Algorithm Design and Analysis

Approximation Algorithms

Goals for today

- Understand the motivation and definition of approximation algorithms
- Demonstrate three common techniques for approximation algorithms:
 - Greedy (Job Scheduling)
 - LP rounding (Vertex Cover)
 - Scaling (Knapsack)

Approximation algorithms: what & why

- Some problems are hard to solve (e.g., NP-Hard problems)
- What can we do when faced with such problems?
 - Give up?
 - Implement heuristics/pruning that speed up "common" inputs. Algorithm is still worst-case exponential time but fast enough for many "real life" inputs.

Idea (approximation algorithms): Try to find a solution that is not necessarily optimal but is **provably close to optimal**, with an efficient (polynomial time) algorithm.

Formal definition

Definition (c-approximation algorithm):

- Consider an optimization problem (minimize or maximize)
- Say the value of the optimal solution is OPT
- Say that our algorithm outputs a solution with value ALG
- Our algorithm is a c-approximation if

Minimization Problems

$$ALG \leq c \cdot OPT$$

The solution is at most c > 1 times **too big**

Maximization Problems

$$ALG > c \cdot OPT$$

The solution is at most c < 1 times **too small**

Technique #1

Greedy algorithms

Job Scheduling

Problem: Given m identical "machines" and n "jobs", where job i takes p_i processing time to run, assign jobs to machines to minimize the **makespan**, the time at which the last job finishes

Alternative interpretation: Given n blocks where block i has height p_i , we want to make m stacks of blocks, with the goal of minimizing the height of the tallest stack

Job Scheduling

Example: $p = \{1, 3, 2, 4, 5, 2, 5\}, \underline{m = 3}$

Makespan = 8

Approximation algorithm for job scheduling

Algorithm: Greedy job scheduling

start with m empty stacks

for each block

add the block to the shortest current stack

Analysis of greedy job scheduling

Claim: Greedy job scheduling is a 2-approximation algorithm

- Let p_i^* be the height of the *last block* on the tallest stack
- Let *L* be the remaining height of the tallest stack

Can we do better than 2?

Question: What is a worst-case input for greedy scheduling?

Idea: Small stuff first, big stuff at the end

Example: m^2 blocks of size 1, then one block of size m

Better algorithm for job scheduling

Algorithm: Sorted greedy job scheduling start with m empty stacks for each block i in order from big to small add block i to the shortest current stack

Analysis of sorted greedy job scheduling

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm

• $OPT \ge p_i^*$ and $OPT \ge L$ still true

- One stack has at least two

Summary of Greedy

Take-home messages:

- Greedy algorithms are often good approximations
- Hardest part is the proof
 - Need to find a way to connect OPT to ALG
 - ullet Often achieved by lower bounding OPT and relating this to ALG

Technique #2

LP Rounding

Problem: Vertex Cover

Problem: Given an undirected graph G = (V, E), a **vertex cover** is a subset of the vertices $C \subseteq V$ such that every edge is adjacent to at least one $v \in C$.

A *minimum vertex cover* is a smallest possible vertex cover

Linear program (relaxation) for vertex cover

Variables x_v for each vertex v

minimize
$$\sum_{v \in V} x_v$$

s.t. $x_u + x_v \ge 1$ for all $(u, v) \in E$
 $x_v \ge 0$ for all $v \in V$

Remember: Can give fractional solutions

Approximation algorithm for vertex cover

Algorithm: Rounding vertex cover

Solve the LP relaxation for x_v

for each vertex v

if $x_v \ge 1/2$ then

add v to the vertex cover

Analysis of LP rounding for vertex cover

Claim 1: The LP rounding algorithm outputs a valid vertex cover

Proof: AFSOC
$$(u,v)$$
 is not covered $\times u < \frac{1}{2} \times v <$

Analysis of LP rounding for vertex cover

Claim 2: The LP rounding algorithm is a 2-approximation algorithm

Proof: Rounding
$$X_V$$
 from $\frac{1}{2}$ to $\frac{1}{2}$ doubles (at most)

Objective = $\frac{1}{2} \times V$ at most doubles

ALG $\leq 2 \cdot LP \leq 2 \cdot OPT$

Telaration of a minimization problem

Check your understanding

Question: Can we apply this algorithm to *any* LP relaxation and get a 2-approximation? Why or why not

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{e \in E} x_e \\ \text{s.t.} & \displaystyle \sum_{\substack{e \text{ s.t.} \\ v \in e}} x_e \leq 1 \quad \text{ for all } v \in V \\ & x_e \geq 0 \quad \text{ for all } e \in E \\ \end{array}$$

- Rounding up would violate constraints
- Rounding down would give a low value (zero)

Technique #3 Scaling

Problem: Knapsack

Definition (Knapsack): Given a set of n items, the i^{th} of which has size s_i and value v_i . The goal is to find a subset of the items whose total size is at most S, with maximum possible value.

- In Lecture 10, we devised a DP solution that runs in O(nS) time where S is the size of the knapsack.
- This is **pseudopolynomial** time, i.e., polynomial in the input numbers but not in the input size
- Efficient only if S is small

Alternative DP formulation

V= max value of any item

$$O(n^2 V)$$

 We can alternatively make the runtime depend polynomially on the values rather than size/weight

 $G(k, P) = \text{Minimum weight of a subset of items } \{1, ..., k\} \text{ with value } \geq P$

$$G(k,P) = \begin{cases} O & \text{if } k = 0 \text{ and } P \leq 0 \\ & \text{if } k = 0 \text{ and } P > 0 \end{cases}$$

$$\min \left\{ \frac{\zeta(k-1,P)}{\zeta(k-1,P)}, \frac{\zeta(k-1,P-V_k) + \zeta_k}{\zeta(k-1,P-V_k) + \zeta_k} \right\} \text{ otherwise}$$

Scaling: The Idea

- We have a **pseudopolynomial-time** algorithm running $O(n^2V)$ where V is the maximum value of any item.
- This is efficient if V is small
- So, let's just make it small?

Idea (scaling): When the runtime depends on a number in the input, scale those numbers down and round them, introducing small error.

Scaling: The Idea

6kg \$11989

\$14897

3kg \$6005

5kg \$12489

G

Scale down (by carefully chosen factor)

3kg

the scaling factor be?

Question:

\$7.123

4kg \$9.423

В

2kg

\$5.210

6kg \$11.989

\$14.897

\$6.005

5kg \$12.489

Round and solve small problem

\$6

- Scale all values down by a factor of $k = \frac{V}{10n}$, i.e., set $v_i' = \left| \frac{v_i}{k} \right|$
- Solve the scaled problem and output the optimal set of items

Claim: This algorithm runs in $O(n^3)$ time

Proof:
$$O(n^2 V) = O(n^3)$$
 because max value $\leq 10n$

The scaling algorithm

- Scale all values down by a factor of $k = \frac{V}{10n}$, i.e., set $v_i' = \left\lfloor \frac{v_i}{k} \right\rfloor$
- Solve the scaled problem and output the optimal set of items

Claim: This algorithm is a 0.9-approximation

Proof: "Loss" per item
$$V_i - V_i' \cdot k = V_i - \lfloor \frac{V_i}{k} \rfloor \cdot k \le k$$
"Loss" for whole subset $\le nk = \frac{V}{10}$

ALG >, OPT $-\frac{V_i}{10} > 0$

Rounding error

Scaling more generally

- The constant of 10 was arbitrary and gave us a 0.9 approximation
- Can scale by $\frac{\varepsilon V}{n}$ to get a (1ε) approximation!
- This is called a *polynomial-time approximation scheme* (PTAS). We can get any constant factor we want!
- Works for other dynamic programming algorithms that run in pseudopolynomial time

Summary

- We **defined** the concept of *approximation algorithms*
- We practiced three techniques for building approximation algorithms:
 - Greedy (Job Scheduling)
 - LP rounding (Vertex Cover)
 - Scaling (Knapsack)