Algorithm
Design and Analysis

The Fast Fourier Transform



* Review some math, i.e,, and

* Derive the algorithm, and use it to produce a
fast algorithm for polynomial multiplication

 (Optional) time permitting, FFT over finite fields



Definition: A polynomial of degree d is a function p of the form:
d

p(x) = z cixt =cgx®+cg_ x4+ x + ¢
i=0

* Uniquely described by its coefficients (¢4, c4_1, ..., C1, Cp)

e Uniquely described by its value at d + 1 distinct points (the unique
reconstruction theorem)



Given polynomials A(x) and B(x),

Alx) = ag + ayx + a,x* + -+ agx

d

B(x) = by + byx + byx? + - + byx®

Their product is
C(x) =co+ c1x + x4+ -+ Cpgx

Cp = z a;b; —Zabkl

I+j=k

where

2d



x| = 0

Definition: The field of consists of numbers of the
form

a + bi

¢ {2 = —1 by definition

» Useful because every polynomial equation has a solution over the
complex numbers. Not true over reals.



Definition: An isan n™™ rootof 1, i.e.,
w" =
* There are exactly n complex nt! roots of unity, given by
2Tk
e n k=01,...n—1

e Can also write

: k
827;51116 _ ( )



27T1

e The number e n is called a

2Tk 27T K

e n =\en

h

* Definition: Formally, w is a primitive n'" root of unity if

w" =
wk 1 for 0<k<n



v

2™ roots of unity 4™ roots of unity 8t roots of unity



* Directly using the definition of the product of two polynomials would
give us an 0(d?) algorithm

» Karatsuba can bring this down to 0(d!->®)

 What if we used a different representation?

A: A(xg),A(xl),A(xz), "'JA(xd)' ...,A(de)

b 4 x X

B: B(xy),B(x1),B(x3),...,B(xy), ..., B(x24)

C: C(XO), C(xl), C(Xz), cee ) C(xd) ) ey C(de)



Fast polynomial multiplication

1. Pick N = 2d + 1 points xq, X1, ..., Xn—1
2. Evaluate A(x,),A(xq), ..., A(xy_1) and B(xy), B(x1), ..., B(xy_1)

3. Compute C(xx) = A (ock )~ B(Dck)

4. Interpolate C(xg), ..., C(xy—_1) to get the coefficients of C

How do we do steps 2 and 4 efficiently???

10



* Consider the polynomial A of degree 7
A(x) = ag + a;x + ayx? + asx3 + a,x* + asx® + agx® + arx’
* Suppose we want to evaluate A(1) and A(—1)
A(l)=ap+a;+a,+az3+a,+as+ag+ a,
A(—1)=ay—a,+a,—az;+a,—as +ag —a-

7=Cp+Ao+As+ AY ACY=z Z+Ww
W‘— A Azt A +Q5 Pf("‘): Z - W



* Consider the polynomial A of degree 7

A(x) = ag + a;x + ayx? + asx3 + a,x* + asx® + agx® + arx’
* What if we split in half (like last slide) but keep it as a polynomial?

3
3

Z=ay+a,+a,+ag Aoven(X) = ag + ayx + asx? + agx
W=a;+as;+as+a, Aoga(x) = a; + azx + asx? + a,x

A(X) = Aema(x?) + oc. Aadd(ac?)



A(x) = Aeven(xz) T X Aodd(xz)

* This formula gives us a key ingredient for
* We want to evaluate an N-term polynomial at N points
* Break into two N /2-term polynomials and evaluate at N/2 points
 Combine the two halves using the formula above

AG), Al2), AR) ACE)
ACD ALY A1) Alb)



e But what to do about the x?2

 We want to evaluate N points and recurse on a problem that evaluates
N /2 points... such that the squares of the N points are the N/2 points...



B roots of unity over the complex field are

w* fork=01,...n—1

h

e Recall the nt

2T

where w = e n is our “primitive” n'" root of unity




* Assume N is a power of two (pad with zero coefficients)

-
* In other words, set w = exp (%l) then set x;, = w*

e To evaluate A(x) at w?, w?!, w?, ..., 0"

* Break into Agyen(x) and A qq(x)

2

e Evaluate those at w°, w?, w?, ...

* Combine using A(a)k) = Aeven(wZR) + (Uk Aodd(wZR)



FFT([ag,aq, ..., any_1], w,N) = {
if N = 1thenreturn [2o]

Foyen < FFT(_[@o,da,., Gna1, W', N/ )

Foqqa < FFT( [a),a5, aAn- ], 2 Nl?—)

x <1
fork =0toN —1do{

Flkl « Fua [k md3 ]+ oc: Foda[ hwi§]

X <X Xw

} return F



Back to multiplication

1. Pick N = 2d + 1 points xg, X1, ..., Xy_1 (Pick N'! roots of unity)
2. Evaluate A(xyp), ..., A(xy_1) and B(xyp), ..., B(xy_1) (Using FFT)
3. Compute C(x;) = A(x;) B(xy,)

4. Interpolate C(xg), ..., C(xy—_1) to get the coefficients of C

One step to go...

18



Question break



e Given C(w?), C(w?!), ...,C(w"N 1) where N = 2d + 1
* We want to get the N coefficients of C(x) back
* We’re going to do it with... maths!

Evaluating a polynomial at a point can be represented
as a vector-vector product: a.
Q.

P (x)

—
x
) 4
X
R)
X
b
——
1|



: Evaluating a polynomial at many points can be represented
as a matrix-vector product

- 2 N—1- ) i
1 xg X5 - X - ag - A(xp)
1 x xé .. xVH a4 A(xy)
1 x, X3 .. b2l | I
2 N-1|Ldy—1d A(x
L1 xy_q Xpy-1 - Xn_1- A(xXy-1)-

This matrix is invertible iff the x; are distinct



Inverse FFT continued

* In our case, x;, = w”™ where w is a principle N™ root of unity, so

1 1 1
1 w w?>
1 2 4

FFT(w,N) = @ @

1 oN-1 2(0v-1)

: . J
* Element in row k, column j, |s(wk) = W

kj

1

wN—l

w20-1)

wWN-1D? |

22



Consider FFT with the inverse root of unity, i.e.
FFT(w™1,N)

What is the product of FFT (w, N) X FFT(w™!, N)? The (k, j) entry is
N
(A&)k“" Zaks st
$=0

N —k S i
— o) s(,\_) .

S=0



* Entry (k,j) of FFT(w,N) X FFT(w™1,N) is:

N-1
5 w—kstJ -
s=0

* What does the diagonal of the product look like? (k = j)

N-) ~N-)

Zo\)"jsw‘5 = Z 1 = N
§=0 $=0




* Entry (k,j) of FFT(w,N) X FFT(w™1,N) is:
N-1 _ :w s a primitive root of unity
z w " WS {wN =1
= w¢#1for0<k<N

* What do the non-diagonal entries of the product look like? (k # j)

N-) S
L) (J' -A)S = w (J'—k)
z Z )

LN - 4
[ - (wi) )~ (W)’
| = LR | - wo‘-lzﬁ- =0

R

—

(




* So, we've just showed that

FFT(w,N) X FFT(w™,N) =

* Therefore

FFT 1(w,N) =

(

—

N

0

‘N 0-
0 O[=N
L0 N

==

0

FFT(w™ N)

-

-2 <4




Back to multiplication

1. Pick N = 2d + 1 points x¢, x4, ..., Xy_1 (Pick N roots of unity)
2. Evaluate A(xy), ..., A(xy_1) and B(xp), ..., B(xy_1) (Using FFT) ()(V lag N)
3. Compute C(x;) = A(x;) B(xy) O [l\})

4. Interpolate C(xg), ..., C(xy_1) to get the coefficients of C (Inverse FFT)

Nbg N
Runtime: (™) (N log N) = O(d log a[) Otk e 1)

27



./J:}:
k
a

re

ion b

L

S

e

Qu

2



* We defined FFT in terms of roots of unity over complex numbers

* Did we really to use complex numbers?

« We needed N N roots of unity to do divide-and-conquer
e Other fields have roots of unity too!

* E.g., integers mod p for a prime p /”ll‘ﬂ&"ﬂ mosl S
|

N X" |
O ; 5 )

|
2
3
'+ |



* Need to pick a sufficiently large prime p.
* Not all primes work for any N. A good choiceis (cN + 1).
* The field must have N N™ roots of unity (guaranteed ifp =cN + 1).

* Must find a primitive N root of unity (doable with number theory)



* FFT is super cool

* The first key idea was to divide a polynomial into odd and even terms
and use

* To make the points line up in the recursive case, we had to evaluate
the polynomials at



	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Quick review: polynomials
	Slide 4: Quick review: polynomials
	Slide 5: Review: complex numbers
	Slide 6: Roots of unity
	Slide 7: Roots of unity
	Slide 8: Roots of unity
	Slide 9: Back to polynomial multiplication
	Slide 10: Fast polynomial multiplication
	Slide 11: To Point-Value Form
	Slide 12: How to make it recursive?
	Slide 13: A divide-and-conquer idea
	Slide 14: What points should we use for bold italic x?
	Slide 15: Roots of unity to the rescue!!!
	Slide 16: The Fast Fourier Transform
	Slide 17
	Slide 18: Back to multiplication
	Slide 19: Question break
	Slide 20: Inverse FFT
	Slide 21: Inverse FFT continued
	Slide 22: Inverse FFT continued
	Slide 23: Inverse FFT continued
	Slide 24: Inverse FFT continued
	Slide 25: Inverse FFT continued
	Slide 26: Inverse FFT continued
	Slide 27: Back to multiplication
	Slide 28: Question break #2
	Slide 29: FFT over finite fields (optional)
	Slide 30: FFT over finite fields (optional)
	Slide 31: Take-home messages

