Algorithm Design and Analysis

Computational Geometry (Fundamentals and the Convex Hull)

Goals for today

- Explore some fundamental tools for computational geometry
- Understand important tools/ideas such as:
 - Dot and cross products
 - The line-side test
- Define and solve the convex hull problem

Why geometry?

- Applications in robotics
- Applications to graphics
- Applications to algorithms (LPs!!)

Representation and Model

How might we represent some of the following ideas?

Real number Floating-point number

Point A pair of floating-point numbers

Line A pair of points

Line Segment A pair of points

Triangle A triple of points

Concerns? Rounding Errors! **Solution?** Be a theory class

Fundamental Objects & Operations

Representation (Point): A pair of real numbers

Representation (Vector): A pair of real numbers

We will use these interchangeably

Operation (Addition/subtraction):

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$

Fundamental Operations (continued)

Operation (Scalar multiplication):

$$\alpha(x,y) = (\alpha x, \alpha y), \qquad \alpha \in R$$

$$\alpha \in R$$

Operation (Length/magnitude):

$$||(x,y)|| = \sqrt{x^2 + y^2}$$

Application (Distance):

$$dist(p_1, p_2) = || p_2 - p_1 ||$$

Fundamental Operations (continued)

Operation (The dot product):

$$(x_1, y_1) \cdot (x_2, y_2) = x_1 x_2 + y_1 y_2$$

Useful theorem (The dot product angle formula):

$$u \cdot v = ||u|| ||v|| \cos(\theta)$$

$$\Theta = \cos^{-1}\left(\frac{u \cdot v}{\|u\| \|v\|}\right)$$

Application of the dot product

Application (Projection): Given a **point** p and a **line** L that goes through the origin in the direction of q (a unit vector), find the point p' on L that is closest to p

$$p \cdot q = ||p|| ||q|| \cos(0)$$

$$= ||p|| \cos(0)$$

$$= ||p|| \cos(0)$$

Fundamental Operations (continued)

Operation (The cross product):

$$(x_1, y_1) \times (x_2, y_2) = \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

"Signed area"

- NEGATIVE If 9 is to right of p

Line-side test (Important!)

Operation (Line-side test): Given points p_1, p_2, q , we want to know whether q is on the LEFT or RIGHT of the line from p_1 to p_2

$$V_{1} = P_{2} - P_{1}$$

$$V_{2} = Q - P_{1}$$

$$V_{1} \times V_{2} = \begin{cases} > O & LEFT/CCW \\ < O & RIGHT/CW \\ = O & ON LINE \end{cases}$$

Convex Combinations

Definition (Convex combination): A *convex combination* of the points $p_1, p_2, ..., p_k$ is a point

$$p' = \sum_{i=1}^k \alpha_i \, p_i$$

such that $\sum \alpha_i = 1$ and $\alpha_i \geq 0$ for all i

The Convex Hull

The Convex Hull

Definition (Convex hull): Given a set of points $p_1, ..., p_n$, the **convex hull** is the smallest convex polygon containing all of them

Goal: output the vertices of the hull in counterclockwise order

An $O(n^3)$ -time algorithm

Observation (Hull edges): The edges of the convex hull must be pairs of points from the input

Claim (Hull edges): A segment (p_i, p_j) is on the convex hull if and only if...

Better: An $O(n^2)$ -time algorithm

Observation (Order helps): The $O(n^3)$ -time algorithm found the hull edges in an arbitrary order... What if we try to find them in CCW order

Graham Scan: An $O(n \log n)$ algorithm

Observation (Order helps again): We went from $O(n^3)$ to $O(n^2)$ by finding the edges in order... but we still processed the points in an arbitrary order. Can we order the points and do better?

Graham Scan: An $O(n \log n)$ algorithm

Algorithm (Graham Scan):

```
Find lowest point p_0
Sort points p_1, p_2, ... counterclockwise by their angle with p_0
H = [p_0, p_1]
for each point i = 2 ... n - 1
While LST (H[-2], H[-1], p_i) == RIGHT
H. pop()
```


Graham Scan: Complexity

Theorem: Graham Scan runs in $O(n \log n)$ time

Proof: Sorting takes
$$O(n \log n)$$
Each pt is only popped once $\rightarrow O(n)$

Lower Bound

Theorem: Any convex hull algorithm that uses line-side tests to find the hull requires $\Omega(n \log n)$ line-side tests (in a decision tree model)

Won't prove this

Take-home messages

- Computational geometry is all about using the right tools (and drawing good diagrams)
 - Dot product
 - Cross product
 - Line-side test
 - Convex hull