Algorithm Design and Analysis

Computational Geometry (Incremental Algorithms)

Goals for today

- Apply randomized incremental algorithms to geometry
- Give randomized incremental algorithms for two key problems:
 - The closest pair problem
 - The smallest enclosing circle problem

Closest Pair

The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the closest distance, i.e.

$$CP(P) = \min_{p,q \in P} ||p - q||$$

Brute force solution: Try all pairs - O(n2)

Improving brute force: incremental

- Brute force reuses no information whatsoever
- Geometry problems often have a lot of reusable information!
- Suppose I know the closest pair among the first i points...

The problem

New Question: How do we find the set of points within distance d of the new point?

Put points into buckets using a grid?

A grid data structure!

- If the grid size is sufficiently large, closest pair will be in same cell, or in neighboring cells
- If the grid size is too large, there will be too many points per cell...

Goal: Choose the right grid size.

- Want few points per cell, so that looking in a cell is fast
- Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points P and grid size r = CP(P), no cell contains more than four points

Proof:

The incremental approach

Key idea (incremental): Add the points one at a time

- Check neighboring cells to see if there's a new closest pair
- If so, rebuild the grid with the new size
- Otherwise keep going

A grid data structure

Invariant (grid size): Given a grid containing a set of points P, we want the grid size r to always equal CP(P)

- MakeGrid(p,q): Make a grid containing p and q, with $r=\|p-q\|$
- Lookup(G, p): Given a grid G and point p (not currently in the grid), we want to know whether p is part of a new closest pair
- Insert(G, p): Given a grid G and point p, inserts p and returns the grid size (which may have changed because of p)

Issue: The number of grid cells could be unbounded.

Hashtable!

Implement MakeGrid(p, q):

Implement Lookup(G, q): Search neighbouring and cells ≤ 36 pts If $||p-q|| < \gamma$ (new answer) return 11p-911 return None

Implement Insert(G, q):

```
Lookup (q)

If distance changes ( lookup returns not None)

Build from Scratch on current points

Else
pur q in grid
```

Runtime

Claim (runtime): The worst-case runtime of the incremental grid algorithm is $O(n^2)$

Proof:

$$Cost = O\left(\sum_{i=2}^{n} i\right) = O(n^2)$$

Randomization to the rescue!!!

Randomized runtime

Claim (randomized incremental is fast): Randomly shuffle the points, then run the incremental algorithm, it takes O(n) time in expectation

Proof:
$$P_i = \langle P_{\Pi_i}, P_{\Pi_2}, ..., P_{\Pi_i} \rangle$$

$$\times_i = \begin{cases} 1 & \text{if } CP(P_i) \neq CP(P_{i-1}) \Leftarrow \\ 0 & \text{otherwise} \end{cases}$$

$$T = \sum_{i=2}^{n} \left(1 + \frac{X_i \cdot i}{X_i \cdot i} \right) \underset{P_T[X_i=1]}{P_T[X_i=1]} = P_T[CP(P_i) \neq CP(P_{i-1})]$$

$$\mathbb{E}[T] = O(n) + \sum_{i=2}^{n} \mathbb{E}[X_i] \cdot i$$

Randomized runtime (continued)

We need to bound
$$\Pr[X_i = 1]...$$
 (i.e., $\Pr[CP(P_i) \neq CP(P_{i-1})]$)

Call a point q "contribut" if $CP(P_i \setminus \{q\}) \neq CP(P_i)$
 ≤ 2 contribut $p+s$
 $\Pr[X_i = 1] \leq \frac{2}{i}$
 $E[T] = O(n) + \sum_{i=2}^{n} \frac{2}{i} O(i) = O(n)$ expected !!

Smallest enclosing circle

The smallest enclosing circle

Problem (Smallest enclosing circle): Given $n \ge 2$ points in two dimensions, find the smallest circle that contains all of them

Base cases

Base case (two points):

Base cases

Base case (three points):

Case 1: Obtuse angle

Case 2: Acute angle

Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique circle that goes through them

The general case

Given n > 3 points, how many circles do we need to consider?

Theorem (three points is always enough): For any set of points, the smallest enclosing circle either touches two points p_i, p_j at a diameter, or touches three points p_i, p_j, p_j forming an **acute** triangle

In other words: For any set of points, there exists i, j, k, such that $SEC(p_1, ..., p_n) = SEC(p_i, p_j, p_k)$

Case 1 (no points):

Case 2 (one point):

Case 3 (two points, not on a diameter):

Case 4 (three points, no acute angle):

We just proved

Theorem: For any set of points, there exists i, j, k, such that

$$SEC(p_1, ..., p_n) = SEC(p_i, p_j, p_k)$$

- Either two points at a diameter, or
- Three points forming an acute triangle

Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their smallest enclosing circle. Check whether this circle contains every point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their smallest enclosing circle. Return the largest such circle.

Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the smallest enclosing circle

When inserting p_i :

- Case 1: p_i is inside the current circle. Great, do nothing!
- Case 2: p_i is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p_i , if it is not in the current circle, then it is on the boundary of the new circle

Incremental algorithm


```
SEC([p_1, p_2, ..., p_n]) = {
Let C be the smallest circle enclosing p_1 and p_2

for i = 3 to n do {

if p_i is not inside C then C = SECl([p_i, p_i, ..., p_{i-i}], p_i)
}

return C
}
```

Incremental algorithm continued

```
1 point is fixed ,
SEC1([p_1, p_2, ..., p_k], q) = {
  Let C be the smallest circle enclosing p_1 and q
  for i = 2 to k do {
    if p_i is not inside C then C = SECQ([p_i, p_i, p_i, p_i, p_i, q))
  return C
```

Incremental algorithm deeper again

```
2 points locked in =
SEC2([p_1, p_2, ..., p_k], q_1, q_2) = {
  Let C be the smallest circle enclosing q_1 and q_2
  for i = 1 to k do {
    if p_i is not inside C then C = SEC & P_i, q_i, q_2
  return C
```

Runtime

Runtime (SEC2): SEC2 runs in O(k) time

Runtime (SEC1): In the worst case, SEC1 runs in $O(k^2)$ time

Runtime (SEC): In the worst case, SEC runs in $O(n^3)$ time If answer changes every time!

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we randomly shuffle the points in SEC and SEC1, then SEC1 runs in O(k) expected time and SEC runs in O(n) expected time

Call q is "critical" if
$$SEC(P_i \setminus \{e\}) \neq SEC(P_i)$$

 ≤ 3 critical points
 $Pr[q \text{ is critical}] \leq \frac{3}{i}$
Same math $E[T] = O(k) + \sum_{i=1}^{k} 1 + \frac{3}{i}O(i) = O(k)$ [SEC1]
 $E[T] = O(n) + \sum_{i=2}^{k} 1 + \frac{3}{i}O(i) = O(n)$ [SEC]

Summary

- Randomized incremental algorithms are pretty great. We can turn slow brute force algorithms into expected linear-time algorithms!
- We got O(n) time for closest pair and smallest enclosing circle