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Algorithm
Design and Analysis

Approximation Algorithms



Goals for today

• Understand the motivation and definition of approximation algorithms

• Demonstrate three common techniques for approximation algorithms:

• Greedy (Job Scheduling)

• LP rounding  (Vertex Cover)

• Scaling (Knapsack)
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Approximation algorithms: what & why

• Some problems are hard to solve (e.g., NP-Hard problems)
• What can we do when faced with such problems?

• Give up?
• Implement heuristics/pruning that speed up “common” inputs. Algorithm is 

still worst-case exponential time but fast enough for many “real life” inputs.
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Idea (approximation algorithms): Try to find a solution that is not 
necessarily optimal but is provably close to optimal, with an efficient 
(polynomial time) algorithm.



Formal definition
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Definition (𝒄-approximation algorithm):

• Consider an optimization problem (minimize or maximize)

• Say the value of the optimal solution is OPT

• Say that our algorithm outputs a solution with value ALG

• Our algorithm is a 𝒄-approximation if

Minimization Problems

𝐴𝐿𝐺 ≤ 𝑐 ⋅ 𝑂𝑃𝑇

The solution is at most 𝑐 > 1 times too big

Maximization Problems

𝐴𝐿𝐺 ≥ 𝑐 ⋅ 𝑂𝑃𝑇

The solution is at most 𝑐 < 1 times too small



Technique #1
Greedy algorithms
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Job Scheduling
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Problem: Given 𝑚 identical “machines” and 𝑛 “jobs”, where job 𝑖 
takes 𝑝𝑖 processing time to run, assign jobs to machines to minimize 
the makespan, the time at which the last job finishes

Alternative interpretation: Given 𝑛 blocks where block 𝑖 has height 
𝑝𝑖, we want to make 𝑚 stacks of blocks, with the goal of minimizing 
the height of the tallest stack



Job Scheduling
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Example: 𝒑 = 𝟏, 𝟑, 𝟐, 𝟒, 𝟓, 𝟐, 𝟓 , 𝒎 = 𝟑
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Approximation algorithm for job scheduling
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Algorithm: Greedy job scheduling
start with 𝑚 empty stacks
for each block
    add the block to the shortest current stack



Analysis of greedy job scheduling

Proof:
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𝒑𝒊
∗

𝑳

• Let 𝑝𝑖
∗ be the height of the last block on the tallest stack

• Let 𝐿 be the remaining height of the tallest stack

Claim: Greedy job scheduling is a 2-approximation algorithm



Can we do better than 2?

Question: What is a worst-case input for greedy scheduling?
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Idea: Small stuff first, big stuff at the end

Example: 𝑚2 blocks of size 1, then one block of size 𝑚

𝒎 × 𝒎

𝒎

𝒎 𝒎 × (𝒎 − 𝟏)

𝟏 × 𝒎

ALG = 𝟐𝒎 OPT = 𝒎 + 𝟏



Better algorithm for job scheduling
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Algorithm: Sorted greedy job scheduling
start with 𝑚 empty stacks
for each block 𝑖 in order from big to small
    add block 𝑖 to the shortest current stack



Analysis of sorted greedy job scheduling

Proof:

12

𝒑𝒊
∗

𝑳

• 𝑂𝑃𝑇 ≥ 𝑝𝑖
∗  and  𝑂𝑃𝑇 ≥ 𝐿  still true

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm



Summary of Greedy

Take-home messages:

• Greedy algorithms are often good approximations

• Hardest part is the proof

• Need to find a way to connect 𝑂𝑃𝑇 to 𝐴𝐿𝐺

• Often achieved by lower bounding 𝑂𝑃𝑇 and relating this to 𝐴𝐿𝐺
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Technique #2
LP Rounding
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Problem: Vertex Cover

A minimum vertex cover is a smallest possible vertex cover
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Problem: Given an undirected graph 𝐺 = (𝑉, 𝐸), a vertex cover is a 
subset of the vertices 𝐶 ⊆ 𝑉 such that every edge is adjacent to at 
least one 𝑣 ∈ 𝐶.



Linear program (relaxation) for vertex cover

Variables 𝑥𝑣 for each vertex 𝑣
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Remember: Can give fractional solutions
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Approximation algorithm for vertex cover
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Algorithm: Rounding vertex cover
Solve the LP relaxation for 𝑥𝑣

for each vertex 𝑣
    if 𝑥𝑣 ≥ 1/2 then
        add 𝑣 to the vertex cover



Analysis of LP rounding for vertex cover

Proof:
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Claim 1: The LP rounding algorithm outputs a valid vertex cover



Analysis of LP rounding for vertex cover

Proof:
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Claim 2: The LP rounding algorithm is a 2-approximation algorithm



Check your understanding

Question: Can we apply this algorithm to any LP relaxation and get a 2-
approximation? Why or why not

20

• Rounding up would violate constraints

• Rounding down would give a low value (zero)
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Technique #3
Scaling
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Problem: Knapsack

• In Lecture 10, we devised a DP solution that runs in 𝑂(𝑛𝑆) time 
where 𝑆 is the size of the knapsack.

• This is pseudopolynomial time, i.e., polynomial in the input numbers 
but not in the input size

• Efficient only if 𝑆 is small
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Alternative DP formulation

• We can alternatively make the runtime depend polynomially on the 
values rather than size/weight

𝐺 𝑘, 𝑃 = Minimum weight of a subset of items 1, … , 𝑘  with value ≥ 𝑃
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Scaling: The Idea

• We have a pseudopolynomial-time algorithm running 𝑂(𝑛2𝑉) where 
𝑉 is the maximum value of any item.

• This is efficient if 𝑉 is small

• So, let’s just make it small?
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Idea (scaling): When the runtime depends on a number in the input, 
scale those numbers down and round them, introducing small error.



Scaling: The Idea
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A B C D E

3kg
$7123

F G

4kg
$9423

2kg
$5210

6kg
$11989

7kg
$14897

3kg
$6005

5kg
$12489

Scale down 
(by carefully 
chosen factor)

A B C D E

3kg
$7.123

F G

4kg
$9.423

2kg
$5.210

6kg
$11.989

7kg
$14.897

3kg
$6.005

5kg
$12.489

Round and 
solve small 
problem

A B C D E

3kg
$7

F G

4kg
$9

2kg
$5

6kg
$11

7kg
$14

3kg
$6

5kg
$12

Question: 
What should 
the scaling 
factor be?



The scaling algorithm

• Scale all values down by a factor of 𝒌 =
𝑽

𝟏𝟎𝒏
, i.e., set 𝑣𝑖

′ =
𝑣𝑖

𝑘

• Solve the scaled problem and output the optimal set of items
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Claim: This algorithm runs in 𝑂 𝑛3  time

Proof:



The scaling algorithm

• Scale all values down by a factor of 𝒌 =
𝑽

𝟏𝟎𝒏
, i.e., set 𝑣𝑖

′ =
𝑣𝑖

𝑘

• Solve the scaled problem and output the optimal set of items
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Claim: This algorithm is a 0.9-approximation

Proof:



Scaling more generally

• The constant of 10 was arbitrary and gave us a 0.9 approximation

• Can scale by 
𝜀𝑉

𝑛
 to get a 1 − 𝜀  approximation!

• This is called a polynomial-time approximation scheme (PTAS). We 
can get any constant factor we want!

• Works for other dynamic programming algorithms that run in 
pseudopolynomial time
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Summary

• We defined the concept of approximation algorithms

• We practiced three techniques for building approximation algorithms:

• Greedy (Job Scheduling)

• LP rounding  (Vertex Cover)

• Scaling  (Knapsack)
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