Algorithm
Design and Analysis

Approximation Algorithms



* Understand the and of approximation algorithms

 Demonstrate three common techniques for approximation algorithms:
(Job Scheduling)
(Vertex Cover)

(Knapsack)



* Some problems are hard to solve (e.g., NP-Hard problems)

* What can we do when faced with such problems?
* Give up?
* Implement that speed up “common” inputs. Algorithm is
still worst-case exponential time but fast enough for many “real life” inputs.

: Try to find a solution that is not
necessarily optimal but is provably close to optimal, with an efficient
(polynomial time) algorithm.



Consider an optimization problem (minimize or maximize)

Say the value of the optimal solution is OPT

Say that our algorithm outputs a solution with value ALG

Our algorithm is a c-approximation if

Minimization Problems
ALG < c - OPT

The solution is at most ¢ > 1 times too big

Maximization Problems

ALG = c - OPT

The solution is at most ¢ < 1 times too small




Technique #

Greedy algorithms

]



: Given m identical “machines” and n “jobs”, where job i
takes p; processing time to run, assign jobs to machines to minimize
the , the time at which the last job finishes

: Given n blocks where block i has height
p;, we want to make m stacks of blocks, with the goal of minimizing
the height of the tallest stack



Job Scheduling

Example:p = {1,3,2,4,5,2,5}, m = 3

P
=S _

Makespan =9 Makespan =8




Algorithm: Greedy job scheduling
start with m empty stacks
for each block
add the block to the shortest current stack




Claim: Greedy job scheduling is a 2-approximation algorithm

Proof: WTS ALL ¢ 2-O0PT

* Let p; be the height of the last block on the tallest stack

* Let L be the remaining height of the tallest stack b _,_
- OPT > ZPi/m
- OPT 7 Piy L
- OPT » L

PlG=p™+L € OPT+OPT = 2 DPT Alb= P+



Question: What is a worst-case input for greedy scheduling?
Idea: Small stuff first, big stuff at the end

Example: m? blocks of size 1, then one block of size m

1Xm

ALG=2m OPT=m+1

10



Algorithm: Sorted greedy job scheduling

start with m empty stacks

for each block i in order from big to small
add block i to the shortest current stack

11



Analysis of sorted greedy job scheduling

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm

Proof: lc ¢ |-S OPT
* OPT = p; and OPT = L still true

p;

A leagr (M) blocks d sze P’ (1f L70)

_One Skck has of last fwo

- OPT > ?.P:"

_5 ALG= P+ L ¢ 30PT+ OPT = |.§ OPT B

L

(if L=0o) MGs p7 = OPT

1

12



Take-home messages:

* Greedy algorithms are often good approximations

* Hardest part is the proof
* Need to find a way to connect OPT to ALG

* Often achieved by lower bounding OPT and relating this to ALG

13



Technigue ;

LP Rounding

£%)




: Given an undirected graph G = (V, E), a vertex cover is a
subset of the vertices C € V such that every edge is adjacent to at
least one v € C.

A minimum vertex cover is a smallest possible vertex cover

15



Linear program (relaxation) for vertex cover

Variables x,, for each vertex v 1
2

minimize E Ty

1
veV % >
S.t. Ty + Ty =1 forall (u,v) € E
T, > 0 forallveV . )
2 2

Remember: Can give fractional solutions

16



Algorithm: Rounding vertex cover
Solve the LP relaxation for x,,
for each vertex v
if x, = 1/2 then
add v to the vertex cover

N =

N =

N =

N =

N =

17



Claim 1: The LP rounding algorithm outputs a valid vertex cover

Proof: RAFSOC (u,r) 1§ ner covered
Xu ¢ 72 Xy <12
Xut Xy ¢ 1 (/nj’er/e)
(onhadic b |

18



Claim 2: The LP rounding algorithm is a 2-approximation algorithm

Proof: RWM{,VU Xy from //z b 1 Aoublee (ot mﬁ)

ALG ¢ 2-LP < 2. 0PT

19



Question: Can we apply this algorithm to any LP relaxation and get a 2-
approximation? Why or why not |
2
maximize Z Te

ecl

S.t. Zgye<1 forallv eV

N | =
N =

e s.t.
vEe

Te > 0 for all e € E 1 1

* Rounding up would violate constraints

* Rounding down would give a low value (zero)

20



Technigue ;

Scaling

£3




Definition (Knapsack): Given a set of n items, the i*" of which has
size s; and value v;. The goal is to find a subset of the items whose
total size is at most S, with maximum possible value.

* In Lecture 10, we devised a DP solution that runs in O(nS) time
where S is the size of the knapsack.

* This is pseudopolynomial time, i.e., polynomial in the input numbers
but not in the input size

e Efficient only if S is small




\/= Max vale gf
any jlem

O (n2 \/)
* We can alternatively make the runtime depend polynomially on the
values rather than size/weight

G (k, P) = Minimum weight of a subset of items {1, ..., k} with value > P
( O ifk=0and P<0

Gk, P)={ CK if k=0and P >0

\ min{a(k"ln P) , C(k-1, P- Vh)* gk} otherwise




* We have a pseudopolynomial-time algorithm running O (n“V) where
IV is the maximum value of any item.

e This is efficient if V is small
* So, let’s just make it small?

: When the runtime depends on a number in the input,
scale those numbers down and round them, introducing small error.



Scaling: The ldea

Scale down
(by carefully
chosen factor)

Round and
solve small
problem

nn

3kg
$7123

4kg
$9423

2kg
$5210

6kg
$11989

7kg
$14897

O(rX)

3kg
$6005

Skg
$12489

@
A B EO00ND

3kg
$7.123

¥
A BB EEHNAEB

3kg
S7

4kg
$9.423

4kg
S9

2kg
$5.210

2kg
$5

6kg
$11.989

6kg
S11

7kg
$14.897

7kg
$14

3kg
$6.005

3kg
$6

Skg
$12.489

Skg
$12

Question:
What should
the scaling
factor be?

25



ol valigs are now 1
% ?Lo_,,,lOnS

* Scale all values down by a factor of e, setv; = E‘

* Solve the scaled problem and output the optimal set of items

Claim: This algorithm runs in 0(n3) time

Proof: O(W‘V) = O(,V‘g) ke mox wlue < (0N



* Scale all values down by a factor of e, setv; = E‘

* Solve the scaled problem and output the_c-)ptimal set of items

Claim: This algorithm is a 0.9-approximation
/ Vi
Proof: "| ¢s' per iem V- VU k= V- [‘:_}(-k < &
|JL05S“BQO_’, (,J}lai SMM é hk = ..y_-
\V
ALG » OPT = 79 > or7- & = 0.9 OPT

Ro de’/VYUY‘



* The constant of 10 was arbitrary and gave us a 0.9 approximation
 Can scale by % to get a (1 — &) approximation!

* This is called a polynomial-time approximation scheme (PTAS). We
can get any constant factor we want!

* Works for other dynamic programming algorithms that run in
pseudopolynomial time



* We defined the concept of

* We practiced three techniques for building approximation algorithms:

(Job Scheduling)
(Vertex Cover)

(Knapsack)

29



	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Approximation algorithms: what & why
	Slide 4: Formal definition
	Slide 5: Technique #1
	Slide 6: Job Scheduling
	Slide 7: Job Scheduling
	Slide 8: Approximation algorithm for job scheduling
	Slide 9: Analysis of greedy job scheduling
	Slide 10: Can we do better than 2?
	Slide 11: Better algorithm for job scheduling
	Slide 12: Analysis of sorted greedy job scheduling
	Slide 13: Summary of Greedy
	Slide 14: Technique #2
	Slide 15: Problem: Vertex Cover
	Slide 16: Linear program (relaxation) for vertex cover
	Slide 17: Approximation algorithm for vertex cover
	Slide 18: Analysis of LP rounding for vertex cover
	Slide 19: Analysis of LP rounding for vertex cover
	Slide 20: Check your understanding
	Slide 21: Technique #3
	Slide 22: Problem: Knapsack
	Slide 23: Alternative DP formulation
	Slide 24: Scaling: The Idea
	Slide 25: Scaling: The Idea
	Slide 26: The scaling algorithm
	Slide 27: The scaling algorithm
	Slide 28: Scaling more generally
	Slide 29: Summary

