Algorithm
Design and Analysis

Approximation Algorithms



* Understand the and of approximation algorithms

 Demonstrate three common techniques for approximation algorithms:
(Job Scheduling)
(Vertex Cover)

(Knapsack)



* Some problems are hard to solve (e.g., NP-Hard problems)

* What can we do when faced with such problems?
* Give up?
* Implement that speed up “common” inputs. Algorithm is
still worst-case exponential time but fast enough for many “real life” inputs.

: Try to find a solution that is not
necessarily optimal but is provably close to optimal, with an efficient
(polynomial time) algorithm.



Consider an optimization problem (minimize or maximize)

Say the value of the optimal solution is OPT

Say that our algorithm outputs a solution with value ALG

Our algorithm is a c-approximation if

Minimization Problems
ALG < c - OPT

The solution is at most ¢ > 1 times too big

Maximization Problems

ALG = c - OPT

The solution is at most ¢ < 1 times too small




Technique #

Greedy algorithms

]



: Given m identical “machines” and n “jobs”, where job i
takes p; processing time to run, assign jobs to machines to minimize
the , the time at which the last job finishes

: Given n blocks where block i has height
p;, we want to make m stacks of blocks, with the goal of minimizing
the height of the tallest stack



Job Scheduling

Example:p = {1,3,2,4,5,2,5}, m = 3

P
=S _

Makespan =9 Makespan =8




Algorithm: Greedy job scheduling
start with m empty stacks
for each block
add the block to the shortest current stack




Claim: Greedy job scheduling is a 2-approximation algorithm

Proof: WTS ALL ¢ 2-O0PT

* Let p; be the height of the last block on the tallest stack

* Let L be the remaining height of the tallest stack b _,_
- OPT > ZPi/m
- OPT 7 Piy L
- OPT » L

PlG=p™+L € OPT+OPT = 2 DPT Alb= P+



Question: What is a worst-case input for greedy scheduling?
Idea: Small stuff first, big stuff at the end

Example: m? blocks of size 1, then one block of size m

1Xm

ALG=2m OPT=m+1
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Algorithm: Sorted greedy job scheduling

start with m empty stacks

for each block i in order from big to small
add block i to the shortest current stack
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Analysis of sorted greedy job scheduling

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm

Proof: lc ¢ |-S OPT
* OPT = p; and OPT = L still true

p;

A leagr (M) blocks d sze P’ (1f L70)

_One Skck has of last fwo

- OPT > ?.P:"

_5 ALG= P+ L ¢ 30PT+ OPT = |.§ OPT B

L

(if L=0o) MGs p7 = OPT

1
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Take-home messages:

* Greedy algorithms are often good approximations

* Hardest part is the proof
* Need to find a way to connect OPT to ALG

* Often achieved by lower bounding OPT and relating this to ALG
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Technigue ;

LP Rounding

£%)




: Given an undirected graph G = (V, E), a vertex cover is a
subset of the vertices C € V such that every edge is adjacent to at
least one v € C.

A minimum vertex cover is a smallest possible vertex cover
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Linear program (relaxation) for vertex cover

Variables x,, for each vertex v 1
2

minimize E Ty

1
veV % >
S.t. Ty + Ty =1 forall (u,v) € E
T, > 0 forallveV . )
2 2

Remember: Can give fractional solutions
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Algorithm: Rounding vertex cover
Solve the LP relaxation for x,,
for each vertex v
if x, = 1/2 then
add v to the vertex cover

N =

N =

N =

N =

N =
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Claim 1: The LP rounding algorithm outputs a valid vertex cover

Proof: RAFSOC (u,r) 1§ ner covered
Xu ¢ 72 Xy <12
Xut Xy ¢ 1 (/nj’er/e)
(onhadic b |
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Claim 2: The LP rounding algorithm is a 2-approximation algorithm

Proof: RWM{,VU Xy from //z b 1 Aoublee (ot mﬁ)

ALG ¢ 2-LP < 2. 0PT

19



Question: Can we apply this algorithm to any LP relaxation and get a 2-
approximation? Why or why not |
2
maximize Z Te

ecl

S.t. Zgye<1 forallv eV

N | =
N =

e s.t.
vEe

Te > 0 for all e € E 1 1

* Rounding up would violate constraints

* Rounding down would give a low value (zero)
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Technigue ;

Scaling

£3




Definition (Knapsack): Given a set of n items, the i*" of which has
size s; and value v;. The goal is to find a subset of the items whose
total size is at most S, with maximum possible value.

* In Lecture 10, we devised a DP solution that runs in O(nS) time
where S is the size of the knapsack.

* This is pseudopolynomial time, i.e., polynomial in the input numbers
but not in the input size

e Efficient only if S is small




\/= Max vale gf
any jlem

O (n2 \/)
* We can alternatively make the runtime depend polynomially on the
values rather than size/weight

G (k, P) = Minimum weight of a subset of items {1, ..., k} with value > P
( O ifk=0and P<0

Gk, P)={ CK if k=0and P >0

\ min{a(k"ln P) , C(k-1, P- Vh)* gk} otherwise




* We have a pseudopolynomial-time algorithm running O (n“V) where
IV is the maximum value of any item.

e This is efficient if V is small
* So, let’s just make it small?

: When the runtime depends on a number in the input,
scale those numbers down and round them, introducing small error.



Scaling: The ldea

Scale down
(by carefully
chosen factor)

Round and
solve small
problem
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Question:
What should
the scaling
factor be?
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ol valigs are now 1
% ?Lo_,,,lOnS

* Scale all values down by a factor of e, setv; = E‘

* Solve the scaled problem and output the optimal set of items

Claim: This algorithm runs in 0(n3) time

Proof: O(W‘V) = O(,V‘g) ke mox wlue < (0N



* Scale all values down by a factor of e, setv; = E‘

* Solve the scaled problem and output the_c-)ptimal set of items

Claim: This algorithm is a 0.9-approximation
/ Vi
Proof: "| ¢s' per iem V- VU k= V- [‘:_}(-k < &
|JL05S“BQO_’, (,J}lai SMM é hk = ..y_-
\V
ALG » OPT = 79 > or7- & = 0.9 OPT

Ro de’/VYUY‘



* The constant of 10 was arbitrary and gave us a 0.9 approximation
 Can scale by % to get a (1 — &) approximation!

* This is called a polynomial-time approximation scheme (PTAS). We
can get any constant factor we want!

* Works for other dynamic programming algorithms that run in
pseudopolynomial time



* We defined the concept of

* We practiced three techniques for building approximation algorithms:

(Job Scheduling)
(Vertex Cover)

(Knapsack)
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