Algorithm
Design and Analysis

Linear Programming Part Il: Duality



 Reminder: Midterm Two is next week (see the form on Ed that you
should fill out if you require a make up exam!)

e “Standard Form” for linear programs
* Linear program duality
* Weak and strong duality theorems

* Examples of duality



A linear program consists of
* n real-valued variables x4, x,, ..., X,
* Alinear objective function, e.g., minimize/maximize 2x; + 3x, + X3

* m linear inequalities, e.g., 3x; + 4x, < 6,or0 < x; <3

Goal: Find values for x’s that satisfy the constraints and minimize/maximize the objective



* The same LP can be written in many ways

* |tis convenient to have a “standard way” to write an LP

An LP with n variables x4, ..., x,, and m constraints in standard
form is written with constants ¢4, ..., ¢, by, ...by, Qq1, .., Qmn

Objective must

subjectto a;,x; + -+ ajpx, < by — maximize c¢’x
Constraints are ) az1X1 + et ArnXn = b2 s subject to Ax<b
all < constant ; x >_0

All variables are non-

negative. (These do not .
) . >

count towards the m x; 20 foralli

number of constraints!)



Every LP that is not written in standard form
can be converted to an equivalent LP in standard form

How to convert minimization to maximization?
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How to convert a = constraint?
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How to convert a variable x; which could negative?
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- Objective must
X = "" be max, not min

Constraints are
all < constant

All variables are non-
negative.



Motivating problem: The carpenter

* You are a carpenter. You make tables, chairs, and shelves out of wood,
nails, and paint.

S B S T T

Table
Chair 4 15 3 $30
Shelf

* How many of each item should you make for maximum profit
(ignoring rounding errors)



Motivating problem:

moximizg  SO% * BOJ + 20z

@ > 4 q—ﬂ-,-gz < (0D
20x+f§3'f‘5-2 £ 200
E§x t+34tsz < &
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The carpenter

Let x = #tables, y = #chairs, z = #shelves

IS T TS Ty
Table $50
Chair 4 15 3 $30
Shelf $20

Solution: s~ | g2 U: kg z- C!,oq

4 709.09



* Along comes a traveling merchant willing to purchase your stock of
wood, nails, and paint, for a fair price.

 What is a fair price for wood, nails, and paint?

* You are not willing to sell your materials for less than the amount you
could make by turning them into items



Along comes a merchant

mimmize (00w + 300s+ &0 p

qz W t 20 C -t é;-la' ?>4S—

4w +ifs ¢ 3Ip %30
ES(AJ + S:E; ~+ E:Ib > 20

L«], S-,]D 2, C)

Let w = $wood, s = $nails, p = $paint

IS T TS Ty
Table $50
Chair 4 15 3 $30
Shelf $20

Solution: (= 2,73 g= 0.73, P-’Z\?j

$709.09



maximize 50x + 30y + 20z

subjectto 8x+ 4y + 3z <100
20x + 15y + 5z < 300
5x+ 3y+ 3z<80

x,y,Z=0
8 4 3
A=120 15 5
5 3 3
max  CTX
Ax <b
> 0O

minimize 100w + 300s + 80p

subjectto 8w + 20s + 5p = 50
4w + 15s + 3p = 30
3w+ 554 3p =20
w,s,p =0
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Definition (Dual): Given a standard-form LP, its dual is

maximize c¢’x minimize b’y
subjectto Ax < b subjectto ATy > ¢
x=0 y=0

* The original problem is called the primal problem

* |f the primal has n variables and m constraints, the dual has m variables
and n constraints, i.e., variables and constraints swap roles!

Exercise: Show that the dual of the dual is the primal. This shows that which
one you call the primal and which you call the dual is arbitrary



maximize c¢’x minimize bTy
subjectto Ax < b &« subjectto ATy >c e—
x=0 y=0

Theorem (Weak Duality): If x is any feasible solution to the primal LP and y is any
feasible solution to the dual LP
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Proof. Cx < (ATfj)X



maximize c¢’x minimize b’y
subjectto Ax < b subjectto ATy > ¢
x=0 y=0

Theorem (Strong Duality): If the primal problem is feasible and bounded, then the

dual is feasible and bounded. If x* is an optimal solution to the primal LP and y™ is
an optimal solution to the dual LP

Proof: Too long.
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e Suppose the primal problem is unbounded, what can we say about

? . .
the dual: Dud y m&uz%a

e Similarly, suppose the dual problem is unbounded, what can we say

about the primal? Prme indenidd

* Consequence: It is impossible for both the primal and dual to be

unbounded. e —w"

S



Application



Variables: p;,..., p, and v.

Objective: Maximize v.
Constraints:
- pi20

n
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forall1<i<n,

(the p; form a probability distribution)

forall columns 1< j<m

ROVJ

M:

——
—

~-
Il
[y

INgE
=
A
([~

7

P2

P/

I

Ay ¢

( ‘l:?m)

e Let R denote the payoff matrix

* Assume WLOG R;; =2 0

e Solution of this LP is

Ib® = max m,inz DiR;;
pJ &
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LP for (87

< (P *
Zero-sum games, the dual © el d LPdrud
- - o o Dual LP
P 10 1 —RT 0 minimize by
Y=1:| €= 4= : b = : subjectto A"y > ¢
| Pn | 0] 0o 1 - 1 1 y=0
. /
Call the dual variables y = [q1,q2, .., Gy V']T minimizg
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Theorem (Minimax): Given a finite 2-player zero-sum game with row payoff matrix R

Ib* = max m_inz piR;; = min m_axz q;R;; = ub”
— p J L qQ | &
i J

—

Proof: Strong duality of the LPs from the last two slides!



gives us a powerful tool to prove see a problem in an
equivalent but different form

* The tell us about the relationship
between the primal and dual problem

* Duality can be used to prove equivalence between two problems
(e.g., proving the )
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