Linear Programming I

David Woodruff

Outline

- Definition of linear programming and examples
- A linear program to solve max flow and min-cost max flow
- A linear program to solve minimax-optimal strategies in games

Example

- There are 168 hours in a week. Want to allocate our time between
 - studying (S)
 - going to parties (P)
 - everything else (E)
- To survive: $E \ge 56$
- For sanity: $P + E \ge 70$
- To pass courses: $S \ge 60$
- If party a lot, need to study or eat more: $2S + E 3P \ge 150$
- Is there a *feasible* solution? Yes, S = 80, P = 20, E = 68
- Happiness is 2P + E. Find a feasible solution maximizing this *objective function*

Linear Program

- This is called a *linear program (LP)*
- All constraints are linear in our variables
- Objective function is linear
- Don't allow $S \cdot E \ge 100$, that's a polynomial program. Much harder.

Formal Definition

- Given:
 - n variables $x_1, ..., x_n$
 - m linear inequalities in these variables
 - E.g., $3x_1 + 4x_2 \le 6$, $0 \le x_1$, $x_1 \le 3$
- Goal:
 - Find values for the x_i 's that satisfy constraints and maximize objective
 - In the feasibility problem just satisfy the constraints
 - What would happen if we allowed strict inequalities $x_1 < 3$?
 - max x₁

Time Allocation Problem

- Variables: S, P, E
- Objective: Maximize 2P + E subject to
- Constraints: S + P + E = 168

$$E \ge 56$$

$$S \ge 60$$

$$2S + E - 3P \ge 150$$

$$P + E \ge 70$$

$$P \ge 0$$

Operations Research Problem

	labor	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

What are the variables?

 x_1, x_2, x_3, x_4 denote the number of cars at plant i

What's our objective?

maximize $x_1 + x_2 + x_3 + x_4$

- Required to make at least 400 cars at plant 3
- Have 3300 hours of labor and 4000 units of material
- At most 12000 units of pollution
- Maximize number of cars made

 labor
 materials
 pollution

 plant 1
 2
 3
 15

 plant 2
 3
 4
 10

 plant 3
 4
 5
 9

 plant 4
 5
 6
 7

Make at least 400 cars at plant 3

3300 hours of labor and 4000 units of material

At most 12000 units of pollution Maximize number of cars made

Note: linear programming does not give an integral solution (NP-hard)

What are the variables?

 x_1, x_2, x_3, x_4 denote the number of cars at plant i

What's our objective?

maximize
$$x_1 + x_2 + x_3 + x_4$$

Constraints:
$$x_i \ge 0$$
 for all i $x_3 \ge 400$ $2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$ $3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$ $15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$

Modeling Network Flow

Variables: f_{uv} for each edge (u,v), representing positive flow

Objective: maximize $\sum_{u} f_{ut} - \sum_{u} f_{tu}$

Constraints: For all edges (u,v) $0 \le f_{uv} \le c(u,v)$ (capacity constraints)

For all $v \notin \{s, t\}$, $\sum_{u} f_{uv} = \sum_{u} f_{vu}$ (flow conservation)

Modeling Network Flow

In this case, our LP is: maximize $f_{ct} + f_{dt}$ subject to the constraints:

$$0 \le f_{sa} \le 4, \ 0 \le f_{ac} \le 3, \ \text{etc.}$$

$$f_{sa} = f_{ac}, f_{sb} + f_{cb} = f_{bc} + f_{bd}, f_{ac} + f_{bc} = f_{cb} + f_{ct}, f_{bd} = f_{dt}.$$

Min Cost Max Flow

- Edge (u,v) has a capacity c(u,v) and a cost w(u,v)
- Find a max s-t flow of least total cost, where the cost of flow f is

$$\sum_{(u,v)\in E} w(u,v)f_{uv}$$

- How to solve this?
- Solution 1: Solve for a maximum flow f Add a constraint that flow must equal the flow of f $\text{Minimize } \sum_{(u,v)\in E} w(u,v) f_{uv} \text{ also subject to original constraints}$
- Solution 2: Add an edge (t,s) of infinite capacity and very negative cost
 Minimizing cost automatically maximizes flow

Min Cost Max Flow

$$\min \sum_{(u,v) \in E} w(u,v) f_{uv}$$

7ero Sum Games

Row payoffs:
$$\begin{bmatrix} 20 & -10 & 5 \\ 5 & 10 & -10 \\ -5 & 0 & 10 \end{bmatrix}$$

- Given a zero-sum game with n rows and n columns, compute a minimax optimal strategy for row player
- What are the variables?
 - Probabilities $p_1, ..., p_n$ on our actions
 - Linear constraints: $\sum_{i=1,\dots,n} p_i = 1$ and $p_i \geq 0$ for all i
 - Maximize the minimum expected payoff, over all column pure strategies
- How to maximize a minimum with a linear program?
- Create new "dummy variable" v to represent minimum

Zero Sum Games

 \bullet $R_{i,j}$ represents payoff to row player with row player action i and column player action j

- Variables: $p_1, ..., p_n$ and v
- Objective: maximize v
- Constraints:
 - $p_i \ge 0$ for all i, and $\sum_i p_i = 1$
 - For all columns j, $\sum_i p_i R_{ij} \ge v$

Optiver

Driven by technology, powered by people

Our mission

We improve the markets

Our culture

We do our best work together

Cutting-edge tech

Best-in-class systems developed in-house

Your growth

There's no limit to how quickly you can grow your career at Optiver

Opportunities

Software Engineer

- Create, maintain and improve trading systems
- Collaborate crossfunctionally
- Solve for complex challenges that have a direct impact on the business

FPGA Engineer

- Accelerate network infrastructure and trading system components
- Identify optimization opportunities
- Utilize or build cutting-edge server hardware

Quantitative Trader

- Manage a trading book as a team
- Continuously refine and improve strategies
- Develop innovative statistical models

Quantitative Researcher

- Use statistical models and machine learning to develop trading algorithms
- Collaborate with a dynamic team
- Build stochastic models to determine the fair value of financial derivatives

Optiver **A**

Elan Biswas

Software Engineer

Career

- Aug 2023 Present: Software Engineer at Optiver
- Summer 2022: SWE Intern at Optiver
- Fall 2021: SWE Intern at Amazon AWS
- Summer 2021: SWE Intern at Pinterest

Education

- Carnegie Mellon University Class of 2023
- Major: Computer Science
- Concentration: Computer Systems

What I do at Optiver

Pricing Team

From the Trader to the Auto-Trader

Where do all these apps run?

- ...on computers, or **hosts**
- Colocation shared server room close to exchange
- Space is limited and costly to rent
- We partition the processes based on their configurations
 - e.g. by desk group of products traded by 1 team

Assigning Processes to Hosts

- Each host has a limited # of cores and GBs of RAM
- Each process requires use of some cores and RAM
- Goal: isolate partitions of the stack
 - Unrelated desks ideally shouldn't share a host
- Could we formulate this as an LP?
- Yes! Specifically, we define a 0-1 Integer LP
 - All variables are binary
 - NP-Complete, but many heuristic solvers exist

Decision Variables

•
$$p_{ih} = \begin{cases} 1, & \text{proc. } i \text{ assigned to host } h \\ 0, & OTW \end{cases}$$

•
$$d_{ih} = \begin{cases} 1, & \text{desk } i \text{ configured on host } h \\ 0, & OTW \end{cases}$$

Objective Function

- We want to reduce the surface area of each desk
 - Minimize # of desks on a given host
- Recall d_{ih} indicates desk i is configured on host h
- We want to minimize

$$\sum_{\substack{i \in Desks \\ h \in Hosts}} d_{il}$$

Process Constraints

- Each process must be assigned to exactly 1 host
- For each process *i*

$$\sum_{h \in Hosts} p_{ih} = 1$$

Host Constraints

- Each host h has m_h GB of RAM and c_h cores
- Each process *i* has a resource usage threshold
 - x_i GBs of RAM
 - y_i cores
- For each host *h*:

$$\sum_{i \in Processes} x_i * p_{ih} \le m_h$$

$$\sum_{i \in Processes} y_i * p_{ih} \le c_h$$

Desk Constraints

- $d_{ih} == 1 \Leftrightarrow \text{host } h \text{ has desk } i \text{ configured}$
- Recall that d_{ih} can only be 0 or 1
- How can we enforce this?

Desk Constraints

- Let $a_{ij} = \begin{cases} 1, \text{desk } i \text{ is configured for process } j \\ 0, & \text{OTW} \end{cases}$
 - Known a priori
- For each desk i, host h

$$\sum_{j \in Processes} a_{ij} * p_{jh} \le d_{ih} * |Processes|$$

$$d_{ih} \le \sum_{j \in Processes} a_{ij} * p_{jh}$$

- The solution may pile all apps for a desk on one host
- Heuristic: leftover space of the most burdened host
- We could add buffer variables
 - b_m minimum leftover RAM among all hosts
 - b_c minimum # of leftover cores among all hosts
- Note: no longer 0-1 ILP, but that's okay

• Recall our objective was to minimize

$$\sum_{\substack{i \in Desks \\ h \in Hosts}} d_{ih}$$

 We want to maximize the leftover memory and core space of the most burdened host

Recall our objective was to minimize

$$\sum_{\substack{i \in Desks \\ h \in Hosts}} d_{ih} - b_m - b_c$$

 We want to maximize the leftover memory and core space of the most burdened host

- Need to update constraints to set b_m and b_c
- Recall our host constraints. For each host h

$$\sum_{i \in Processes} x_i * p_{ih} \le m_h$$

$$\sum_{i \in Processes} y_i * p_{ih} \le n_h$$

- Need to update constraints to set b_m and b_c
- Recall our host constraints. For each host h

$$\sum_{i \in Processes} x_i * p_{ih} \le m_h - b_m$$

$$\sum_{i \in Processes} y_i * p_{ih} \le c_h - b_c$$

Putting it All Together

Minimize

 $i \in Procs$

$$\sum_{i,h} d_{ih} - b_m - b_c$$

Subject to constraints

$$\sum_{h \in Hosts} p_{ih} = 1, \qquad \forall i \in Processes$$

$$\sum_{j \in Procs} a_{ij} p_{jh} \le d_{ih} * |Processes|, \forall i \in Desks, h \in Hosts$$

$$\mathbf{d}_{ih} \leq \sum_{j \in Procs} a_{ij} p_{jh}, \qquad \forall i \in Desks, h \in Hosts$$

$$\sum_{i \in Procs} x_i * p_{ih} \le m_h - b_m, \qquad \forall h \in Hosts$$

$$\sum_{i=1}^{n} y_i * p_{ih} \le c_h - b_c, \qquad \forall h \in Hosts$$

Questions?

