C
jamegie - Advanced Database

University Systems (15-721)

Lecture #02

The System R
optimizer

Fall 2024 Y) Prof. Jignesh Patel

Ijllh‘

'1| n 1
'h {‘_l

BACKDROP

The relational data model has recently

been proposed.

Key idea: Data independence to insulate
applications from changes in internal

data formats.

— Physical DI: Insulate against changes in internal structure,
e.g., sorted file, index
— Logical DI: Insulate from changes in the schema (by using

views)

$ZCMU-DB

15-721(Fall 2024)

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having fo know how the data is organized in the machine (the
intenal representation). A prompting service which supplies
such information is not a safisfactory solution. Activifies of users
at terminals and most application programs should remain
wnaffected when the intemal representation of data s changed
and even when some aspects of the external

The relational view (or model) of data deseribed in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data.
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consi of relations—th discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking

are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user's model.

KEY WORDS AND PHRASES: data bank, data base, dota structure, data
organization, hierarchies of dato, networks of data, relations, derivabiity,
redundancy, consistency, composition, foin, retrieval language, predicats
calculus, security, dota integrity

CR CATEGOREES: 370, 3.73, 375, 4.20, 422, 429

1. Relational Model and Normal Form

1L1. INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs (1], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

_ In contrast, the problems tmted here are those of data

programs

and terminal activities from gmmh in data types and
changes in data representation—and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

the derivation of for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).
Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logieal
dpoint) of competing of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. Data DepuNoENCISs v PREsENT Systems

The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7). Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristios which can be changed
without logically impairing some application. programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.

12.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

KEY CONCEPT: DATA INDEPENDENCE (DlI)

[solate the user/application (__“pplication Application
from low level data t t
representation. External Schema External Schema | V1€Ws

: (SQL)
— The user only worries about WV

application logic.

Logical Schema Schema, constraints, ...

(SQL)

— Database can optimize the
Physical DI ¢

layout (and re-optimize as the Physical Scherna Pages, Files, B-trees, ...

workload changes). ¢ (DB system internal)

$ZCMU-DB

15-721(Fall 2024)

MULTI-RELATION QUERY PLANNING

s The System R Choice #1: Bottom-up Optimization
approach — Start with nothing and then build up the plan to get
_ to the outcome that you want.
4 :
The Volcano/ Choice #2: Top-down Optimization
Cascades style — Start with the outcome that you want, and then
_ work down the tree to find the optimal plan that

gets you to that goal.

$ZCMU-DB

15-721(Fall 2024)

SQL QUERY OPTIMIZATION PIPELINE

Parse / Rewrite / Optimize Execute
|:: >] :] > |:: >
SQL=) Validate Query Result

Bottom-up, System R.

$ZCMU-DB

15-721 (Fall 2024)

QUERY PLANS

Left-deep

A BC D AN
A B
outer Inner

Left-deep plans can be fully pipelined plans.

— Not all left-deep trees are fully pipelined (e.g., SM join).

— With Hash join, build all the hash tables first, then stream
the outer through the pipeline. An efficient pipeline.

Linear Tree: at least
one child in every
join node is a base
relation

$ZCMU-DB

15-721(Fall 2024)

OPTIMIZER OVERVIEW

1. Search Space

— Search only for “low cost” plans.

2. Enumeration Method

— Need an algorithm to walk through the search space.

3. Cost Estimation

— Need to estimate the cost of each plan that is enumerated.

— Want the estimation to be
a) accurate: so the estimates are accurate,
b) fast: cheap to compute the cost of a plan/operator, and
c) space-efficient: It does not take a lot of space to represent any summary structure
(e.g., histograms) that is used + want fast construction and update methods for the
summary structure.

$ZCMU-DB

15-721(Fall 2024)

SYSTEM R OPTIMIZER: ENUMERATE LEFT-DEEP PLANS

Goal

— Pick the “optimal” join order.

— Pick the join method for each join operation.

Enumerate using n passes (n = # joins)

— Find the best 1-relation plan for each relation.

— Find the best way to join the result of each 1-relation plan (as outer) to
another relation. (All 2-relation plans.)

— Pass N: Find the best way to join the result of a (n-1)-relation plan (as
outer) to the n™ relation. (All n-relation plans.)

For each subset of relations, retain only:

— The cheapest plan overall, and
— The cheapest plan for each interesting order of the tuples.

$ZCMU-DB

15-721(Fall 2024)

SELECT distinct ename
FROM Emp E, Dept D
WHERE E.did = D.did AND D.dname = “Toy’

C at a I o) Conceptual evaluation for any single-block SQL Query:
g 1. Cross product.
2. Discard tuples (apply the join and selection predicates).
clustered unclustered unclustered 3 p o P (PPy) J)) p) When the GROUP
A . artition into groups using the grouping-list. 5V and the

EMP (ssn, ename, addr, sal, did) | # Evaluate the group expressions (aggregates). HAVING clauses

5. Eliminate groups that don't satisfy the group-qualification. J jare present.
10,000 records | . Apply the projection.
1,000 pages

clustered unclustered

A N
DEPT (did, dname, floor, mgr)

500 records
50 pages

£CMU-DB

15-721(Fall 2024)

$ZCMU-DB

15-721(Fall 2024)

SELECT distinct ename Total: 2M |/Os
FROM Emp E, Dept D _
WHERE E.did = D.did AND D.dname = ‘Toy’ 4 reads, 1 write T[ename
talo D
Ca g 2,000 + 4 writes G
cIusied unclustered unclustered (10K/500 20 emps per dept) dname = ‘TOY;
EMP (ssn, ename, addr, sal, did) | |
10.000 records 1,000,000 + 2,000 writes
’1,000 pages (FK join, 10K tuples in temp T2) GEMP did = DEPT.did
A AT 50 + 50,000 + 1,000,000 writes D
DEPT (did, dname, floor, mgr) (write to temp file T'1)
500 records 5 tuples per page in T'1 @ %
50 pages

DEPT

Hename G dname = ‘Toy’ (EMP X DEPT)

AN /\

EMP (ssn, ename, addr, sal, did) DEPT (did, dname, floor, mgr)

Pass 1: EMP: E1: S(EMP), E2: I (EMP.did)

Cost: 1000 1000+100 KEEP E1and E2!
DEPT: D1: S(DEPT), D2: I.(DEPT.did), D3: I(DEPT.dname)
Cost: 50 50+5 3+1 KEEP D2 and D3

Pass 2: Consider EMP > DEPT and DEPT < EMP

EMP ™ DEPT, Alternatives:
1. E1 > D2: Algorithms...
2. E1 x D3: Algorithms....
3. E2 = D2: Algorithms SM, NL, BNL, NL-IDX, Hash

4. E2 x D3: Algorithms

Similarly consider DEPT <t EMP
Pick the cheapest 2-relation plan. Done (with join optimization)

Next consider GROUP BY (if present)...
£=CMU-DB

15-721 (Fall 2024)

ANNOTATED RA TREE A.K.A. THE PHYSICAL PLAN

Simple projection TC

Estimates: output cardinality = 20, ...

ename

i | Pipeline

NL-IDX using unclustered index on EMP.id To the scheduler
Estimates: output cardinality = 20, ... N) .
EMP.did = DEPT.did to run the query

Pipeline% %
EMP Access Path: File Scan

Access Path: Unclustered B-tree Estimates: output cardinality = 10K
Estimates: output cardinality = 1, ... dname = ‘Toy’

T

DEPT

$ZCMU-DB

15-721(Fall 2024)

QUERY OPTIMIZATION (QO)

1. Identify candidate equivalent trees

(logical) . Subspace that a
practical QO searches

2. For each candidate, find the execution
plan tree (physical). We need to
estimate the cost of each plan.

3. Choose the best overall (physical) plan.

Practically: Choose from a subset of all . S/
Entire search space very large,

possible plans. | as QO is NP-hard (w.r.t. # joins)

o N~
£2CMU-DB \/

15-721(Fall 2024)

EQUIVALENCE

Sp1 (0p2(R)) = 0p; (0p1(R)) (0 commutativity)

Spipp2 ... Apn (R) = 0p(opy(... Opy(R))) (cascading ©)

Hal(R) = Hal(Ha2(° . 'Hak (R) .))9 a; = A1 (Cascading H)

R x S=S < R (join commutativity)
R (S T)=(R = S) x T (join associativity)
op (R X S) = (R ™p S), if P is a join predicate

op (R X'S) = op; (op2(R) Xpy op3(S)) , where P=pl A p2 Ap3 A p4

[Ta1.42.. an(op (R)) =[1a1.42.. An(Op (1AL, An, B1.... BMR)), where B1 ... BM are columns in P

$ZCMU-DB

15-721(Fall 2024)

SYSTEM R: CoST ESTIMATION
Cost = W*CPU cost + [O Cost

CPU Cost: based on tuples accessed from the storage layer. Recirds
— Weighted by a magic constant W. RSI
Interface
IO Cost: more complicated. RS
— Keep statistics in the database for each table and index. (Storage

— Table: #tuples, #pages, #non-empty pages in a segment, ... Manager)

— Index: #distinct keys, #pages, high-key, low-key, ...

$ZCMU-DB

15-721(Fall 2024)

SYSTEM R: COST ESTIMATION

Estimating the selectivity of each predicate

— colA = value:
— Index exists: 1/#distinct keys in the index

— Else 1/10 4 Many such magic numbers in QOs in practice, which causes a lot of pain.]
— colA > value:

— Index exists: (high key - value) / (high key - low key)

Complex predicates

— Conjunct: pl and p2, e.g., salary > 100K and age < 30

Last term: Don’t double count

— Estimate(p1) * Estimate (p2) when both p1 and p2 are true.
— Note assumes p1 and p2 are independent.

— Disjunct: p1 or p2
— Estimate(p1) + Estimate (p2) — Estimate(p1)*Estimate(p2) ‘

— Negation: not p1
— 1 - Estimate(p1)

$ZCMU-DB

15-721(Fall 2024)

MODERN CARDINALITY ESTIMATION METHODS

Histograms:

Most commonly used.

Sketches:

Neat theory, and big applications in applied in streaming
settings.

$ZCMU-DB

15-721(Fall 2024)

HISTOGRAMS

Estimate the distribution of values using discrete “bin.”

Frequency
Frequency

1432

30 49
Values Values

For each bin store: bin boundaries, and # values in the bins

$ZCMU-DB

15-721(Fall 2024)

HISTOGRAMS

Generally, an equi-depth histogram is better than an equi-width

histogram.

An even better approach is to use an equi-width with the most common
value (MCV).

— Takes most of the “pain” away from the “heavy-hitters” that tend to mess up

the uniform data assumption.

Proportionately adjust the count for predicates that span only a portion
of the bucket boundary.

— Row estimation in PG: https://www.postgresql.org/docs/current/row-estimation-examples.html

Join cardinality estimation is a harder problem.

— Can “join” the two histograms (multiply the counts within bucket pairs).
— Multi-dimensional histograms can be constructed, but these are complex.
— System R estimate: |R|x|S|/max(uniq_r, uniq_s).

It tends to underestimate the actual join cardinality.

$ZCMU-DB

15-721(Fall 2024)

Equi-width

Equi-depth

Value |Selectivity
3 0.01%

13 0.1%

46 0.04%

Equi-depth with most
common values

https://www.postgresql.org/docs/current/row-estimation-examples.html

HISTOGRAM CONSTRUCTION (SINGLE COLUMN)

If scanning the full dataset/table is expensive, T ey —

sample data from the table and build the

. 1. Sample the column.
histogram.

: 2. Sort the values.
— A good rule-of-thumb is to

sample 3OOX#hiSt0gram e 3. Create a list of the most common
values.

4. Walk through the sorted list,
marking bin boundaries to create

the equi-depth histogram.

$ZCMU-DB

15-721(Fall 2024)

SKETCH

A probabilistic data structure to capture statistical

properties over an event data stream.

hgy o 0 0 0 0 0 0
hy o 0 0 0 0) 0
h, o)) 0 0))

https://hkorte.github.io/slides/cmsketch/#/7

$ZCMU-DB

15-721 (Fall 2024)

https://hkorte.github.io/slides/cmsketch/

PESSIMISTIC CARDINALITY ESTIMATION

Under-estimation can be worse than over-estimation.

— These methods provide guaranteed upper bound/pessimistic cardinality estimation
— Weighted by a magic constant W.

Need supporting stats, like degree and count stats/sketches, for each column involved.

Then, plug this information into an entropy formula one can derive for the query at hand.

SELECT Q(x.y.z,w) - pseudo(x, y), cast(y, z), mc(z, w), cn(w)
FROM
pseudonym, Cpseudo * Hase * dic
cast, Cpseudo * dzast * Cen
movie_companies, Cpseudo * Cnc
company_name ’O(x.y.z. w)| ol cl;seudooq‘;’c.ccnz
WHERE Fseudo * Ceast * Onc
y : .
pseudonym.person_id = cast.person_id AND Z;;seudo Zfzast Cen
cast.movie_id.id = movie_companies.movie_id AND d;;seudo } dfzm i Z’ﬂ;
movie_companies.company id = company_name.id; pseudo * Fcast " Inc * Cen

@ CMU'DB ‘Walter Cai, Magdalena Balazinska, Dan Suciu: Pessimistic Cardinality Estimation: Tighter Upper Bounds for Intermediate Join Cardinalities. SIGMOD 2019.
15-721 (Fall 2024)

OTHER METHODS

ML-based methods. Two types: data-driven and query-driven.

Data-driven.
— Denormalize the data, add extra columns, and then learn the distributions.

— Slow training times and large model size.

Query-driven.
— Take queries from past workloads, encode the queries (for ML), and feed the
encoded data/features to a supervised learning model.

— Need lots of queries.

$ZCMU-DB

15-721(Fall 2024)

COMPARING DIFFERENT ESTIMATION METHODS

Data / Workload
Category Method IMDB / JOB-LIGHT STATS / STATS-CEB
End-to-End Time Exec. + Plan Time Improvement End-to-End Time Exec.+ Plan Time Improvement
Baseline PostgreSQL 3.67h 3.67h + 3s 0.0% 11.34h 11.34h + 25s 0.0%
TrueCard 3.15h 3.15h + 3s 14.2% 5.69h 5.69h + 25s 49.8%
MultiHist 3.92h 3.92h + 30s —6.8% 14.55h 14.53h + 79s —28.3%
Traditional UniSample 4.87h 4.84h + 96s -32.6% > 25h —_ —_
W)JSample 4.15h 4.15h + 23s -13.1% 19.86h 19.85h + 45s =75.0%
PessEst 3.47h 3.38h + 324s 5.4% 6.42h 6.10h + 1,135s 43.4%
MSCN 3.50h 3.50h + 12s 4.6% 8.13h 8.11h + 46s 28.3%
Query-driven LW-XGB 4.31h 4.31h + 8s -17.4% > 25h . -
LW-NN 3.63h 3.63h + 9s 1.1% 11.33h 11.33h + 34s 0.0%
UAE-Q 3.65h 3.55h+356s -1.9% 11.21h 11.03h+645s 1.1%
NeuroCard® 3.41h 3.29h + 423s 6.8% 12.05h 11.85h + 709s —6.2%
Data-driven BayesCard 3.18h 3.18h + 10s 13.3% 7.16h 7.15h + 35s 36.9%
DeepDB 3.2%h 3.28h + 33s 10.3% 6.51h 6.46h + 168s 42.6%
FLAT 3.21h 3.21h + 15s 12.9% 5.92h 5.80h + 437s 47.8%
Query + Data UAE 3.71h 3.60h + 412s -2.7% 11.65h 11.46h + 710s -0.02%

Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, Bin Cui: Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. CoRR abs/2109.05877 (2021)

$ZCMU-DB

15-721(Fall 2024)

COMPARING DIFFERENT ESTIMATION METHODS

Shows that data-driven ML methods are generally better
than query-driven ML methods.

The ML-based methods, in my opinion, overfit the

training set.

All methods degrade as the number of joins increases (no

surprise) but point to the need for runtime adaptiveness.

£2CMU-DB
15-721 (Fall 2024)

SUMMARY OF ESTIMATION METHODS

Start with at least equi-depth histogram with MCV
No magic bullet for join cardinality estimation.

Newer methods that look good on paper seem to overfit to

the benchmark training set, and are complex.

Think holistically: QO + QP, not QO -> QP
(more on this later.)

£2CMU-DB
15-721 (Fall 2024)

NESTED QUERIES

CREATE TABLE Employee (SELECT El.name
id INT PRIMARY KEY, FROM Employee E1
name VARCHAR(109), WHERE El.salary = (
salary DECIMAL(10, 2), SELECT MAX(E2.salary)
mgrid INT, FOREIGN KEY (mgrid) REFERENCES Employee(id)); FROM Employee E2
WHERE E2.mgrid = El.mgrid);
SELECT name SELECT E1.name Employees who have the highest salary in their
FROM Employee FROM Employee E1 department (under the same manager).
WHERE salary > WHERE El.salary > (
(SELECT AVG(salary) SELECT E2.salary “:!::::l”’
FROM Employee); FROM Employee E2
. WHERE E2.id = El.mgrid); SELECT E1.name)
Find those who make more than the ' FROM Employee E1 Q3
average employee salary. Employees who earn more than their JOIN (
managers. ! ! SELECT mgrid, MAX(salary) AS max_salary
FROM Employee
GROUP BY mgrid
SELECT El.name y) AS E2
FROM Employee E1 CZZ ON El.mgrid = E2.mgrid
JOIN Employee E2 ON AND El.salary = E2.max_salary;

El.mgrid = E2.id
WHERE El.salary > E2.salary;

$ZCMU-DB

15-721(Fall 2024)

SQL is quite liberal with

subqueries.

— Allowed in the SELECT,

FROM, and WHERE
clauses.
— Powerful mechanism

called Common Table

Expressions (CTEs).

$CMU-DB

15-721 (Fall 2024)

NESTED QUERIES

WITH RECURSIVE shortest_path AS (
—— Anchor member: Start from the source node
SELECT
source AS f,
destination AS t,
weight,
(source || '->' || destination) AS path,
source || ',' || destination AS visited_nodes
FROM
edges
WHERE
source = '{source_node}'

UNION ALL

—— Recursive member: Find the next node in the path
SELECT
e.source AS f,
e.destination AS t,
sp.weight + e.weight AS weight,
(sp.path || '->' || e.destination) AS path,
sp.visited_nodes || ',' || e.destination AS visited_nodes
FROM
edges e
JOIN
shortest_path sp
ON
e.source = sp.t
WHERE

instr(sp.visited_nodes, e.destination) = @ —— Prevent cycles by checking visited nodes

)

—— Final query: Select the shortest path to the destination
SELECT

t AS destination,

weight,

path AS full_path
FROM

shortest_path

WHERE

t = '{destination_node}'
ORDER BY

weight ASC
LIMIT 1;

Destination

CREATE TABLE edges (
source TEXT,
destination TEXT,
weight INTEGER

Weight Path

A->B->C->D->E

SQL TRANSLATION

I'"%,T; = 0p(TiXT2). Inner Join

T\™,T, = {tiotr]ti € Ti Atp € To(t1) A p(t1 o 12)}.

Dependent Join

T. Neumann, V. Leis, A. Kemper: The Complete
Story of Joins (in HyPer). BTW 2017.

$ZCMU-DB

15-721 (Fall 2024)

3.4 Translating SQL Queries

Putting it all together we can now translate arbitrary SQL queries into relational algebra

using the following high-level algorithm:

1.

translate the from clause, from left to right
a) for each entry produce an operator tree

b) if there is no correlation combine with the previous tree using X, otherwise use

X

c) the resultis a single operator tree

translate the where clause (if it exists)

a) for exists/not exists/unique and quantified subqueries add the subquery on top

of the current tree using 3", Translate the expression itself with m.

b) for scalar subqueries, introduce X! and translate the expression with the (single)

result column/row.
c) all other expressions are scalars, translate them directly

d) the resultis added to the top of the current tree using o

translate the group-by clause (if it exists)

a) translate the grouped expressions just like in the where clause

b) the result is added to the top of the current tree using I" (group-by)

translate the having clause (if it exists)
a) logic is identical to the where clause

translate the select clause

a) translate the result expressions just like in the where clause
b) the result is added to the top of the current tree using IT
translate the order by clause (if it exists)

a) translate the result expressions just like in the where clause

b) the result is added to the top of the current tree using a sort operator

QUERY OPTIMIZATION: SUMMARY

Critical to high-performance queries, especially for analytics
workloads.

The bottom-up, dynamic programming style invented by System
R got the field going.

Need a good enumeration strategy and cost model. Bushy plans,

and sometimes cartesian products, can result in better plans.

QO continues to be a hard problem, especially for queries with

large # of joins.
£2CMU-DB
15-721 (Fall 2024)

