15-712:
Advanced Operating Systems &
Distributed Systems

Introduction

Prof. Phillip Gibbons

Spring 2023, Lecture 1




Waitlist Status

e As of Jan 17, 2023 at 10:30 pm: 39 registered, 4 on waitlist
— Possibly room for a few more students if many others drop

— Please meet me after class

e Admittance priority:
— CSD PhD, ECE PhD, other SCS PhD
— CS Masters, CS Undergrads
— ECE Masters, ECE Undergrads
— other Masters, other Undergrads

e Priority among Masters students (and Undergrads) based on
relevant courses taken (e.g., 213/513/613, 15-410/610)
and grades obtained




Today’s Topics

e Course Overview

— No slides, just a walk through of the key points on the course
webpages

e Discussion of 2 Wisdom Papers




The Mythical Man-Month
Fred Brooks 1975

e Why programming projects are hard to manage 19312025

“Good cooking takes time. If you are made to wait, itis  Turing Award
to serve you better, and to please you.”— Antoine’s chef winner

e Tar Pit:
— Program -> Programming Product (tested, documented) = 3x
— Program -> Programming System (APls, meet resource budget,
inter-component testing) = 3x
— Total = 9x programming time

e Woes of Programming: must perform perfectly, authority below
responsibility, dependent on others code, debugging is tedious/
slow to converge, program feels obsolete by time it is done




Mythical Man-Month

e Optimism: Techniques of estimating time are poorly developed

e Fallaciously confuse effort (months) with progress
— must consider project communication overheads

e SW managers lack the courteous stubbornness of Antoine’s chef
— false scheduling to match a patron’s deadline

e Schedule progress is poorly monitored

Brook’s Law: “Adding manpower to a late
software project makes it later”




The Surgical Team

e Among experienced programmers, best are 10x productive and
code is 5x faster/smaller

— But small teams will take too long

e [Harlin Mills] Team of 10:
Surgeon, copilot, administrator, editor,
2 secretaries, program clerk, toolsmith, tester,
language lawyer (knows performance hacks)

e Hard to scale up to larger teams




Aristocracy vs. Democracy

e Conceptual integrity is THE most important
consideration in system design

e Ratio of function to conceptual complexity
is the ultimate test of system design

e Division of labor between architecture
(complete/detailed specification of the
user interface) and implementation

— what vs. how

— can proceed somewhat in parallel




Second-System Effect

e An architect’s first work is apt to be spare and clean

e But second systems tend to go overboard

3 wumﬂl{i?‘




Passing the Word

e Specifications should be both formal definitions & prose definitions
— don’t use an implementation as specification

e Weekly half-day conferences

e (Semi-)annual two-week courts among larger group
— Before each manual freeze

e 2 implementations!

— Enforces fidelity to the specification, since fixing incorrect
implementation is better than unfixing correct implementation




Productivity & Size

e Interruptions while coding are bad

e Operating systems 3x slower to code than compilers, Compilers 3x
slower than batch application programs

e Write two versions of each important routine: the quick and the
“squeezed”

e Representation (data structure) is the essence of programming




Plan to Throw One Away

e ...you will anyway

e Plan the system for change
— modular design, versions

e Have a Technical Cavalry at your disposal »
Tacoma Narrows Bridge, 1940

e Program Maintenance: Cost of maintaining a widely-used program

is typically 40% or more of the cost of developing it

“Program maintenance is an entropy-increasing
process, and even its most skillful execution only
delays the subsidence of the system into unfixable
obsolescence”




The Whole and the Parts

 The most pernicious and subtle bugs are system bugs arising from
mismatched assumptions made by authors of various components

e Use top-down design with stepwise refinement

e Many poor systems come from an attempt to salvage
a bad basic design and patch it with all kinds of cosmetic relief

e Half as much code in scaffolding (for debugging) as in product




Hatching a Catastrophe

e How does a project get to be a year late?
...One day at a time

e During the activity, (rare) overestimates of duration come
steadily down as the activity proceeds

e Underestimates do not change significantly during the activity
until about 3 weeks before the scheduled completion

e Do critical path planning analysis (PERT chart)

e Self-document programs: comment the source code (!)




You and Your Research
Richard Hamming 1986

e Hamming distance

e Hamming codes (first error correcting codes) e
1915-1998
e Turing Award winner 1968

e “The purpose of computing is insight not numbers”

Q: Why do so few scientists make significant contributions
and so many are forgotten in the long run?




How to be a Great Scientist

e “Luck favors the prepared mind” — Pasteur

e As teenagers, they had independent thoughts & the courage
to pursue them

e Key Characteristic: Courage

e Do best work when they are young professionals
— After do good work, put on all sorts of committees

— When you are famous it is hard to work on small problems
(Fail to plant the acorns from which the mighty oaks grow)

— The IAS at Princeton has ruined more good scientists than any
institution has created




How to be a Great Scientist

e People are often the most productive when working conditions
are bad

e Most great scientists have tremendous drive
— must be intelligently applied

e Knowledge and productivity are like compound interest
e Great scientists tolerate ambiguity well

e ..are completely committed to their problem

— keep your subconscious starved so it has to work on your
problem




How to be a Great Scientist

e What are the important problems in your field?

— and must have plan of attack
e Set aside a “Great Thoughts” time
e When an opportunity opens up, get after it and pursue it

e He who works with the door open gets all kinds of interruptions,
but he occasionally gets clues as to what the world is and
what might be important

e Never again solve an isolated problem except as characteristic
of a class

e Do your job in such a fashion that others can build on it




How to be a Great Scientist

e Need to sell your work, via good writing, formal talks, and
informal talks

— Make talks be more big picture

e |s the effort to be a great scientist worth it?
e Personality defects such as wanting total control, refusing to

conform to dress norms, fighting the system rather than take
advantage of it, ego, anger, negativity

— Let someone else change the system

e Know yourself, your strengths and weaknesses, & your bad faults




How to be a Great Scientist

e Should get into a new field every 7 years

e The bigger the institutional scope of your vision, the higher in
management you need to be

* In the long-haul, books that leave out what’s not essential
will be most valued

e Do library work to find what the problems are

e Refuse to look at any answers until you’ve thought the problem
through carefully how you would do it, how you could slightly
change the problem to be the correct one

e Choose the right people to bounce ideas off of




To Read for Friday

“Hints for Computer System Design” (write summary)
Butler Lampson 1983

“End-to-End Arguments in System Design” (nosummary)
Jerome Saltzer, David Reed, David Clark 1984

Optional Further Reading:

“The UNIX Time-Sharing System”
Dennis Ritchie & Ken Thompson 1974




	15-712:�Advanced Operating Systems & Distributed Systems��Introduction� 
	Waitlist Status
	Today’s Topics
	The Mythical Man-Month�Fred Brooks 1975
	Mythical Man-Month
	The Surgical Team
	Aristocracy vs. Democracy
	Second-System Effect
	Passing the Word
	Productivity & Size
	Plan to Throw One Away
	The Whole and the Parts
	Hatching a Catastrophe
	You and Your Research�Richard Hamming 1986
	How to be a Great Scientist
	How to be a Great Scientist
	How to be a Great Scientist
	How to be a Great Scientist
	How to be a Great Scientist
	To Read for Friday

