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Norms and Inner Products

The inner product between two vectors X,y € R" is written as (X.y) = Z‘..r,y,-. Recall that the
Euclidean norm of X = (21, x9.....2,) € R" is given by

For any ¢ € R and x € R", we get |[ex|| = |¢| - ||x]|. and also |[x + y|| < ||x]| + |ly]|. Morcover,

2 9 2
X+ yil* = lIx[|* + [iyll* + 2{x.¥)



Convexity . '
Definition 1 A set K CR" is said to be convex if

(Ax+(1=Ay)eK V¥x.yeK,VAe[0,1]

Definition 2 For a convez set K CR", a function f: KN — R is said to be conver over K iff

fOX+(1=Ny) <AM(x)+(1=2)f(y) VYx.yeR", VAel0.1]

Concave and Convex Function n§m|

Whenever K ts not specified, assume K = R".
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Optimization in the Real World

* How to solve: min <c, x>
suchthat Ax<b
Xx=0

* Real life is not so pretty

* How to solve: min f(x)
such that x € K

fis a convex function and K is a convex set



First-Order Taylor Approximation of fy) =y? at x=1

4+H— fly)=y?
Linear Approx: fly) = fil)+2-1(y—1)
X X
x fly)
3} X Approximation aty
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We can try to approximate f(y) around a value x as f(y) = f((y-x) + x) = f(x) + f'(x)-(y-x)

If f(x) = x?, then f(y) = f(x) + 2x - (y-X)



Two Variable Calculus

Now suppose f(x1,X,) is a function of two variables, how to approximate f(y;,y,) ?

If X, = y,, we could look at and f(y1,vy2) = f(x4,X5) + — (y1 — Xq1)

If x;, = y;, we could instead look at % and f(y1,y,) = f(x4,x,) + % (Y5 — X5)
2 2
But both X, # y, and x; # y; might happen

Use f(yq,y2) = f(Xq,X3) ‘|‘ (Y1 — X1) "‘ P (Yz — Xp)



Gradients

In the context of this lecture. we will always assume that the function f is differentiable. The
analog of the derivative in the multivariate case is the gradient V f, which is itself a function from

K — R" defined as follows: ¢ f
( (
Vf(X) = (E—I(X) ..... JIT(X)) ‘

We assume that the gradient is well-defined at all points in K

Fact 3 A differentiable function f: K — R is convex iff VX, y € K.,

ya
fly) = f(x)+ (Vf(x),y —x). ”fj--*’f >0

f(x) + (Vf(x),y — X) is the linear approximation of f(y) around x



Minimizing a Function

* To minimize a function, set its gradient to equal O

* Finds global minimum if f is a convex function

* For non-convex function, still often finds a good solution, i.e., a local
minimum

e Gradient is a very complicated expression, can’t solve by setting to O

* Instead, update iteratively. This is called gradient descent



Gradient Descent

The basic gradient descent “framework” says:
Start with some point Xg. At each stept=1,2,.... T -1, set

Xt4l & Xp =1 - Vi(xy). (1)

* N is a “learning rate”

* We “move a little” in a direction (the negative gradient) that reduces loss function
* Think of rolling ball down a hill

* Can just output Xx; in practice, though often easier to prove statements about X



e -
Ifn =€

IfxXo =1,thenxy =Xy —€-2=1-—2¢

Alsox, =x; —€(2—4€) =1 — 4e + 0(€?)



Ifn=1

|fX0=1,thenX1=XO—1-2=—1

Alsox, =x4—1-(-2)=1



Fx)= ¢
i
="aK
dx f
3 1
Ifn =2
fxo =1,thenxy =%x;—2-2 =-3

AlSOXz =X1_2(_6)=9



Gradient Descent Convergence

The analysis we give works for all convex functions. Its guarantee will depend on two things:

e The distance of the starting point Xg from the optimal point X*. Define D := ||xg — X*||.

e A bound G on the norm of the gradient at any point x € R". Specifically, we want that

Ilvf(x)” S (r' f()]‘ ”“ X e an



A Stronger Statement — Online Gradient Descent

* Suppose we even allow the function f; to change at each time step

Here's how to solve this problem. We can use almost the same update rule as (1)), with one slight
modification. The update rule is now taken with respect to gradient of the current function f;.

Xe4+1 < X — ¢ - V fe(Xe). (2)

Theorem ' (Online Gradient Descent) For any (differentiable) convex function f : R™ — R

and any starting point Xo, if we set n := 1), then for any point X* € R",
T-1 T-1 0 l
‘ 2, + 2 .
Z Ji(x¢) < Z Je(X7) + 5(-' T+ '-)'ID : (3)
t=0 t=0

where GG is an upper bound on max, |V fi||, and D = ||xo — x*||.



Theorem (Online Gradient Descent) For any (differentiable) convex function f : R" — R

and any starting point Xo, if we set ny := 1, then for any point X* € R",
T- T-1 7 |
Z Ji(x¢) < Z Je(x¥) + ;GQT - .)—D:".
t=0 t=0 - -,'

where G is an upper bound on max, |V f||, and D := ||xo — x*||.

Proof: The proof is a short and sweet potential function argument. Define
=12
L l|x: — x*||
Py = —.
2n

Note that $g = %{DE. We will show that

oL M
Fi(xe) + (P — P) < filx7) + %Gi.

Summing this up over all times gives

T-1

met (br — o) < Y filx) + 5G°T.

t=0 t=0
Now using that &4 > 0 and &y = D?/(25) completes the proof.
To prove @1 let’s caleulate
1

Prig — P = .}_” (”xt+l - K'"E - ||Kt ||2) . T (|Ixt+1 - Kt” + Z{Kt-H — N X — x*}}

Y (u IV fe(x)lI? — 20 fulxe). X

2y
"

< 5GP — (Vfelx4). X — X).

(3)



Proof: The proof is a short and sweet potential function argument
[ x¢ — x*[|?
Py =
2n

Note that &g = EFL;DEI We will show that

= 4 P
fe(xe) + (Begs — By) < folx") + G2,

Sumiming this up over all times gives

T—1 -1

. 1
Y fulxe) + (B — Do) <Y fulx") + Terr.
=0 t=0 2

Now using that &4 > 0 and &g = D?/(25) completes the proof.
To prove ‘ let’s calculate

1 . (F1j 1
‘I}t+l - P = q—” (”}E:+I — X ||2 — ||}Et - X*”E) 9—” {||Xt+1 - K:”E + 2{3{:+I — M. X — X*}:]
1
2n
n

< 2G? — (Vfixe). % — X*).

‘¥

Next we use the convexity of f (via Fact lé[) to bound the difference

Je(xe) = fir(X*) < (V fi(xe). x¢e — X7)

. Define

= (1;2”?_#}{3:}”2 = 2n(V fe(Xe). Xt — x*})

(1)

(6)

Summing up @ and (6) means the inner-product term cancels, and gives us the amortized cost

bound (), and hence proves Theorem



Constrained Minimization

Having done the analysis for the unconstrained case, we get the constrained case almost for free.
The main difference is that the update step may take us outside K. So we just “project back into
K7, The algorithm is almost the same, let the blue parts highlight the changes.

Vi1 ¢ Xe — 1 - V f(Xe).
Let X341 be the point in i closest to yesq.
return X = E,_" Xy

Now if we satisfy that |V f(x)|| < & for all € K, the online optimization theorem remains exactly
the same.

Theorem (Constrained Online Gradient Descent) For any conver body K C R", and se-
quence of (differentiable) convex functions f; : K — R and any starting point Xg, if we set 1 := 1,
then for any point x* € R™,

T-—1 T—
Zﬁx, {Zf,x}+’-:;21+ UE (7)
= t=0

where G is an upper bound on max; maxyeg |V fi(x)|, and D := ||xp — x*||.



Figure 3: The projection ensures that x* lies on the other side of the tangent hyperplane at x; 1, so the
angle is obtuse. This means the squared length of the “hypotenuse” is larger than the squared length
of either of the sides.

But now we claim that
™ en2
lixes1 — X "2 < lyes1 —x°)°.

Indeed, since x¢4 15 the “projection” of yei ) onto the convex set K. The proof is essentially by
picture (see Figure 5):
This means the changes die out almost immediately, Indoeed,

1 9 1 y
Pior =0 < 5 (Iyes =312 = e = XU7) = 5 (Byess —xd® + 203001 — %0 % =)
- QL, (I £l = 20(% fule), xe — X°))

< gcz - (Vilx), % — Xx*).
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