
Advanced Database
Systems (15-721)

Fall 2024 Prof. Jignesh Patel

Lecture #02

The System R
optimizer

15-721 (Fall 2024)

BACKDROP

The relational data model has recently
been proposed.

Key idea: Data independence to insulate
applications from changes in internal
data formats.
→ Physical DI: Insulate against changes in internal structure,

e.g., sorted file, index
→ Logical DI: Insulate from changes in the schema (by using

views)

2

15-721 (Fall 2024)

KEY CONCEPT : DATA INDEPENDENCE (D I)

Isolate the user/application
from low level data
representation.
→ The user only worries about

application logic.

→ Database can optimize the

layout (and re-optimize as the

workload changes).

Disk

Physical Schema Pages, Files, B-trees, …
(DB system internal)

Logical Schema Schema, constraints, …
(SQL)

External Schema External Schema Views
(SQL)

Logical DI

Physical DI

ApplicationApplication

15-721 (Fall 2024)

M U LT I - R E L AT I O N Q U E R Y P L A N N I N G

Choice #1: Bottom-up Optimization

→ Start with nothing and then build up the plan to get
to the outcome that you want.

Choice #2: Top-down Optimization

→ Start with the outcome that you want, and then
work down the tree to find the optimal plan that
gets you to that goal.

4

The System R
approach

The Volcano/
Cascades style

15-721 (Fall 2024)

S Q L QUERY OPTIMIZATION P IPELINE

5

Parse /
Validate

Rewrite /
Unnest

Optimize
Query

Execute
QuerySQL Result

Bottom-up, System R.

15-721 (Fall 2024)

QUERY PLANS

6

Left-deep plans can be fully pipelined plans.
→ Not all left-deep trees are fully pipelined (e.g., SM join).
→ With Hash join, build all the hash tables first, then stream

the outer through the pipeline. An efficient pipeline.

Bushy Left-deep

Linear Tree: at least
one child in every
join node is a base
relation

outer inner

BA DC
BA

C
D

BA

C
D

Linear

15-721 (Fall 2024)

OPTIMIZER OVERVIEW

1. Search Space

→ Search only for “low cost” plans.

2. Enumeration Method

→ Need an algorithm to walk through the search space.

3. Cost Estimation

→ Need to estimate the cost of each plan that is enumerated.
→ Want the estimation to be

a) accurate: so the estimates are accurate,
b) fast: cheap to compute the cost of a plan/operator, and
c) space-efficient: It does not take a lot of space to represent any summary structure
(e.g., histograms) that is used + want fast construction and update methods for the
summary structure.

7

15-721 (Fall 2024)

SYSTEM R OPTIMIZER : ENUMERATE LEFT- DEEP PLANS

Goal
→ Pick the “optimal” join order.
→ Pick the join method for each join operation.

Enumerate using n passes (n = # joins)
→ Find the best 1-relation plan for each relation.
→ Find the best way to join the result of each 1-relation plan (as outer) to

another relation. (All 2-relation plans.)
→ Pass N: Find the best way to join the result of a (n-1)-relation plan (as

outer) to the nth relation. (All n-relation plans.)

For each subset of relations, retain only:
→ The cheapest plan overall, and
→ The cheapest plan for each interesting order of the tuples.

8

15-721 (Fall 2024)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

Conceptual evaluation for any single-block SQL Query:
1. Cross product.
2. Discard tuples (apply the join and selection predicates).
3. Partition into groups using the grouping-list.
4. Evaluate the group expressions (aggregates).
5. Eliminate groups that don’t satisfy the group-qualification.
6. Apply the projection.

When the GROUP
BY and the
HAVING clauses
are present.

15-721 (Fall 2024)

50 + 50,000 + 1,000,000 writes
(write to temp file T1)
5 tuples per page in T1

1,000,000 + 2,000 writes
(FK join, 10K tuples in temp T2)

2,000 + 4 writes
(10K/500 = 20 emps per dept)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

EMP DEPT

πename

σdname = ‘Toy’

×

σEMP.did = DEPT.did

10

4 reads, 1 write

Total: 2M I/Os

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

15-721 (Fall 2024)

EMP (ssn, ename, addr, sal, did) DEPT (did, dname, floor, mgr)

∏ename s dname = ‘Toy’ (EMP ⋈ DEPT)

Pass 1: EMP: E1: S(EMP), E2: I (EMP.did)
 Cost: 1000 1000+100 KEEP E1 and E2!

 DEPT: D1: S(DEPT), D2: I.(DEPT.did), D3: I(DEPT.dname)
 Cost: 50 50+5 3+1 KEEP D2 and D3

Pass 2: Consider EMP ⋈ DEPT and DEPT ⋈ EMP
 EMP ⋈ DEPT, Alternatives:

1. E1 ⋈ D2: Algorithms …
2. E1 ⋈ D3: Algorithms …
3. E2 ⋈ D2: Algorithms SM, NL, BNL, NL-IDX, Hash
4. E2 ⋈ D3: Algorithms

 Similarly consider DEPT ⋈ EMP
 Pick the cheapest 2-relation plan. Done (with join optimization)

Next consider GROUP BY (if present) …

11

15-721 (Fall 2024)

ANNOTATED R A TREE A .K .A . THE PHYSICAL PLAN

12

πename

σdname = ‘Toy’

EMP

DEPT

⋈EMP.did = DEPT.did

Access Path: Unclustered B-tree
Estimates: output cardinality = 1, …

NL-IDX using unclustered index on EMP.id
Estimates: output cardinality = 20, …

Access Path: File Scan
Estimates: output cardinality = 10K

Pipeline

Pipeline

Simple projection
Estimates: output cardinality = 20, …

To the scheduler
to run the query

15-721 (Fall 2024)

QUERY OPTIMIZATION (Q O)

Entire search space very large,

as QO is NP-hard (w.r.t. # joins)

p2

p1

pi

pn

p3

Subspace that a
practical QO searches

1. Identify candidate equivalent trees
(logical).

2. For each candidate, find the execution
plan tree (physical). We need to
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Practically: Choose from a subset of all

possible plans.

13

15-721 (Fall 2024)

14

EQUIVALENCE

sP1 (sP2(R)) ≡ sP2 (sP1(R)) (s commutativity)

sP1⋀P2 … ⋀Pn (R) ≡ sP1(sP2(… sPn(R))) (cascading s)

∏a1(R) ≡ ∏a1(∏a2(…∏ak (R)…)), ai ⊆ ai+1 (cascading ∏)

R ⋈ S ≡ S ⋈ R (join commutativity)

R ⋈ (S ⋈ T) ≡ (R ⋈ S) ⋈ T (join associativity)

sP (R X S) ≡ (R ⋈P S), if P is a join predicate

sP (R X S) ≡ sP1 (sP2(R) ⋈P4 sP3(S)) , where P = p1 ∧ p2 ∧ p3 ∧ p4

∏A1,A2,…An(sP (R)) ≡ ∏A1,A2,…An(sP (∏A1,…An, B1,… BMR)), where B1 … BM are columns in P

…

15-721 (Fall 2024)

SYSTEM R : COST ESTIMATION

Cost = W*CPU cost + IO Cost

CPU Cost: based on tuples accessed from the storage layer.
→ Weighted by a magic constant W.

IO Cost: more complicated.
→ Keep statistics in the database for each table and index.

→ Table: #tuples, #pages, #non-empty pages in a segment, …
→ Index: #distinct keys, #pages, high-key, low-key, …

15

RSS
(Storage

Manager)

RSI
Interface

Records

15-721 (Fall 2024)

SYSTEM R : COST ESTIMATION

Estimating the selectivity of each predicate
→ colA = value:

→ Index exists: 1/#distinct keys in the index
→ Else 1/10

→ colA > value:
→ Index exists: (high key – value) / (high key – low key)

Complex predicates
→ Conjunct: p1 and p2, e.g., salary > 100K and age < 30

→ Estimate(p1) * Estimate (p2)
→ Note assumes p1 and p2 are independent.

→ Disjunct: p1 or p2
→ Estimate(p1) + Estimate (p2) – Estimate(p1)*Estimate(p2)

→ Negation: not p1
→ 1 - Estimate(p1)

16

Many such magic numbers in QOs in practice, which causes a lot of pain.

P1 P2

Last term: Don’t double count
when both p1 and p2 are true.

15-721 (Fall 2024)

17

MODERN CARDINALITY ESTIMATION METHODS

Histograms:
Most commonly used.

Sketches:
Neat theory, and big applications in applied in streaming
settings.

15-721 (Fall 2024)

18

H ISTOGRAMS

Estimate the distribution of values using discrete “bin.”

Values

Fr
eq

ue
nc

y

Values

Fr
eq

ue
nc

y

For each bin store: bin boundaries, and # values in the bins

30 49

1432

15-721 (Fall 2024)

19

H ISTOGRAMS
Generally, an equi-depth histogram is better than an equi-width
histogram.

An even better approach is to use an equi-width with the most common
value (MCV).
→ Takes most of the “pain” away from the “heavy-hitters” that tend to mess up

the uniform data assumption.

Proportionately adjust the count for predicates that span only a portion
of the bucket boundary.
→ Row estimation in PG: https://www.postgresql.org/docs/current/row-estimation-examples.html

Join cardinality estimation is a harder problem.
→ Can “join” the two histograms (multiply the counts within bucket pairs).
→ Multi-dimensional histograms can be constructed, but these are complex.
→ System R estimate: |R|x|S|/max(uniq_r, uniq_s).

It tends to underestimate the actual join cardinality.

Equi-width

Equi-depth

Equi-depth with most
common values

Value Selectivity

3 0.01%
13 0.1%
46 0.04%

https://www.postgresql.org/docs/current/row-estimation-examples.html

15-721 (Fall 2024)

H ISTOGRAM CONSTRUCTION (S INGLE COLUMN)

If scanning the full dataset/table is expensive,
sample data from the table and build the
histogram.
→ A good rule-of-thumb is to

sample 300 X # histogram bins.

20

An algorithm to build a histogram:

1. Sample the column.

2. Sort the values.

3. Create a list of the most common

values.

4. Walk through the sorted list,

marking bin boundaries to create

the equi-depth histogram.

15-721 (Fall 2024)

SKETCH

21

A probabilistic data structure to capture statistical
properties over an event data stream.

https://hkorte.github.io/slides/cmsketch/#/7

https://hkorte.github.io/slides/cmsketch/

15-721 (Fall 2024)

PESSIMISTIC CARDINALITY ESTIMATION

22

Under-estimation can be worse than over-estimation.
→ These methods provide guaranteed upper bound/pessimistic cardinality estimation
→ Weighted by a magic constant W.

Need supporting stats, like degree and count stats/sketches, for each column involved.

Then, plug this information into an entropy formula one can derive for the query at hand.

Walter Cai, Magdalena Balazinska, Dan Suciu: Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.

15-721 (Fall 2024)

OTHER METHODS

ML-based methods. Two types: data-driven and query-driven.

Data-driven.
→ Denormalize the data, add extra columns, and then learn the distributions.

→ Slow training times and large model size.

Query-driven.
→ Take queries from past workloads, encode the queries (for ML), and feed the

encoded data/features to a supervised learning model.

→ Need lots of queries.

23

15-721 (Fall 2024)

COMPARING D IFFERENT ESTIMATION METHODS

24

Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, Bin Cui: Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. CoRR abs/2109.05877 (2021)

15-721 (Fall 2024)

COMPARING D IFFERENT ESTIMATION METHODS

Shows that data-driven ML methods are generally better
than query-driven ML methods.

The ML-based methods, in my opinion, overfit the
training set.

All methods degrade as the number of joins increases (no
surprise) but point to the need for runtime adaptiveness.

25

15-721 (Fall 2024)

SUMMARY OF ESTIMATION METHODS

Start with at least equi-depth histogram with MCV

No magic bullet for join cardinality estimation.

Newer methods that look good on paper seem to overfit to
the benchmark training set, and are complex.

Think holistically: QO + QP, not QO -> QP
(more on this later.)

26

15-721 (Fall 2024)

NESTED QUERIES

27

CREATE TABLE Employee (
 id INT PRIMARY KEY,
 name VARCHAR(100),
 salary DECIMAL(10, 2),
 mgrid INT, FOREIGN KEY (mgrid) REFERENCES Employee(id));

SELECT name
FROM Employee
WHERE salary >
 (SELECT AVG(salary)
 FROM Employee);

Q1

Find those who make more than the

average employee salary.

SELECT E1.name
FROM Employee E1
WHERE E1.salary > (
 SELECT E2.salary
 FROM Employee E2
 WHERE E2.id = E1.mgrid);

Q2

Employees who earn more than their

managers.

SELECT E1.name
FROM Employee E1
WHERE E1.salary = (
 SELECT MAX(E2.salary)
 FROM Employee E2
 WHERE E2.mgrid = E1.mgrid);

Q3

Employees who have the highest salary in their

department (under the same manager).

SELECT E1.name
FROM Employee E1
JOIN Employee E2 ON
 E1.mgrid = E2.id
WHERE E1.salary > E2.salary;

Q2’

SELECT E1.name
FROM Employee E1
JOIN (
 SELECT mgrid, MAX(salary) AS max_salary
 FROM Employee
 GROUP BY mgrid
) AS E2
ON E1.mgrid = E2.mgrid
AND E1.salary = E2.max_salary;

Q3’

15-721 (Fall 2024)

NESTED QUERIES

SQL is quite liberal with
subqueries.
→ Allowed in the SELECT,

FROM, and WHERE

clauses.

→ Powerful mechanism

called Common Table

Expressions (CTEs).

28

A B

C D

E

1

1

3

4 2 5

6

15-721 (Fall 2024)

29

S Q L TRANSLATION

T. Neumann, V. Leis, A. Kemper: The Complete
Story of Joins (in HyPer). BTW 2017.

Inner Join

Dependent Join

15-721 (Fall 2024)

QUERY OPTIMIZATION : SUMMARY

Critical to high-performance queries, especially for analytics
workloads.

The bottom-up, dynamic programming style invented by System
R got the field going.

Need a good enumeration strategy and cost model. Bushy plans,
and sometimes cartesian products, can result in better plans.

QO continues to be a hard problem, especially for queries with
large # of joins.

30

