Algorithm Design and Analysis

Hlle

Nabi Efe Cekirge, April 8th 2025

Apply to be a TA!

« You, yes you, should apply to be a 15-451/651 TA in the
fall semester.

- Fill out the following form by Thursday, April 17th:
. https://forms.gle/a8Uurl t9TZGxmDESA

- What are online algorithms?

- Analyzing online algorithms: Competitive ratio

- Example online problems
« Rent or buy
- List update
- Potential function analysis
 Page caching

« Randomization

+ In the online framework, our input is presented one by one.

« At each time step, our algorithm must make a decision.

« Each decision will have a cost.

e Formally:
- The inputis a sequence o7, 05, ..., 6,. This is invisible to the algorithm.
« Fori=1,2,...,n:
- The algorithm is presented o;, and makes a decision.
- Itincurs a cost ¢; based on this decision and the problem cost model.

- Make good decisions with the current information.

- You want to ski for the upcoming days, as much as possible. However, you don't have skis

and the season might end any day.

- Every day, you have the option of either:

- Renting skis for $50 for one day

e Formally:

o Input sequence: good, ...

o Costmodel:c; =

50
500
0

, good, bad.

renting,
buying,

already bought .

. Buying skis for $500

- Which one is better? We need to analyze them.

- We define an optimal omniscient algorithm OPT.

. This algorithm can see the whole input in advance and decide accordingly.

- The cost of this algorithm on the input is Cypr(0).

- The competitive ratio of an algorithm ALG is
CALG(O-) &

ax
s Copr(o) &

—

over all inputs 6.

- What is the optimal omniscient algorithm for the rent or buy problem if we know ski season is
going to last n days?

. Remember that renting costs $50 and buying costs $500.
'i-p n < ,Cﬂ :)U G‘I" n&.n+
&lﬁe... . LD

 Buyimmediately:
- What is the worst case? n=-.|

- What is the competitive ratio?

Cug- 500 _\p
Copr o0

e Rent forever:
- What is the worst case? n—>» oQ

- What is the competitive ratio?

Copr HOP

A Better Algorithm Strategy

. Every strategy can be characterized as “Buy on day k"

- What is the worst case input if we buyonday k? ga = k

Cre = GHO+B00 | Joo _ 7

oty - 2bo bV
Cace = 4D0+B00 - 200 o9

L oront Y17 D00

 Intuition:
- We shouldn't plan to rent for more than how much buying it would cost.

- We also shouldn't plan on buying too quickly, in case the season ends early.

- Algorithm:

- Buy on the day that renting costs catch up to buying costs (in our example, day 10).

- Theorem:

. Better-late-than-never is 2-competitive.

F < O: 4 Az 0 Cae 9.90 +5 00 Y

—
-- —_— —— -

C)‘ Le - Cnrr C"-"?T 5@@ 5@@

e Generalized cost model:

. We will now say that renting costs $7 and buying costs $b.

» Generalized Algorithm:

.« We now buy on day [b/r]. We will assume for simplicity that r divides b.

e Theorem:

- Generalized better-late-than-never is (2 — r/b)-competitive.

i £2,,,3 - a3

« You have a list of nitems {1, 2,..., n}and two operations:
« Access(x): Access element x. The cost is the position of x in list.

- Swap(x, y): Swap adjacent elements x and y. The cost is 1.
- The input is a sequence of t Access requests for t > n.

- The algorithm has a chance to do any number of Swaps after each request.

e Goal:

- Have the minimum cost ofter?’l requests.

- What is the worst case? AC(_—CI’D))L&(.Cn;.-— g

- What is the competitive ratio?

Cae = DT

- What is the worst case? Access(n) t times.

- What is the competitive ratio?

We have to access the last element each time, so
Capg=n-t.
The optimal algorithm will move n to the front after the first access, so
Copr=n+m—-1)+@¢-1).
So, the competitive ratio is
B Carg B nt
C T Copr 2n+1-2

€ O(n).

Single Exchange 2.2 = L2 a0
7\

- What is the worst case? MCﬂ\,Acc_(n-‘\ } ,&(_(GD,- —_ - —

- What is the competitive ratio?

CALG - @1—))4' |
Core = N4 200D (14D

;= CALG c C—DC’\)

T

- What is the worst case? Access(n), Access(n — 1), Access(n), Access(n — 1), ...

- What is the competitive ratio?

We have to access the last element each time and move it forward, so
CALG= (n+ 1) - .

The optimal algorithm will move n and n — 1 to the front as soon as possible, so

t—1
Copr=n+2-(n=2)+(1+2) ——.

So, the competitive ratio is

C
c=—25 Q).
OPT

Frequency Count
- What is the worst case? ACC.(O s -hms) ')rCc_CZ)])(-ws) - —— -

- What is the competitive ratio?

Cuc= 4424+ ——rnt c QG
Copr = £ 114 20T - — (0Dt € ()

C:—CQ::C e@(n)

1"

- What is the worst case? Access(1) t times, Access(2) ¢ times, Access(3) ¢ times, ...

- What is the competitive ratio?

We actually never make swaps, so
Cayg=1t+2-t+-+n-1t€0n%.
The optimal algorithm will move each element to the front before it gets accessed, so

So, the competitive ratio is

C
c=—25 Q).
Copt

e Algorithm:

- After receiving Access(x), move x to the front.

e Theorem:

- Move-to-front is 4-competitive.

e Reminders:

« We are not interested in the worst case cost of Move-to-front over different inputs. We are
interested in the worst-case ratio of its cost to any other algorithm.

« If we do not now what the optimal omniscient algorithm is, we can instead bound the ratio against
any algorithm.

- Analysis:

« Let Cypp be the cost of Move-to-front on 6, and Cyg be the cost of any algorithm B on 6.

e

- We want to show that Gy £ 4+ G

e Key point:

- Not all Access operations cost the same. However, we only care about the total cost over many
operations.

Enter Potentials

We can define a potential function ® for our online algorithms!

- This potential function depends on the state of our algorithm, and on the state of the
competing algorithm B.

We can now define ACy;r 0s the amortized cost of Move-to-front.

Now, we can instead prove ACy g £ 4 - Cg.

- If we define @ such that @ > 0 and ®; = 0, this means that Cyyrg < ACytr £ 4 - G,
h_q

—— ——

Generally, we will prove that our amortized cost of each individual operation is at most 4
times the cost of the same operation for B.

What affects the relative cost of Move-to-front and B?

[]

Answer: How different the two lists currently are.
- The potential @ should be high when the lists are very different.

« The potential @ should be low when the lists are very similar.

What determines the difference between lists? o—- - ‘L

| NreSsTon LQI"M&M {'L_ lib“:ﬁ b ——- &

What should our poté?w_tial function be? 1
D = k C# of inwﬁ'bnS)

« Observation:

- Each individual operation contains three distinct steps:
1. Both Move-to-front and B perform Access(x).
2. Move-to-front performs its Swaps, moving x to the front.

ES. B performs its Swaps, which can be different than Move-to-front.

- We will actually analyze step 3 separately.

- Analyzing the operation of the competing algorithm is a common strategy we will employ.

Analysis of Access(x) and MTF's Swaps

o States of Move-to-front and B:

MTF k‘ X
- N

W,

B X

- We define two sets of items.

» § = {items before x in MTF and before x in B}. These are dark/teal above.

- T = {items before x in MTF and after x in B}. These are light/lilac above.

e Note: Arrows are between elements in the same sets.

Analysis of Access(x) and MTE S Swaps .

Caie = 151 +1T1 + ISIT] < 2050424 ﬁi i

|
Copr > I5141
S = {items before x in MTF and before x in B}.

A_@ 2 (51 —lTl> 2'5' z,‘T‘ T = {items before x in MTF and after x in BY).
Ao & 15l 41 & ulslag = 4(1sl+0)
ACu, €% Copr

Z?—*Lé {J‘CH,(, é’__;rq' Cf’

- You have:
- N pages
. A cache that can hold k < N pages, initially holding 1, 2,..., k.

- The input is a sequence of page requests.
- If a page is in the cache, the request if free.

- If a page is not in the cache, called a page fault, we evict one of the pages in the cache,
and replace it with this new page.

e Goal:

- Have the minimum number of page faults.

e Algorithm (LRU):

- Evict the least recently used page.

- 2,3

- What's a bad case? Say we havek =3 and N=4. < {la' 7/)L"l,
L L 3
| . 2,73 _ L
4 L g_, v, %JQ - .

e Theorem:

- LRU is k-competitive.

- Define a phase as a group of requests with k distinet requests, where the request after the phase is
distinct from the phase. -

o Example with k = 35—
r'__—_ﬁ
. 2,4,3,3,2,8,8,8, 8, 10,...,2,1151,...

This sequence contains a phase with pages 2, 3, 4, 8, and 10. I tﬁe next sequence begins with 451.

- How many page faults can LRU incur in a phase? & L

. Given m phases, we have < M- L ?T Fhuu"b

- Now we look at the cost for any algorithm B.

- Remember that this will give us a bound on Cqpr.

e Lemma:

. Any algorithm must incur at least m — 1 page faults over m phases.

e Proof:

.« Foranyphasei € {1,2,...,m — 1}, let’s look at offset phases from the 2nd request of

phase i to the 1st request of phase i + 1.

1

2nd request of phase i to 1st request of phase i + 1.

phase 1 phase i phase i+ 1

phase phase i phasei+ 1
» Case 1: 1strequest of phase i + 1 is a page fault. A —_ tﬁ‘ B
Z |

» Case 2:1strequest of phase i + 1 is not a page fault.

- Then, this page must be in the cache throughout the offset phase.
- The st request of phase i must also be in the cache after the request.

- There are still kK — 1 distinct requests in the offset phase, however there are only kK — 2
spots left in the cache. So, there must be a page fault.

— —

e Conclusion:
- Each offset phase has at least 1 fault. So, there are m — 1 page faults over m phases.

. Thus, LRU has a competitive ratio of k.

e Theorem:

. Every deterministic algorithm must have a competitive ratio of at least k.

« Proof: We show this only for 1_\[= k + 1, meaning only one page will be out of the cache.
The general case is similar.

» What is the worst case for any algorithm?

@r"-":) pLTA.S'\' 1S e 'rch Jl;v“"

Limitation of ﬁetermmistik Algorithms

e However, for the same input, an optimal omniscient algorithm can always throw out the
page that is requested furthest in the future. ‘L | ;7_) ‘g} 4 , l; Z)@ I

» Since there are k pages in the cache, one of them has to be requested next at least k time =

steps in the future. F' ‘

e So, the earliest the next page fault can occuris#€k — 1 steps.

S0, this algorithm can have a page fault at most once every k steps.

« Thus, the competitive ratio of any deterministic algorithm is k.

Enter Randomization

e Algorithm:

. Start with pages 1, 2,..., kin the cache, all marked.
- On a page request:
- Ifit's in the cache, mark it and return.
- Otherwise:
- If every page is marked, unmark every page.
- Evict a random unmarked page, and mark the newly requested page.

e letk=4and N =5.

« Call the interval between
unmarkings of all pages phases.

- Here's an example phase, with
probabilities at each step of each
page being in the cache.

- The marked pages are shaded
orange.

request

pages

1 2

3

4

5

313132
4 | 4] 4] 1
2 2
3 3 | 3
T] 1
2 | 2

expected
cost

pages

expected

request 1 2 3 4 5 cost

.- Each phase contains k unique page requests.

- The first time each page is requested in the phase, it is unmarked, s {
and thus it incurs some nonzero expected cost. Then, It gets SEHBEER 1
marked and any further requests to it incur zero cost. 2

W |
Sy
W
w2
P—
f—
—
|

- The first of these requests is out of the cache by definition, so
has a cost of 1.

[
W | =

N | =

. Forany otherrequesti € {2, 3,..., k}, at that point there are 4 : |

I — 1 marked pages in the cache. The request is equally likely to
beanyoneofthe N—(i— 1) = N —1i+ 1 remaining pages.

- One of these pages is out of the cache, so the expected cost is

1
N—i+1

. So, we have that the the first unique page has a cost of 1 through

the phase, and any other unique page i € {2,3,...,k} hasan
1

expected cost of

N—i+1

- Thus, in total, the expected cost of a phase is

W| - B

N | =

. So, we have that the the first unique page has a cost of 1 through
the phase, and any other unique page i € {2, 3,...,k} has an

expected cost of . :
N—i+1

- Thus, in total, the expected cost of a phase is
1 1 1 1 1 1

1+ + tot———— =1+ + + e+
N-24+1 N-3+1 N—-k+1 N-1 N-=-2 N-1+1-k+1

—1+1+ 1 + 4 :
Tk k-1 k+1—k+1

- Note: When N > k + 1, the expected cost can be bounded by 2H,,.

request

pages

1111o|
31 31 3) 3
AHEED
2 22| |
s L1331
1 1
lllgglll
1|1011|

expected
cost

[e—

1

W= A

N | =

- Know the definition and goals of online algorithms.

- Know the definition of competitive ratio in relation to online algorithms.
- Know how to analyze the competitive ratio of an online algorithm.

- Know how to create and use potential functions for online algorithmes.

- Know how to use randomization in order to achieve better (expected) competitive ratios for
online algorithms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

