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Design and Analysis

Computational Geometry (Incremental Algorithms)
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Goals for today

• Apply randomized incremental algorithms to geometry

• Give randomized incremental algorithms for two key problems:

• The closest pair problem

• The smallest enclosing circle problem
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Closest Pair
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The closest pair problem

Brute force solution:
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Problem (closest pair):  Given 𝑛 points 𝑃, define 𝐶𝑃(𝑃) to be the 
closest distance, i.e.

𝐶𝑃 𝑃 = min
𝑝,𝑞∈𝑃

𝑝 − 𝑞



Improving brute force: incremental

• Brute force reuses no information whatsoever

• Geometry problems often have a lot of reusable information!

5

• Suppose I know the closest pair among the first 𝑖 points…



The problem
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New Question: How do we find the set of points within distance 𝑑 of 
the new point?



A grid data structure!

• If the grid size is sufficiently large, closest pair will be in same cell, or 
in neighboring cells

• If the grid size is too large, there will be too many points per cell…
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Goal: Choose the right grid size.

• Want few points per cell, so that looking in a cell is fast

• Want the closest pair to be in neighboring cells so we find them fast



The right grid size

Proof:
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Claim (the right grid size): Given a grid with points 𝑃 and grid size 𝑟 =
𝐶𝑃(𝑃), no cell contains more than four points



The incremental approach
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Key idea (incremental): Add the points one at a time
• Check neighboring cells to see if there’s a new closest pair
• If so, rebuild the grid with the new size
• Otherwise keep going



A grid data structure

• MakeGrid(𝑝, 𝑞): Make a grid containing 𝑝 and 𝑞, with 𝑟 = 𝑝 − 𝑞

• Lookup(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝 (not currently in the grid), 
we want to know whether 𝑝 is part of a new closest pair

• Insert(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝, inserts 𝑝 and returns the grid 
size (which may have changed because of 𝑝)
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Invariant (grid size): Given a grid containing a set of points 𝑃, we 
want the grid size 𝑟 to always equal 𝐶𝑃(𝑃)



Implementing the grid

Issue: The number of grid cells could be unbounded…
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Implementing the grid

Implement MakeGrid(𝒑, 𝒒):
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Implementing the grid

Implement Lookup(𝑮, 𝒒):
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Implementing the grid

Implement Insert(𝑮, 𝒒):
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Runtime

Proof:
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Randomization to the rescue!!!

Claim (runtime): The worst-case runtime of the incremental grid 
algorithm is 𝑂 𝑛2



Randomized runtime

Proof:
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Claim (randomized incremental is fast): Randomly shuffle the points, 
then run the incremental algorithm, it takes 𝑂(𝑛) time in expectation



Randomized runtime (continued)

We need to bound Pr[𝑋𝑖 = 1]… (i.e., Pr[𝐶𝑃 𝑃𝑖 ≠ 𝐶𝑃 𝑃𝑖−1 ])
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Smallest enclosing circle
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The smallest enclosing circle
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Problem (Smallest enclosing circle): Given 𝑛 ≥ 2 points in two 
dimensions, find the smallest circle that contains all of them



Base cases

Base case (two points):
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Base cases

Base case (three points):
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Case 1: Obtuse angle Case 2: Acute angle



Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique 
circle that goes through them
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The general case

Given 𝑛 > 3 points, how many circles do we need to consider?
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Theorem (three points is always enough): For any set of points, the 
smallest enclosing circle either touches two points 𝑝𝑖 , 𝑝𝑗 at a diameter, 

or touches three points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑗  forming an acute triangle

In other words: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)



Proof of theorem

Case 1 (no points):
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Proof of theorem

Case 2 (one point):
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Proof of theorem

Case 3 (two points, not on a diameter):
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Proof of theorem

Case 4 (three points, no acute angle):
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We just proved
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Theorem: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)

• Either two points at a diameter, or

• Three points forming an acute triangle



Brute force algorithms

Algorithm 1 (brute force):  Try all triples of points and find their 
smallest enclosing circle. Check whether this circle contains every 
point. Returns the smallest such circle.
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Algorithm 2 (better brute force):  Try all triples of points and find their 
smallest enclosing circle. Return the largest such circle.



Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the 
smallest enclosing circle

When inserting 𝑝𝑖:

• Case 1:  𝑝𝑖 is inside the current circle. Great, do nothing!

• Case 2: 𝑝𝑖 is outside the current circle. Need to find the new one
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Making incremental fast

Observation:  When we add 𝑝𝑖, if it is not in the current circle, then it is 
on the boundary of the new circle
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Incremental algorithm

SEC([𝑝1, 𝑝2, … , 𝑝𝑛]) = {

    Let C be the smallest circle enclosing 𝑝1 and 𝑝2 

    for i = 3 to n do {

        if 𝑝𝑖 is not inside 𝐶 then 𝐶 = 

    }

    return 𝐶

}
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Incremental algorithm continued
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SEC1( 𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞) = {

    Let C be the smallest circle enclosing 𝑝1 and 𝑞

    for i = 2 to k do {

        if 𝑝𝑖 is not inside 𝐶 then 𝐶 = 

    }

    return 𝐶

}



Incremental algorithm deeper again
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SEC2( 𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞1, 𝑞2) = {

    Let C be the smallest circle enclosing 𝑞1 and 𝑞2
    for i = 1 to k do {

        if 𝑝𝑖 is not inside 𝐶 then 𝐶 = 

    }

    return 𝐶

}



Runtime

Runtime (SEC2): SEC2 runs in 𝑂(𝑘) time

Runtime (SEC1): In the worst case, SEC1 runs in 𝑂(𝑘2) time

Runtime (SEC): In the worst case, SEC runs in 𝑂(𝑛3) time
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Randomization to the rescue!!!

Claim (randomized SEC is fast):  If we randomly shuffle the points in 
SEC and SEC1, then SEC1 runs in 𝑂(𝑘) expected time and SEC runs in 
𝑂(𝑛) expected time
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Summary

• Randomized incremental algorithms are pretty great. We can turn 
slow brute force algorithms into expected linear-time algorithms!

• We got 𝑂 𝑛  time for closest pair and smallest enclosing circle

37


	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Closest Pair
	Slide 4: The closest pair problem
	Slide 5: Improving brute force: incremental
	Slide 6: The problem
	Slide 7: A grid data structure!
	Slide 8: The right grid size
	Slide 9: The incremental approach
	Slide 10: A grid data structure
	Slide 11: Implementing the grid
	Slide 12: Implementing the grid
	Slide 13: Implementing the grid
	Slide 14: Implementing the grid
	Slide 15: Runtime
	Slide 16: Randomized runtime
	Slide 17: Randomized runtime (continued)
	Slide 18: Smallest enclosing circle
	Slide 19: The smallest enclosing circle
	Slide 20: Base cases
	Slide 21: Base cases
	Slide 22: Three points and a circle
	Slide 23: The general case
	Slide 24: Proof of theorem
	Slide 25: Proof of theorem
	Slide 26: Proof of theorem
	Slide 27: Proof of theorem
	Slide 28: We just proved
	Slide 29: Brute force algorithms
	Slide 30: Beating brute force: incremental
	Slide 31: Making incremental fast
	Slide 32: Incremental algorithm
	Slide 33: Incremental algorithm continued
	Slide 34: Incremental algorithm deeper again
	Slide 35: Runtime
	Slide 36: Randomization to the rescue!!!
	Slide 37: Summary

