Center [Schw86, Lind87], and GENESIS at the University of Texas-Austin
[Bato88a, Bato88b]. Although the goals of these projects are similar, and each uses some of the same mechanisms
to provide extensibility, their overall approaches are quite different. For example, POSTGRES is a complete

This research was partially supported by the Defense Advanced Research Projects Agency under contract NO0014-85-K-0788, by the Na-
tional Science Foundation under grant IRI-8657323, by IBM through two Fellowships, by DEC through its Incentives for Excellence program,
and by donations from Apple Corporation, GTE Lat ies, the Microel ics and Comp Technology Corporation (MCC), and Texas In-
struments.

! EXODUS: A departure; in this case, from traditional approaches to database management. Also an EXtensible Object-oriented Data-
base System.

BACKDROP

The Volcano Optimizer Generator: Extensibility and Efficient Search

Goetz Graefe
Portland State University
graefe @ cs.pdx.edu

Abstract

" PR }

Emerging de d not only
new functionality bul alsa high performance. To satisfy
these two requirements, the Volcano project provides
efficient, extensible tools for query and request processing,
particularly for object-oriented and scientific database
systems. One of these tools is a new optimizer generator.
Data model, logical algebra, physical algebra, and optimi-
zation rules are translated by the optimizer generator into
optimizer source code. Compared with our earlier EX-
ODUS optimizer generator prototype, the search engine is
more extensible and powerful; it provides effective support
for non-trivial cost models and for physical properties
such as sort order. At the same time, it is much more
efficient as it bines dynamic progr ing, which until
now had been used only for relational select-project-join
optimization, with goal-directed search and branch-and-
bound pruning. Compared with other rule-based optimi-
zation systems, it provides complete data model indepen-
dence and more natural extensibility.

1. Introduction

While extensibility is an important goal and requirement
for many current database research projects and system
prototypes, performance must not be sacrificed for two
reasons. First, data volumes stored in database systems
continue to grow, in many application domains far beyond
the capabilities of most existing database systems.
Second, in order to overcome acceptance problems in em-
erging database application areas such as scientific compu-
tation, database systems must achieve at least the same
performance as the file systems currently in use. Addi-
tional software layers for database management must be
counterbalanced by database performance advantages nor-
mally not used in these application areas. Optimization
and parallelization are prime candidates to provide these
performance advantages, and tools and techniques for op-
timization and parallelization are crucial for the wider use
of extensible database technology.

For a number of research projects, namely the Volcano
extensible, parallel query processor [4], the RBVELATION
OODBMS project [11] and optimization and parall
tion in scientific databases [20] as well as to assnst research
efforts by other researchers, we have built a new extensi-
ble query optimization system. Our earlier experience
with the EXODUS optimizer generator had been incon-
cluswe. whlle it had proven the feasnblhty and validity of

the ¢ digm, it was difficult to con-
struct efﬁcxent producnon-qua.hty optimizers. Therefore,
we designed a new op or, requiring several

important improvements over the EXODUS prototype.

1063-6382/93 $03.00 © 1993 IEEE

William J. McKenna
University of Colorado at Boulder
bill@ cs.colorado.edu

First, this new optimizer generator had to be usable both in
the Volcano project with the existing query execution
software as well as in other projects as a stand-alone tool.
Second, the new system had to be more efficient, both in
optimization time and in memory consumption for the
search. Third, it had to provide effective, efficient, and
extensible support for physical properties such as sort ord-
er and compression status. Fourth, it had to permit use of
heuristics and data model semantics to guide the search
and to prune futile parts of the search space. Finally, it
had to support flexible cost models that penmt generating
dy ic plans for incompletely specified queries.

In this paper, we describe the Volcano Optimizer Gen-
erator, which will soon fulfill all the requirements above.
Section 2 introduces the main concepts of the Volcano op-
timizer generator and enumerates facilities for tailoring a
new optimizer. Section 3 discusses the optimizer search
strategy in detail. Functionality, extensibility, and search
efficiency of the EXODUS and Volcano optimizer genera-
tors are compared in Section 4. In Section 5, we describe
and compare other research into extensible query optimi-
zation. We offer our conclusions from this research in
Section 6.

2. The Outside View of the Volcano Optimiz-
er Generator

In this section, we describe the Volcano optimizer gen-
erator as seen by the person who is implementing a data-
base system and its query optimizer. The focus is the wide
array of facilities given to the optimizer implementor, i.e.,
modularity and extensibility of the Volcano optimizer gen-
erator design. After considering the design principles of
the Volcano optimizer generator, we discuss generator in-
put and operation. Section 3 discusses the search strategy
used by optimizers generated with the Volcano optimizer
generator.

Figure 1 shows the optimizer generator paradigm.
When the DBMS software is being built, a model
specification is translated into optimizer source code,
which is then compiled and linked with the other DBMS

Model Specification
* Optimizer Generator
Optimizer Source Code
¢ Compiler and Linker

Optimizer Plan

Query
Figure 1. The Generator Paradigm.

209

The Cascades Framework for Query Optimization

Goetz Graefe

Abstract

This paper describes a new extensible query optimization framework that resolves many of the short-
comings of the EXODUS and Volcano optimizer generators. In addition to extensibility, dynamic pro-
gramming, and memorization based on and extended from the EXODUS and Volcano prototypes, this
new optimizer provides (i) manipulation of operator arguments using rules or functions, (ii) operators
that are both logical and physical for predicates etc., (iii) schema-specific rules for materialized views,
(iv) rules to insert ”enforcers” or ”glue operators,” (v) rule-specific guidance, permitting grouping of
rules, (vi) basic facilities that will later permit parallel search, partially ordered cost measures, and dy-
namic plans, (vii) extensive tracing support, and (viii) a clean interface and implementation making full
use of the abstraction mechanisms of C++. We describe and justify our design choices for each of these
issues. The optimizer system described here is operational and will serve as the foundation for new query
optimizers in Tandem’s NonStop SQL product and in Microsoft’s SQL Server product.

1 Introduction

Following our experiences with the EXODUS Optimizer Generator [GrD87], we built a new optimizer generator
as part of the Volcano project [GrM93]. The main contributions of the EXODUS work were the optimizer gener-
ator architecture based on code generation from declarative rules, logical and physical algebra’s, the division of
a query optimizer into modular components, and interface definitions for support functions to be provided by the
database implementor (DBI), whereas the Volcano work combined improved extensibility with an efficient search
engine based on dynamic programming and memorization. By using the Volcano Optimizer Generator in two
applications, a object-oriented database systems [BMG93] and a scientific database system prototype [WoG93],
we identified a number of flaws in its design. Overcoming these flaws is the goal of a completely new extensi-
ble optimizer developed in the Cascades project, a new project applying many of the lessons learned from the
Volcano project on extensible query optimization, parallel query execution, and physical database design. Com-
pared to the Volcano design and implementation, the new Cascades optimizer has the following advantages. In
their entirety, they represent a substantial improvement over our own earlier work as well as other related work
in functionality, ease-of-use, and robustness.

o Abstract interface classes defining the DBI-optimizer interface and permitting DBI-defined subclass hier-
archies

o Rules as objects
o Facilities for schema- and even query-specific rules
o Simple rules requiring minimal DBI support

e Rules with substitutes consisting of a complex expression

STATE MANAGEMENT

* In bottom-up (also called construction-based) approach,

one can “forget” subplans from the past
Only keep the cheapest or “interesting” plans.

So, for the nth join, we just need to know the best + interesting

n-1 join subplans to proceed.

Can forget about the n-2, n-3, ... join subplans that don't
contribute to the best + interesting n-1 plans.
* In top-down (also called transformation-based), we will
walk all over the plan space.

* Now, we have to remember all the subplans we have visited.

* Need a compact data structure to represent sub-plans:

Memoization!

The Cascades Framework for Query Optimization

Goetz Graefe

Abstract

This paper describes a new extensible query optimization framework that resolves many of the short-
comings of the EXODUS and Volcano optimizer generators. In addition to ibility, d ic pro-
gramming, and memorization based on and extended from the EXODUS and Volcano prototypes, this
new optimizer provides (i) ipulation of op arguments using rules or functions, (ii) operators
that are both logical and physical for predicates etc., (iii) schema-specific rules for materialized views,
(iv) rules to insert "enforcers” or ”glue operators,” (v) rule-specific guidance, permitting grouping of
rules, (vi) basic facilities that will later permit parallel search, partially ordered cost measures, and dy-
namic plans, (vii) extensive tracing support, and (viii) a clean interface and implementation making full
use of the abstraction mechanisms of C++. We describe and justify our design choices for each of these
issues. The optimizer system described here is operational and will serve as the foundation for new query
optimizers in Tandem’s NonStop SQL product and in Microsoft’s SQL Server product.

1 Introduction

Following our experiences with the EXODUS Optimizer Generator [GrD87], we built a new optimizer generator
as part of the Volcano project [GrM93]. The main contributions of the EXODUS work were the optimizer gener-
ator architecture based on code generation from declarative rules, logical and physical algebra’s, the division of
a query optimizer into modular components, and interface deﬁnmons for suppor[functlons to be provided by the
database implementor (DBI), whereas the Volcano work combined lity with an efficient search
engine based on dynamic programming and memorization. By usmg the Volcano Optimizer Generator in two
applications, a object-oriented database systems [BMG93] and a scientific database system prototype [WoG93],
we identified a number of flaws in its design. Overcoming these flaws is the goal of a completely new extensi-
ble optimizer developed in the Cascades project, a new project applying many of the lessons learned from the
Volcano project on extensible query optimization, parallel query execution, and physical database design. Com-
pared to the Volcano design and unplementauon the new Cascades optimizer has the following advantages. In
their entirety, they a p: over our own earlier work as well as other related work
in functionality, ease-of-use, and robustness.

® Abstract interface classes defining the DBI-optimizer interface and permitting DBI-defined subclass hier-
archies

* Rules as objects
o Facilities for schema- and even query-specific rules
e Simple rules requiring minimal DBI support

* Rules with substitutes consisting of a complex expression

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R,S, T} {R,S}T Tx{R, S}, {R, T}sS,
Sx{R, T}, {S, T}xR, Rx{S, T}

R, S} {R}x{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T}, {T}™{S}

Execution Plan

{R} R
N s} s
Join Graph (usually a hypergraph) {T} T

Ri{s[T

10

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

R, S} {R}x{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T}, {T}™{S}

Execution Plan

{R} R
N s} s
Join Graph (usually a hypergraph) {T} T

Ri{s[T

11

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, 5} {R}x{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T}, {T}™{S}

Execution Plan

{R} R
N s} s
Join Graph (usually a hypergraph) {T} T

Ri{s[T

12

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T}, {T}™{S}

Execution Plan

{R} R
N s} s
Join Graph (usually a hypergraph) {T} T

Ri{s[T

13

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T}, {T}™{S}

Execution Plan

{R} R
N s} s
Join Graph (usually a hypergraph) {T} T

Ri{s[T

14

THE MEMO STRUCTURE

Execution Plan

Join Graph (usually a hypergraph)

Ri{s[T

Conceptual map of what we need to “memorize.”
R,S, T} {R S}xT

R, S} {R}jx{S}

R} R
© s

Plan1: (R S) > T

15

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T} {Tx{S}

Execution Plan

{R} R
N S s
Join Graph (usually a hypergraph) {T} T

RS P)

16

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
STy {S)x{T} {Tx{S}

Execution Plan

{R} R & Already have this part (in a “memo”)
e s} S
Join Graph (usually a hypergraph) {T} T

RS P)

17

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
5, T} {Spx{T} (T} {S}

Execution Plan

{R} R
N S s
Join Graph (usually a hypergraph) {T} T

RS P)

18

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”

Subgroups

{R, S, T} {R,S}™T, Tx{R, S}, {R, T} ™S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S5} {R}™{S}, {S}>{R}
R, T} {R}a{T}, {T}{R}
5, T} {S}x{T}, {T}>{S}

Execution Plan

{R} R
v {S} S € Already have this part (in a “memo”)
Join Graph (usually a hypergraph) {T} .

RS P)

19

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”
Execution Plan

{R,S, T} {R,S}™T
Rx{S, T}

R, S} {R}jx{S}

é b ST (Spe(T)

(R} R

v {S) S
Join Graph (usually a hypergraph) {T} T
a a Plan1: (RxS)x T Plan2:R > (S T)

20

Note: Here the search did not proceed in a pure top-down,
depth-first order (for that see Figure 2.4 in the paper).

THE MEMO STRUCTURE

Conceptual map of what we need to “memorize.”
Execution Plan

{R,S, T} {R,S}™T, Tx{R, S}, {R, T}S,
Sx{R, T}, {S, T}xR, Rx{S, T}

{R, S} {R}={S}, {S}={R}

{R, T} {R}x{T}, {T}={R}

{S, T} {Si={T}, {T}={S}

{R} R
N S s
_]oin Graph (usually a hypergraph) {T} T

a a Plan1: (R X S) X T Plan2: R (SXT) eee

21

THE MEMO STRUCTURE

Figure 2.3: An example memo of A <1 B, where an index is available on table
B. Logical expressions are colored in blue. Physical expressions and groups are
annotated with the cost of the corresponding best plans.

Group 1: Join(A, B) 1: Join(2, 3) 2: Join(3, 2) 3: Hash Join (2, 3) 4: Hash Join (3, 2)
best cost: 580 best cost: 1560 best cost: 580 best cost: 1560 best cost: 580
Group 2: A 1: Get(A) 2: Table Scan(A)
best cost: 500 best cost: 500 best cost: 500

Group 3: B 1: Get(B) 2: Index Scan(B) 3: Table Scan(B)
best cost: 10 best cost: 10 best cost: 10 best cost: 100

VOLCANO/CASCADES QO: CORE CONCEPTS

* Idea: “Optimizer generator” = The optimizer reads a set/sequence of rules
and explores plans based on matching the rules.

* Adding a new rule is easy. The core optimizer enumeration method remains the same.

* Rule types:

* Logical transformation rules: Equivalent SQL/RA expressions, e.g., join
associativity.

* Implementation: Logical to physical operator mapping; e.g., Inner Join -> Hash Join.
* Notes:

* An expression (next slide) may be partly in logical form and partly in a physical form.

e Still have to pick some enumeration order, and need cost-based optimization.

23

VOLCANO/CASCADES QO: CORE CONCEPTS

* Expressions: Logical or Physical

* e.g.: RS is a logical expr., and HashJoin(TableScan(R), TableScan(S)) is a physical expr.

* A logical expression can have many corresponding physical expressions.

* An expression has two types of properties: Logical and Physical

* Logical property: what is true of the expression regardless of the physical expression;
e.g., output cardinality.

* Physical property: properties associated with the physical implementation;
e.g., sort order, number of threads used to execute the expression, ...

* Enforcers: a class of physical operators that enforce physical properties, e.g.
sortedness or degree of parallelism.

24

VOLCANO/CASCADES QO: CORE CONCEPTS

* Note: Still have to pick some enumeration order, and need cost-based
optimization.

* Still need good histograms/sketches and cost estimation methods.

25

CAscADES QO: CORE CONCEPTS Schema Left-d?ep plan

AN
VAN
/N o

* Mix generation & cost estimation phases.

* Find a “good” physical plan without exhaustive
exploring the logical search space.

* Improved guidance.

* Use heuristics to reduce the search space for common

join graph shapes to known “efficient” plans. | Common Join Graph Shapes

* Deactivate specific rules.
* Switch from recursive calling to a non-

recursive, taSk-based StYIG. Star Snowflake Linear Clique

* Avoid program stack overflow, which is capped by

the OS to a fraction of the DRAM space.

* More control over the search direction;

e.g., derive the best plan of a parent expression after
its inputs' best plans are derived.

26

CAscADES QO:

Generate the best physical
iplan for an expression.
iUse guidance to constrain
{the generated “moves.”

(@]
>
o
o)
(¢
2]
w
o o
®)
)
w
S
=
oo
aQ
o)
©)
c
i

| Generate logical
{transformations for an :
{expression (follow the
ipromise order); use

iguidance to skip some

TASKS

Query

1
1

1

1

|'.~

1 ~.o

1

1 N

Optimize Group

Optimize
Expression

Implementation and
enforcer rules are
matched here.

Group

{R, S, T}

Memo Entry

L XPreSSION | gy —
i L (RTblScanNH]STbIScan)MH]TTbIScan ; Cost 100
(RNS)NT E /s, (RTblScanMINLSldecan)NH]TTblScan; Cost 250
Cost: 100 E 3. (RldecanMSM]Sldecan)NSMTIdecan; Cost 150
Ra(S ™T)

[i e e
1
1

Generate the best

[

Optimize Inputs

w /iphysical plan for an
ieXpression. Update
imemo with best

plans, including
visited sub-

Explore Group

Explore
Expression

=

Transformation rules are
matched here.

expressions.
Apply Rule e/ I J
ad |
--------------:Z:.. ____________________________
Apply a rule to an input

1
1
1
i
expression. Add new expressions !
1
ito the memo, sorted by promise.
i
1
1
1
1
!

i Update cost if an implementation
irule or enforcer is applied.

Implementation Transformation

CAscADES QO:
EXAMPLE

Rule Promise Guidance
Join No consecutive

R1 Commutativity 1 application
Join Right

R2 | Associativity 2 No cross product

Join to Hash

R3 Join 3 N/A
Get to Table

R4 Scan 4/ N/A

Expression Cardinality R e P LR et
i Cross product I

A 100 g i
i here, but we may 1

B 1000 ' i
i have a better i

C 200 /i estimate using 1

ANB 800 ‘,"i histograms or]

AXC 20,000 i sketches. i

AXBXC 400 TR

Physical Op Cost function

Hashjoin (X, Y) 3 -|X|+ [Y] + [XxY]|

TableScan(X) X]

Task
ﬁtl OptGrp: A B i< C. Limit: oo
to OptGrp: A< B < C. Limit: oo
t3 ExplGrp: A<t B < C. Limit: oo
t4 ExplExpr: A B i< C. Limit: oo
ts ApplyRule R1: A B C. Limit: oo
ts ApplyRule R2: A B> C. Limit: oo
t7 ExplGrp: A< B. Limit: oo - R
ts ExplGrp: C. Limit: oo -
to ExplExpr: C. Limit: oo
(,tlo ExplExpr: A< B. Limit: oo
t11 ApplyRule R1: A B. Limit: oo
t12 ExplGrp: A. Limit: oo - :
t13 ExplGrp: B. Limit: oo
t14 ExplExpr: B. Limit: oo
t15 ExplExpr: A. Limit: oo
t16 ExplExpr: B <1 A. Limit: oo -
t17 ApplyRule R1: B A. Limit: co. Pruned by guldance
tig ExplExpr: A< (B C). Limit: oo =
Qtlg ExplExpr: B (At C). Limit: co Pruned by guldance
t20 ApplyRule R1: A< (B < C). Limit: oo
to1 ExplGrp: B < C. Limit: oo T,
too ExplExpr: B < C. Limit: oo
tos ApplyRule R1: B <t C. Limit: oo
toq4 ExplExpr: C <1 B. Limit: oo - . i
tos ApplyRule R1: C <t B. Limit: oo Pruned by guldance
tog ExplExpr: B <1 C > A. Limit: oo.
to7 ApplyRule R1: BixtiC <t A. Limit: oo Pruned by guldance
tog ApplyRule R2: B C < A. Limit: oo
tog ExplExpr: B i< (C <t A). Limit: oo Pruned by guldance
tao ExplExpr: Cid (B dd A). Limit: 00 e .
ts1 ApplyRule R1: C i<t (B <1 A). Limit: oo. Duphcate expression
t32 ExplExpr: C <t (A1 B). Limit: co. Duplicate expression
tsz OptExpr: {4, B} > {C}. Limit: oo.
tss OptExpr: {A} > {B,C}. Limit: oo.
tss OptExpr: {B,C} < {A}. Limit: oo.
£t36 OptExpr: {C} > {4, B}. Limit: oco.
(’t37 ApplyRule R3: {C}HJ{A, B}. Limit: co. OP cost: 1800.
tss OptInputs: {C} of {C}HJ{A, B}. Limit: oo.
gtgg OptGrp: {C}. Limit: oo.
(,t40 OptExpr: {C}. Limit: oo.

(

(

L e T e e Y el el mo

ts1 ApplyRule R4: Scan(C). Limit: co. Best cost: 200.

t42 Optlnputs: {A, B} of {C}HJ{A, B}. Limit: co.

Memo
Grp: {4, B,C}
........................ » Expr: {A, B} < {C}
> Expr: {A} < {B,C}

I Expr: {B, O} {A}

> Expr: {C} >4 {4, B}
Grp: {4, B}
> Expr: {A} > {B}

o » Expr: {B} = {A}

Grp: {C}

> Expr: {C}

, Expr: Scan(C)
. Grp: {A}

“o Expr: {A}

Grp: {B}
> Expr: {B}

: Grp: {B,C}
..... - EXpI‘Z {B} <1 {C}
S S sy Expr: {C} D] {B}

Grp: {4, B,C}
» Expr: {C}HJ{A, B}

Grp: {C}
> Expr: Scan(C)

28

CASCADES: MULTI-STAGE OPTIMIZATION TPC-C schema

Warehouse 10
W*10
* There may be a large number of rules N
W*30k+
° 1+
over time. \

Customer
New-Order W*30k

W*9k+ \

1+

OderLine Oder
W*300k+ W*30k+

TPC-C query (part of a bigger query)

* QO time may be too large even for simple
queries.

ltem
* OLTP databases are heavily indexed.

Common paths are effectively “hot-wired,”

and the optimal plan is easy to find. PDATE customer

” SET c_balance = c_balance - :h_amount,

* OLTP queries are often “simple. c_ytd_payment = c_ytd_payment + :h_amount,

Cc_payment_cnt C_payment_cnt + 1,

. . . c_data =
* Optimize in stages, and only do the full EN LENGTH(c_data) > 500
) HEN SUBSTRING(c_data FROM 1 FOR 500)
QO in the last stage. ELSE c_data

WHERE c_id = :c_id
) c_d_id :c_d_id
) c_w_id :Cc_w_id

29

N

CASCADES: OTHER CONSIDERATIONS The Exchange Operator

e Parallelize an individual search.

Outputs
* The task-oriented approach provides a framework,
but have to track task dependencies and coordinate.

Exchange
Operator
* ORCA (Cascades QO from Greenplum) does this. But,

there are many open problems related to efficiency. Input

* Recall processor parallelism (# cores) is growing and is

projected to continue to grow in the future. i
1 Parallelize the /'><1\
* Parallel query operators. A last join operator. Fox
 Exchange operator. /'x'\ D, 'x'\ lsz

* Use enforcers to change the degree of parallelism. F D F Dy

30

TRANSFORMATION-BASED QUERY OPTIMIZATION SUMMARY

e A different approach to QO v/s the Selinger bottom-up approach.
* Based on transformation.
* [t also uses dynamic programming.

* With a task queue and guidance to shape the exploration of the search space.

e Still need good cost estimation.

* Dealing with nested queries requires special transformation rules, but these are
easier to add in a transformation-based QO.

* Many open problems, including efficiency, extensibility, and explainability.

* Also, can we rethink where the optimization happens? Can it happen during query execution?

31

