
1

Algorithm
Design and Analysis

Approximation Algorithms

Goals for today

• Understand the motivation and definition of approximation algorithms

• Demonstrate three common techniques for approximation algorithms:

• Greedy (Job Scheduling)

• LP rounding (Vertex Cover)

• Scaling (Knapsack)

2

Approximation algorithms: what & why

• Some problems are hard to solve (e.g., NP-Hard problems)
• What can we do when faced with such problems?

• Give up?
• Implement heuristics/pruning that speed up “common” inputs. Algorithm is

still worst-case exponential time but fast enough for many “real life” inputs.

3

Idea (approximation algorithms): Try to find a solution that is not
necessarily optimal but is provably close to optimal, with an efficient
(polynomial time) algorithm.

Formal definition

4

Definition (𝒄-approximation algorithm):

• Consider an optimization problem (minimize or maximize)

• Say the value of the optimal solution is OPT

• Say that our algorithm outputs a solution with value ALG

• Our algorithm is a 𝒄-approximation if

Minimization Problems

𝐴𝐿𝐺 ≤ 𝑐 ⋅ 𝑂𝑃𝑇

The solution is at most 𝑐 > 1 times too big

Maximization Problems

𝐴𝐿𝐺 ≥ 𝑐 ⋅ 𝑂𝑃𝑇

The solution is at most 𝑐 < 1 times too small

Technique #1
Greedy algorithms

5

Job Scheduling

6

Problem: Given 𝑚 identical “machines” and 𝑛 “jobs”, where job 𝑖
takes 𝑝𝑖 processing time to run, assign jobs to machines to minimize
the makespan, the time at which the last job finishes

Alternative interpretation: Given 𝑛 blocks where block 𝑖 has height
𝑝𝑖, we want to make 𝑚 stacks of blocks, with the goal of minimizing
the height of the tallest stack

Job Scheduling

7

Example: 𝒑 = 𝟏, 𝟑, 𝟐, 𝟒, 𝟓, 𝟐, 𝟓 , 𝒎 = 𝟑

1

3
2

4
5 5

2

1

3

2

4

5 5

2

Makespan = 9

1

3

2

4

5 5

2

Makespan = 8

Approximation algorithm for job scheduling

8

1

3
2

4
5 5

2

Algorithm: Greedy job scheduling
start with 𝑚 empty stacks
for each block
 add the block to the shortest current stack

Analysis of greedy job scheduling

Proof:

9

𝒑𝒊
∗

𝑳

• Let 𝑝𝑖
∗ be the height of the last block on the tallest stack

• Let 𝐿 be the remaining height of the tallest stack

Claim: Greedy job scheduling is a 2-approximation algorithm

Can we do better than 2?

Question: What is a worst-case input for greedy scheduling?

10

Idea: Small stuff first, big stuff at the end

Example: 𝑚2 blocks of size 1, then one block of size 𝑚

𝒎 × 𝒎

𝒎

𝒎 𝒎 × (𝒎 − 𝟏)

𝟏 × 𝒎

ALG = 𝟐𝒎 OPT = 𝒎 + 𝟏

Better algorithm for job scheduling

11

1

3
2

4
55

2

Algorithm: Sorted greedy job scheduling
start with 𝑚 empty stacks
for each block 𝑖 in order from big to small
 add block 𝑖 to the shortest current stack

Analysis of sorted greedy job scheduling

Proof:

12

𝒑𝒊
∗

𝑳

• 𝑂𝑃𝑇 ≥ 𝑝𝑖
∗ and 𝑂𝑃𝑇 ≥ 𝐿 still true

Claim: Sorted greedy job scheduling is a 1.5-approximation algorithm

Summary of Greedy

Take-home messages:

• Greedy algorithms are often good approximations

• Hardest part is the proof

• Need to find a way to connect 𝑂𝑃𝑇 to 𝐴𝐿𝐺

• Often achieved by lower bounding 𝑂𝑃𝑇 and relating this to 𝐴𝐿𝐺

13

Technique #2
LP Rounding

14

Problem: Vertex Cover

A minimum vertex cover is a smallest possible vertex cover

15

Problem: Given an undirected graph 𝐺 = (𝑉, 𝐸), a vertex cover is a
subset of the vertices 𝐶 ⊆ 𝑉 such that every edge is adjacent to at
least one 𝑣 ∈ 𝐶.

Linear program (relaxation) for vertex cover

Variables 𝑥𝑣 for each vertex 𝑣

16

Remember: Can give fractional solutions

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

Approximation algorithm for vertex cover

17

Algorithm: Rounding vertex cover
Solve the LP relaxation for 𝑥𝑣

for each vertex 𝑣
 if 𝑥𝑣 ≥ 1/2 then
 add 𝑣 to the vertex cover

Analysis of LP rounding for vertex cover

Proof:

18

Claim 1: The LP rounding algorithm outputs a valid vertex cover

Analysis of LP rounding for vertex cover

Proof:

19

Claim 2: The LP rounding algorithm is a 2-approximation algorithm

Check your understanding

Question: Can we apply this algorithm to any LP relaxation and get a 2-
approximation? Why or why not

20

• Rounding up would violate constraints

• Rounding down would give a low value (zero)

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

Technique #3
Scaling

21

Problem: Knapsack

• In Lecture 10, we devised a DP solution that runs in 𝑂(𝑛𝑆) time
where 𝑆 is the size of the knapsack.

• This is pseudopolynomial time, i.e., polynomial in the input numbers
but not in the input size

• Efficient only if 𝑆 is small

22

Alternative DP formulation

• We can alternatively make the runtime depend polynomially on the
values rather than size/weight

𝐺 𝑘, 𝑃 = Minimum weight of a subset of items 1, … , 𝑘 with value ≥ 𝑃

23

Scaling: The Idea

• We have a pseudopolynomial-time algorithm running 𝑂(𝑛2𝑉) where
𝑉 is the maximum value of any item.

• This is efficient if 𝑉 is small

• So, let’s just make it small?

24

Idea (scaling): When the runtime depends on a number in the input,
scale those numbers down and round them, introducing small error.

Scaling: The Idea

25

A B C D E

3kg
$7123

F G

4kg
$9423

2kg
$5210

6kg
$11989

7kg
$14897

3kg
$6005

5kg
$12489

Scale down
(by carefully
chosen factor)

A B C D E

3kg
$7.123

F G

4kg
$9.423

2kg
$5.210

6kg
$11.989

7kg
$14.897

3kg
$6.005

5kg
$12.489

Round and
solve small
problem

A B C D E

3kg
$7

F G

4kg
$9

2kg
$5

6kg
$11

7kg
$14

3kg
$6

5kg
$12

Question:
What should
the scaling
factor be?

The scaling algorithm

• Scale all values down by a factor of 𝒌 =
𝑽

𝟏𝟎𝒏
, i.e., set 𝑣𝑖

′ =
𝑣𝑖

𝑘

• Solve the scaled problem and output the optimal set of items

26

Claim: This algorithm runs in 𝑂 𝑛3 time

Proof:

The scaling algorithm

• Scale all values down by a factor of 𝒌 =
𝑽

𝟏𝟎𝒏
, i.e., set 𝑣𝑖

′ =
𝑣𝑖

𝑘

• Solve the scaled problem and output the optimal set of items

27

Claim: This algorithm is a 0.9-approximation

Proof:

Scaling more generally

• The constant of 10 was arbitrary and gave us a 0.9 approximation

• Can scale by
𝜀𝑉

𝑛
 to get a 1 − 𝜀 approximation!

• This is called a polynomial-time approximation scheme (PTAS). We
can get any constant factor we want!

• Works for other dynamic programming algorithms that run in
pseudopolynomial time

28

Summary

• We defined the concept of approximation algorithms

• We practiced three techniques for building approximation algorithms:

• Greedy (Job Scheduling)

• LP rounding (Vertex Cover)

• Scaling (Knapsack)

29

	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Approximation algorithms: what & why
	Slide 4: Formal definition
	Slide 5: Technique #1
	Slide 6: Job Scheduling
	Slide 7: Job Scheduling
	Slide 8: Approximation algorithm for job scheduling
	Slide 9: Analysis of greedy job scheduling
	Slide 10: Can we do better than 2?
	Slide 11: Better algorithm for job scheduling
	Slide 12: Analysis of sorted greedy job scheduling
	Slide 13: Summary of Greedy
	Slide 14: Technique #2
	Slide 15: Problem: Vertex Cover
	Slide 16: Linear program (relaxation) for vertex cover
	Slide 17: Approximation algorithm for vertex cover
	Slide 18: Analysis of LP rounding for vertex cover
	Slide 19: Analysis of LP rounding for vertex cover
	Slide 20: Check your understanding
	Slide 21: Technique #3
	Slide 22: Problem: Knapsack
	Slide 23: Alternative DP formulation
	Slide 24: Scaling: The Idea
	Slide 25: Scaling: The Idea
	Slide 26: The scaling algorithm
	Slide 27: The scaling algorithm
	Slide 28: Scaling more generally
	Slide 29: Summary

