Algorithm
Design and Analysis

Computational Geometry (Incremental Algorithms)



Goals for today

* Apply randomized incremental algorithms to geometry

* Give randomized incremental algorithms for two key problems:
* The closest pair problem
* The smallest enclosing circle problem



Closest Pair



The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the
closest distance, i.e.

CP(P) = gf}}é};”?’ —q||

Brute force solution: ‘];:j all pans = OC nz )



* Brute force reuses no information whatsoever

 Geometry problems often have a lot of reusable information!

e Suppose | know the closest pair among the first i points...



New Question: How do we find the set of points within distance d of
the new point?
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* If the grid size is sufficiently large, closest pair will be in same cell, or
in neighboring cells

* If the grid size is too large, there will be too many points per cell...

: Choose the right grid size.
* Want few points per cell, so that looking in a cell is fast
* Want the closest pair to be in neighboring cells so we find them fast



The right grid size

Proof:




Key idea (incremental): Add the points one at a time

* Check neighboring cells to see if there’s a new closest pair
* If so, rebuild the grid with the new size

e Otherwise keep going
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Given a grid containing a set of points P, we
want the grid size r to always equal CP(P)

* MakeGrid(p, q): Make a grid containing p and q, withr = |[p — q||

* Lookup(G, p): Given a grid G and point p (not currently in the grid),
we want to know whether p is part of a new closest pair

* Insert(G, p): Given a grid G and point p, inserts p and returns the grid
size (which may have changed because of p)



The number of grid cells could be unbr
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Implementing the grid

Implement MakeGrid(p, q):
1= llp~-g/
Pur p&g in grd
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Implementing the grid

Implement Lookup (G, q):
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Implementing the grid

Implement Insert(G, q):

Lookup (?)
£ diskinee changed ( Loo[mf rhumg  not None)
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Runtime

Proof:

o ° o [ 4 ® 8

Cost = O(é2 () = oY)

Randomization to the rescuel!l!

15



Randomized runtime

Proof: R o < PT’:/ P"" T Pn">

X . = 1 @} CP(Pi)+ CP(A)e—
" 0 otherteee

T= Zh (:L"'X;'t;)
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Randomized runtime (continued)

We need to bound Pr[X; = 1]... (i.e., Pr[CP(P;) # CP(P;_1)])
Cal o powt 1 "cnied " f  CP(PiN[gd) + CP(P.)
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Smallest enclosing circle



The smallest enclosing circle

Problem (Smallest enclosing circle): Given n = 2 points in two
dimensions, find the smallest circle that contains all of them
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Base cases

Base case (two points):
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Base cases

Base case (three points):

Case 1: Obtuse angle

Case 2: Acute angle
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Three points and a circle

Fact (unique circle): Given three non-colinear points, there is a unique
circle that goes through them
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The general case

Given n > 3 points, how many circles do we need to consider?

Theorem (three points is always enough): For any set of points, the
smallest enclosing circle either touches two points p;, p; at a diameter,

or touches three points p;, p;, p; forming an acute triangle

In other words: For any set of points, there exists i, j, k, such that
SEC(py, -, Pn) = SEC(py, ), Prc)
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Proof of theorem

Case 1 (no points):

24



Proof of theorem

Case 2 (one point):
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Proof of theorem

Case 3 (two points, not on a diameter):
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Proof of theorem

Case 4 (three points, no acute angle):

27



We just proved

Theorem: For any set of points, there exists i, j, k, such that
SEC(pl' ery pn) — SEC(pU p]' pk)

 Either two points at a diameter, or

* Three points forming an acute triangle
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Brute force algorithms

Algorithm 1 (brute force): Try all triples of points and find their
smallest enclosing circle. Check whether this circle contains every
point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their
smallest enclosing circle. Return the largest such circle.
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Beating brute force: incremental

Incremental approach: Insert points one by one and maintain the
smallest enclosing circle

When inserting p;:
* Case 1: p; is inside the current circle. Great, do nothing!

* Case 2: p; is outside the current circle. Need to find the new one

30



Making incremental fast

Observation: When we add p;, if it is not in the current circle, then it is
on the boundary of the new circle
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Incremental algorithm OP
P\ :

SEC([pli P2, ,pn]) = {
Let C be the smallest circle enclosing p; and p,

fori=3tondo{
if p; is not inside C then ¢ = SECL1(lp.p., ., pi-], /3.,)

\ —

L powk is Piced Pi locked i

return C
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Incremental algorithm continued
1 powt is Piced ~\
P
SECi([pli P2, ---;pk]; q) = { T
Let C be the smallest circle enclosing p; and g
fori=2to kdo{

if p; is not inside C then C = SEC ([P"P'~-P"-~ ] pe, Z)

} 2 rdm J-ol*aal 2 fad;/ocﬁu( it
return C

.Ft
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Incremental algorithm deeper agaln

o3 PO)MS locked. tn %

SEC_Z_;([P1 P2, - Pkl 41, q2) ={
Let C be the smallest circle enclosing g4 and g,

fori=1tokdo{
if p; is not inside C then C = SEC ojl P 91, 92
}

return C

}
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Runtime

Runtime (SEC2): SEC2 runs in O(k) time

Runtime (SEC1): In the worst case, SEC1 runs in O (k?) time

Runtime (SEC): In the worst case, SEC runs in O(n?) time
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Randomization to the rescuel!!

Claim (randomized SEC is fast): 1f we randomly shuffle the points in
SEC and SEC1, then SEC1 runs in O (k) expected time and SEC runs in

O (n) expected time
CalA q s ‘erked 1) SeCc (Pi\{g})+# SECCPL-)

<3 crhed poiks
Prl ¢ is orked ] € 3/(2
Same math) [E[T] = O(k)+ il +‘§'O(£) = O(k) [sec1]
ELT) = O(n) *%1*}50(:;) < (O(n) [sec]



Summary

* Randomized incremental algorithms are pretty great. We can turn
slow brute force algorithms into expected linear-time algorithms!

* We got O(n) time for closest pair and smallest enclosing circle
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