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Apply to be a TA!

« You, yes you, should apply to be a 15-451/651 TA in the
fall semester.

- Fill out the following form by Thursday, April 17th:
. https://forms.gle/a8Uurl t9TZGxmDESA




- What are online algorithms?

- Analyzing online algorithms: Competitive ratio

- Example online problems
« Rent or buy
- List update
- Potential function analysis
 Page caching

« Randomization



+ In the online framework, our input is presented one by one.

« At each time step, our algorithm must make a decision.

« Each decision will have a cost.

e Formally:
- The inputis a sequence o7, 05, ..., 6,. This is invisible to the algorithm.
« Fori=1,2,...,n:
- The algorithm is presented o;, and makes a decision.
- Itincurs a cost ¢; based on this decision and the problem cost model.

- Make good decisions with the current information.



- You want to ski for the upcoming days, as much as possible. However, you don't have skis

and the season might end any day.

- Every day, you have the option of either:

- Renting skis for $50 for one day

e Formally:

o Input sequence: good, ...

o Costmodel:c; =

50
500
0

, good, bad.

renting,
buying,

already bought .

. Buying skis for $500



- Which one is better? We need to analyze them.



- We define an optimal omniscient algorithm OPT.

. This algorithm can see the whole input in advance and decide accordingly.

- The cost of this algorithm on the input is Cypr(0).

- The competitive ratio of an algorithm ALG is
CALG(O-) &

ax
s Copr(o) &

—

over all inputs 6.



- What is the optimal omniscient algorithm for the rent or buy problem if we know ski season is
going to last n days?

. Remember that renting costs $50 and buying costs $500.
'i-p n < ,Cﬂ : )U G‘I" n&.n+
&lﬁe... . LD



 Buyimmediately:
- What is the worst case? n=-.|

- What is the competitive ratio?

Cug- 500 _\p
Copr o0

e Rent forever:
- What is the worst case? n—>» oQ

- What is the competitive ratio?

Copr HOP




A Better Algorithm Strategy

. Every strategy can be characterized as “Buy on day k"

- What is the worst case input if we buyonday k? ga = k

Cre = GHO+B00 | Joo _ 7

oty - 2bo bV
Cace = 4D0+B00 - 200 o9

L oront Y17 D00



 Intuition:
- We shouldn't plan to rent for more than how much buying it would cost.

- We also shouldn't plan on buying too quickly, in case the season ends early.

- Algorithm:

- Buy on the day that renting costs catch up to buying costs (in our example, day 10).

- Theorem:

. Better-late-than-never is 2-competitive.

F < O: 4 Az 0 Cae 9.90 +5 00 Y
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e Generalized cost model:

. We will now say that renting costs $7 and buying costs $b.

» Generalized Algorithm:

.« We now buy on day [b/r]. We will assume for simplicity that r divides b.

e Theorem:

- Generalized better-late-than-never is (2 — r/b)-competitive.



i £2,,,3 - a3

« You have a list of nitems {1, 2,..., n}and two operations:
« Access(x): Access element x. The cost is the position of x in list.

- Swap(x, y): Swap adjacent elements x and y. The cost is 1.
- The input is a sequence of t Access requests for t > n.

- The algorithm has a chance to do any number of Swaps after each request.

e Goal:

- Have the minimum cost ofter?’l requests.






- What is the worst case? AC(_—CI’D) )L&(.Cn;.-— g

- What is the competitive ratio?

Cae = DT




- What is the worst case? Access(n) t times.

- What is the competitive ratio?

We have to access the last element each time, so
Capg=n-t.
The optimal algorithm will move n to the front after the first access, so
Copr=n+m—-1)+@¢-1).
So, the competitive ratio is
B Carg B nt
C T Copr  2n+1-2

€ O(n).



Single Exchange 2.2 = L2 a0
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- What is the worst case? MCﬂ\,Acc_(n-‘\ } ,&(_(GD,- —_ - —

- What is the competitive ratio?
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- What is the worst case? Access(n), Access(n — 1), Access(n), Access(n — 1), ...

- What is the competitive ratio?

We have to access the last element each time and move it forward, so
CALG= (n+ 1) - .

The optimal algorithm will move n and n — 1 to the front as soon as possible, so

t—1
Copr=n+2-(n=2)+(1+2) ——.

So, the competitive ratio is

C
c=—25 Q).
OPT



Frequency Count
- What is the worst case? ACC.(O s -hms) ')rCc_CZ) ] )(-ws) - —— -

- What is the competitive ratio?

Cuc= 4424+ ——rnt c QG
Copr = £ 114 20T - — (0Dt € ()

C:—CQ::C e@(n)
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- What is the worst case? Access(1) t times, Access(2) ¢ times, Access(3) ¢ times, ...

- What is the competitive ratio?

We actually never make swaps, so
Cayg=1t+2-t+-+n-1t€0n%.
The optimal algorithm will move each element to the front before it gets accessed, so

So, the competitive ratio is

C
c=—25 Q).
Copt




e Algorithm:

- After receiving Access(x), move x to the front.

e Theorem:

- Move-to-front is 4-competitive.



e Reminders:

« We are not interested in the worst case cost of Move-to-front over different inputs. We are
interested in the worst-case ratio of its cost to any other algorithm.

« If we do not now what the optimal omniscient algorithm is, we can instead bound the ratio against
any algorithm.

- Analysis:

« Let Cypp be the cost of Move-to-front on 6, and Cyg be the cost of any algorithm B on 6.

e

- We want to show that Gy £ 4+ G

e Key point:

- Not all Access operations cost the same. However, we only care about the total cost over many
operations.



Enter Potentials




We can define a potential function ® for our online algorithms!

- This potential function depends on the state of our algorithm, and on the state of the
competing algorithm B.

We can now define ACy;r 0s the amortized cost of Move-to-front.

Now, we can instead prove ACy g £ 4 - Cg.

- If we define @ such that @ > 0 and ®; = 0, this means that Cyyrg < ACytr £ 4 - G,
h_q

—— ——

Generally, we will prove that our amortized cost of each individual operation is at most 4
times the cost of the same operation for B.



What affects the relative cost of Move-to-front and B?

[ ]

Answer: How different the two lists currently are.
- The potential @ should be high when the lists are very different.

« The potential @ should be low when the lists are very similar.

What determines the difference between lists? o—- - ‘L

| NreSsTon LQI"M&M {'L_ lib“:ﬁ b ——- &

What should our poté?w_tial function be? 1
D = k C# of inwﬁ'bnS)




« Observation:

- Each individual operation contains three distinct steps:
1. Both Move-to-front and B perform Access(x).
2. Move-to-front performs its Swaps, moving x to the front.

ES. B performs its Swaps, which can be different than Move-to-front.

- We will actually analyze step 3 separately.

- Analyzing the operation of the competing algorithm is a common strategy we will employ.



Analysis of Access(x) and MTF's Swaps

o States of Move-to-front and B:

MTF k‘ X
- N

W,

B X

- We define two sets of items.

» § = {items before x in MTF and before x in B}. These are dark/teal above.

- T = {items before x in MTF and after x in B}. These are light/lilac above.

e Note: Arrows are between elements in the same sets.



Analysis of Access(x) and MTE S Swaps .

Caie = 151 +1T1 + ISIT] < 2050424 ﬁi i

|
Copr > I5141
S = {items before x in MTF and before x in B}.

A_@ 2 (51 —lTl> 2'5' z,‘T‘ T = {items before x in MTF and after x in BY).
Ao & 15l 41 & ulslag = 4(1sl+0)
ACu, €% Copr
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- You have:
- N pages
. A cache that can hold k < N pages, initially holding 1, 2,..., k.

- The input is a sequence of page requests.
- If a page is in the cache, the request if free.

- If a page is not in the cache, called a page fault, we evict one of the pages in the cache,
and replace it with this new page.

e Goal:

- Have the minimum number of page faults.



e Algorithm (LRU):

- Evict the least recently used page.

- 2,3

- What's a bad case? Say we havek =3 and N=4. < {la' 7/ )L"l,
L L 3
| . 2,73 _ L
4 L g_, v, %JQ - .




e Theorem:

- LRU is k-competitive.

- Define a phase as a group of requests with k distinet requests, where the request after the phase is
distinct from the phase. -

o Example with k = 35—
r'_\_—_ﬁ
. 2,4,3,3,2,8,8,8, 8, 10,...,2,1151,...

This sequence contains a phase with pages 2, 3, 4, 8, and 10. I tﬁe next sequence begins with 451.

- How many page faults can LRU incur in a phase? & L

. Given m phases, we have < M- L ?T Fhuu"b



- Now we look at the cost for any algorithm B.

- Remember that this will give us a bound on Cqpr.

e Lemma:

. Any algorithm must incur at least m — 1 page faults over m phases.

e Proof:

.« Foranyphasei € {1,2,...,m — 1}, let’s look at offset phases from the 2nd request of

phase i to the 1st request of phase i + 1.

1

2nd request of phase i to 1st request of phase i + 1.

phase 1 phase i phase i+ 1




phase phase i phasei+ 1
» Case 1: 1strequest of phase i + 1 is a page fault. A —_ tﬁ‘ B
Z |

» Case 2:1strequest of phase i + 1 is not a page fault.

- Then, this page must be in the cache throughout the offset phase.
- The st request of phase i must also be in the cache after the request.

- There are still kK — 1 distinct requests in the offset phase, however there are only kK — 2
spots left in the cache. So, there must be a page fault.

— —




e Conclusion:
- Each offset phase has at least 1 fault. So, there are m — 1 page faults over m phases.

. Thus, LRU has a competitive ratio of k.



e Theorem:

. Every deterministic algorithm must have a competitive ratio of at least k.

« Proof: We show this only for 1_\[ = k + 1, meaning only one page will be out of the cache.
The general case is similar.

» What is the worst case for any algorithm?

@r"-":) pLTA.S'\' 1S e 'rch Jl;v“"



Limitation of ﬁetermmistik Algorithms

e However, for the same input, an optimal omniscient algorithm can always throw out the
page that is requested furthest in the future. ‘L | ;7_) ‘g} 4 , l; Z)@ I

» Since there are k pages in the cache, one of them has to be requested next at least k time =

steps in the future. F' ‘

e So, the earliest the next page fault can occuris#€k — 1 steps.

S0, this algorithm can have a page fault at most once every k steps.

« Thus, the competitive ratio of any deterministic algorithm is k.




Enter Randomization




e Algorithm:

. Start with pages 1, 2,..., kin the cache, all marked.
- On a page request:
- Ifit's in the cache, mark it and return.
- Otherwise:
- If every page is marked, unmark every page.
- Evict a random unmarked page, and mark the newly requested page.



e letk=4and N =5.

« Call the interval between
unmarkings of all pages phases.

- Here's an example phase, with
probabilities at each step of each
page being in the cache.

- The marked pages are shaded
orange.

request

pages

1 2

3

4

5

313132
4 | 4] 4] 1
2 2
3 3 | 3
T ] 1
2 | 2

expected
cost



pages

expected

request 1 2 3 4 5 cost

.- Each phase contains k unique page requests.

- The first time each page is requested in the phase, it is unmarked, s {
and thus it incurs some nonzero expected cost. Then, It gets SEHBEER 1
marked and any further requests to it incur zero cost. 2

W |
Sy
W
w2
P—
f—
—
|

- The first of these requests is out of the cache by definition, so
has a cost of 1.

[
W | =

N | =

. Forany otherrequesti € {2, 3,..., k}, at that point there are 4 : |

I — 1 marked pages in the cache. The request is equally likely to
beanyoneofthe N—(i— 1) = N —1i+ 1 remaining pages.

- One of these pages is out of the cache, so the expected cost is

1
N—i+1




. So, we have that the the first unique page has a cost of 1 through

the phase, and any other unique page i € {2,3,...,k} hasan
1

expected cost of

N—i+1

- Thus, in total, the expected cost of a phase is

W| - B

N | =



. So, we have that the the first unique page has a cost of 1 through
the phase, and any other unique page i € {2, 3,...,k} has an

expected cost of . :
N—i+1

- Thus, in total, the expected cost of a phase is
1 1 1 1 1 1

1+ + tot———— =1+ + + e+
N-24+1 N-3+1 N—-k+1 N-1 N-=-2 N-1+1-k+1

—1+1+ 1 + 4 :
Tk k-1 k+1—k+1

- Note: When N > k + 1, the expected cost can be bounded by 2H,,.

request

pages

1111o|
31 31 3 ) 3
AHEED
2 22| |
s L1331
1 1
lllgglll
1|1011|

expected
cost

[e—

1

W= A

N | =






- Know the definition and goals of online algorithms.

- Know the definition of competitive ratio in relation to online algorithms.
- Know how to analyze the competitive ratio of an online algorithm.

- Know how to create and use potential functions for online algorithmes.

- Know how to use randomization in order to achieve better (expected) competitive ratios for
online algorithms.
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