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BACKDROP

The relational data model has recently 
been proposed. 

Key idea: Data independence to insulate 
applications from changes in internal 
data formats. 
→ Physical DI: Insulate against changes in internal structure, 

e.g., sorted file, index
→ Logical DI: Insulate from changes in the schema (by using 

views)
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KEY  CONCEPT :  DATA  INDEPENDENCE  ( D I )

Isolate the user/application 
from low level data 
representation.
→ The user only worries about 

application logic.

→ Database can optimize the 

layout (and re-optimize as the 

workload changes).

Disk

Physical Schema Pages, Files, B-trees, … 
(DB system internal)

Logical Schema Schema, constraints, … 
(SQL)

External Schema External Schema Views 
(SQL)

Logical DI

Physical DI

ApplicationApplication
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M U LT I - R E L AT I O N  Q U E R Y  P L A N N I N G

Choice #1: Bottom-up Optimization

→ Start with nothing and then build up the plan to get 
to the outcome that you want.

Choice #2: Top-down Optimization

→ Start with the outcome that you want, and then 
work down the tree to find the optimal plan that 
gets you to that goal.
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The System R 
approach

The Volcano/
Cascades style 
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S Q L  QUERY  OPTIMIZATION  P IPELINE
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Parse / 
Validate

Rewrite / 
Unnest

Optimize 
Query

Execute 
QuerySQL Result

Bottom-up, System R.
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QUERY  PLANS
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Left-deep plans can be fully pipelined plans.
→ Not all left-deep trees are fully pipelined (e.g., SM join).
→ With Hash join, build all the hash tables first, then stream 

the outer through the pipeline. An efficient pipeline.

Bushy Left-deep

Linear Tree: at least 
one child in every 
join node is a base 
relation

outer inner

BA DC
BA

C
D

BA

C
D

Linear
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OPTIMIZER  OVERVIEW

1. Search Space

→ Search only for “low cost” plans.

2. Enumeration Method

→ Need an algorithm to walk through the search space.

3. Cost Estimation

→ Need to estimate the cost of each plan that is enumerated.
→ Want the estimation to be 

a) accurate: so the estimates are accurate, 
b) fast: cheap to compute the cost of a plan/operator, and 
c) space-efficient: It does not take a lot of space to represent any summary structure 
(e.g., histograms) that is used + want fast construction and update methods for the 
summary structure.
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SYSTEM  R  OPTIMIZER :  ENUMERATE  LEFT- DEEP  PLANS

Goal
→ Pick the “optimal” join order.
→ Pick the join method for each join operation.

Enumerate using n passes (n = # joins)
→ Find the best 1-relation plan for each relation.
→ Find the best way to join the result of each 1-relation plan (as outer) to 

another relation.  (All 2-relation plans.)  
→ Pass N:  Find the best way to join the result of a (n-1)-relation plan (as 

outer) to the nth relation.  (All n-relation plans.)

For each subset of relations, retain only:
→ The cheapest plan overall, and
→ The cheapest plan for each interesting order of the tuples.
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SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered

Conceptual evaluation for any single-block SQL Query: 
1. Cross product.
2. Discard tuples (apply the join and selection predicates). 
3. Partition into groups using the grouping-list.
4. Evaluate the group expressions (aggregates).
5. Eliminate groups that don’t satisfy the group-qualification.
6. Apply the projection.

When the GROUP 
BY and the 
HAVING clauses 
are present.
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50 + 50,000 +  1,000,000 writes 
(write to temp file T1)
5 tuples per page in T1

1,000,000 + 2,000 writes
(FK join, 10K tuples in temp T2)

2,000 + 4 writes
(10K/500 = 20 emps per dept)

SELECT distinct ename 
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = ‘Toy’

Query

EMP DEPT

πename

σdname = ‘Toy’

×

σEMP.did = DEPT.did
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4 reads, 1 write

Total: 2M I/Os

Catalog

EMP (ssn, ename, addr, sal, did)

10,000 records
1,000 pages

DEPT (did, dname, floor, mgr)

500 records
50 pages

clustered unclustered unclustered

clustered unclustered
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EMP (ssn, ename, addr, sal, did) DEPT (did, dname, floor, mgr)

∏ename s dname = ‘Toy’ (EMP ⋈ DEPT)

Pass 1: EMP: E1: S(EMP), E2: I (EMP.did)
                Cost:    1000          1000+100    KEEP E1 and E2!

           DEPT: D1: S(DEPT), D2: I.(DEPT.did), D3: I(DEPT.dname)
                Cost:      50              50+5     3+1   KEEP D2 and D3

Pass 2: Consider EMP ⋈ DEPT and DEPT ⋈ EMP
  EMP  ⋈ DEPT, Alternatives:  

1. E1 ⋈ D2: Algorithms …
2. E1 ⋈ D3: Algorithms …
3. E2 ⋈ D2: Algorithms SM, NL, BNL, NL-IDX, Hash 
4. E2 ⋈ D3: Algorithms 

 Similarly consider DEPT ⋈ EMP
 Pick the cheapest 2-relation plan. Done (with join optimization)

Next consider GROUP BY (if present) …
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ANNOTATED  R A  TREE  A .K .A .  THE  PHYSICAL  PLAN
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πename

σdname = ‘Toy’

EMP

DEPT

⋈EMP.did = DEPT.did

Access Path: Unclustered B-tree
Estimates: output cardinality = 1, …

NL-IDX using unclustered index on EMP.id
Estimates: output cardinality = 20, …

Access Path: File Scan
Estimates: output cardinality = 10K

Pipeline

Pipeline

Simple projection
Estimates: output cardinality = 20, …

To the scheduler 
to run the query
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QUERY  OPTIMIZATION  (Q O)

Entire search space very large, 

as QO is NP-hard (w.r.t. # joins)

p2

p1

pi

pn

p3

Subspace that a 
practical QO searches

1. Identify candidate equivalent trees 
(logical). 

2. For each candidate, find the execution 
plan tree (physical). We need to 
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Practically: Choose from a subset of all 

possible plans.

13



15-721 (Fall 2024)

14

EQUIVALENCE

sP1 (sP2(R)) ≡ sP2 (sP1(R))  (s commutativity)

sP1⋀P2 … ⋀Pn (R) ≡ sP1(sP2( … sPn(R)))  (cascading s)

∏a1(R) ≡ ∏a1(∏a2(…∏ak (R)…)), ai ⊆ ai+1 (cascading ∏)

R ⋈ S ≡ S ⋈ R (join commutativity)

R ⋈ (S ⋈ T) ≡ (R ⋈ S) ⋈ T (join associativity)

sP (R X S) ≡ (R ⋈P S), if P is a join predicate

sP (R X S) ≡ sP1 (sP2(R) ⋈P4  sP3(S)) , where P = p1 ∧ p2 ∧ p3 ∧ p4

∏A1,A2,…An(sP (R)) ≡ ∏A1,A2,…An(sP (∏A1,…An, B1,… BMR)), where B1 … BM are columns in P

…
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SYSTEM  R :  COST  ESTIMATION

Cost = W*CPU cost + IO Cost

CPU Cost: based on tuples accessed from the storage layer. 
→ Weighted by a magic constant W.

IO Cost: more complicated.
→ Keep statistics in the database for each table and index.

→ Table: #tuples, #pages, #non-empty pages in a segment, …
→ Index: #distinct keys, #pages, high-key, low-key, …

15

RSS 
(Storage 

Manager)

RSI 
Interface

Records
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SYSTEM  R :  COST  ESTIMATION

Estimating the selectivity of each predicate
→ colA = value: 

→ Index exists: 1/#distinct keys in the index
→ Else 1/10 

→ colA > value:
→ Index exists: (high key – value) / (high key – low key)

Complex predicates
→ Conjunct: p1 and p2, e.g., salary > 100K and age < 30

→ Estimate(p1) * Estimate (p2)
→ Note assumes p1 and p2 are independent. 

→ Disjunct: p1 or p2
→ Estimate(p1) + Estimate (p2) – Estimate(p1)*Estimate(p2)

→ Negation: not p1
→ 1 - Estimate(p1)
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Many such magic numbers in QOs in practice, which causes a lot of pain.

P1 P2

Last term: Don’t double count 
when both p1 and p2 are true.
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MODERN  CARDINALITY  ESTIMATION  METHODS

Histograms: 
Most commonly used.

Sketches: 
Neat theory, and big applications in applied in streaming 
settings.
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H ISTOGRAMS

Estimate the distribution of values using discrete “bin.”

Values

Fr
eq

ue
nc

y

Values

Fr
eq

ue
nc

y

For each bin store: bin boundaries, and # values in the bins

30 49

1432
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H ISTOGRAMS
Generally, an equi-depth histogram is better than an equi-width 
histogram. 

An even better approach is to use an equi-width with the most common 
value (MCV). 
→ Takes most of the “pain” away from the “heavy-hitters” that tend to mess up 

the uniform data assumption. 

Proportionately adjust the count for predicates that span only a portion 
of the bucket boundary.
→ Row estimation in PG: https://www.postgresql.org/docs/current/row-estimation-examples.html 

Join cardinality estimation is a harder problem.
→ Can “join” the two histograms (multiply the counts within bucket pairs). 
→ Multi-dimensional histograms can be constructed, but these are complex.
→ System R estimate: |R|x|S|/max(uniq_r, uniq_s). 

It tends to underestimate the actual join cardinality.

Equi-width

Equi-depth

Equi-depth with most 
common values

Value Selectivity

3 0.01%
13 0.1%
46 0.04%

https://www.postgresql.org/docs/current/row-estimation-examples.html
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H ISTOGRAM  CONSTRUCTION  ( S INGLE  COLUMN)

If scanning the full dataset/table is expensive, 
sample data from the table and build the 
histogram. 
→ A good rule-of-thumb is to 

sample 300 X # histogram bins. 

20

An algorithm to build a histogram: 

1. Sample the column.

2. Sort the values.

3. Create a list of the most common 

values.

4. Walk through the sorted list, 

marking bin boundaries to create 

the equi-depth histogram.
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SKETCH
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A probabilistic data structure to capture statistical 
properties over an event data stream.

https://hkorte.github.io/slides/cmsketch/#/7 

https://hkorte.github.io/slides/cmsketch/
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PESSIMISTIC  CARDINALITY  ESTIMATION
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Under-estimation can be worse than over-estimation. 
→ These methods provide guaranteed upper bound/pessimistic cardinality estimation 
→ Weighted by a magic constant W.

Need supporting stats, like degree and count stats/sketches, for each column involved. 

Then, plug this information into an entropy formula one can derive for the query at hand.

Walter Cai, Magdalena Balazinska, Dan Suciu: Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.



15-721 (Fall 2024)

OTHER  METHODS

ML-based methods. Two types: data-driven and query-driven.

Data-driven.
→ Denormalize the data, add extra columns, and then learn the distributions.

→ Slow training times and large model size.

Query-driven.
→ Take queries from past workloads, encode the queries (for ML), and feed the 

encoded data/features to a supervised learning model.

→ Need lots of queries.

23
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COMPARING  D IFFERENT  ESTIMATION  METHODS
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Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren 
Zhou, Jiangneng Li, Bin Cui: Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. CoRR abs/2109.05877 (2021)
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COMPARING  D IFFERENT  ESTIMATION  METHODS

Shows that data-driven ML methods are generally better 
than query-driven ML methods.

The ML-based methods, in my opinion, overfit the 
training set.

All methods degrade as the number of joins increases (no 
surprise) but point to the need for runtime adaptiveness.
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SUMMARY  OF  ESTIMATION  METHODS

Start with at least equi-depth histogram with MCV 

No magic bullet for join cardinality estimation.

Newer methods that look good on paper seem to overfit to 
the benchmark training set, and are complex. 

Think holistically: QO + QP, not QO -> QP 
(more on this later.)
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NESTED  QUERIES
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CREATE TABLE Employee (
    id INT PRIMARY KEY,
    name VARCHAR(100),
    salary DECIMAL(10, 2),
    mgrid INT, FOREIGN KEY (mgrid) REFERENCES Employee(id));

SELECT name
FROM Employee
WHERE salary > 
     (SELECT AVG(salary) 
      FROM Employee);

Q1

Find those who make more than the 

average employee salary.

SELECT E1.name
FROM Employee E1
WHERE E1.salary > (
    SELECT E2.salary
    FROM Employee E2
    WHERE E2.id = E1.mgrid);

Q2

Employees who earn more than their 

managers.

SELECT E1.name
FROM Employee E1
WHERE E1.salary = (
    SELECT MAX(E2.salary)
    FROM Employee E2
    WHERE E2.mgrid = E1.mgrid);

Q3

Employees who have the highest salary in their 

department (under the same manager).

SELECT E1.name
FROM Employee E1
JOIN Employee E2 ON 
            E1.mgrid = E2.id
WHERE E1.salary > E2.salary;

Q2’

SELECT E1.name
FROM Employee E1
JOIN (
    SELECT mgrid, MAX(salary) AS max_salary
    FROM Employee
    GROUP BY mgrid
) AS E2
ON E1.mgrid = E2.mgrid 
AND E1.salary = E2.max_salary;

Q3’
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NESTED  QUERIES

SQL is quite liberal with 
subqueries.
→ Allowed in the SELECT, 

FROM, and WHERE 

clauses. 

→ Powerful mechanism 

called Common Table 

Expressions (CTEs).
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A B

C D

E

1

1

3

4 2 5

6
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S Q L  TRANSLATION

T. Neumann, V. Leis, A. Kemper: The Complete 
Story of Joins (in HyPer). BTW 2017.

Inner Join

Dependent Join
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QUERY  OPTIMIZATION :  SUMMARY

Critical to high-performance queries, especially for analytics 
workloads.

The bottom-up, dynamic programming style invented by System 
R got the field going.

Need a good enumeration strategy and cost model. Bushy plans, 
and sometimes cartesian products, can result in better plans.

QO continues to be a hard problem, especially for queries with 
large # of joins.
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