Algorithm
Design and Analysis

Game Theory (and applications to algorithm analysis!)



e Midterm two is

* Conflict? We will post a form on Ed for you to apply for make-up exam

* Programming Homework 3 is coming out later today, due next week
on Saturday

* Homework 6 (oral) is coming later today, oral presentations next week
Wednesday - Friday



* Most common criticism:

 Style grading will still exist, however,

* we will try to make it more lenient

* Homework timeline:

* HW6 and Programming 3 will release early (today),

* Programming 3 due slightly later



Roadmap for today

* Two-player zero sum games
* Minimax-optimal strategies for two-player zero-sum games

e Using game theory to analyze randomized algorithms!



* Game theory is the study of models of between
agents/players

* Each agent/player must choose an action, and wants to figure out the
“best” possible action without knowing which action the other
players will make

* The combined actions of the players gives each player a
Players want their own payoff to be as high as possible.



Example (Soccer / “shooter-goalie game”):

» 2 players: The shooter and the goalie

Shooter has two possible actions: kick left or kick right (say {L, R})

Goalie has two possible actions: dive left or dive right (say {L, R})

If the shooter and goalie both choose L or both choose R, the goalie is happy (they block the ball)

If the shooter and goalie pick different directions, the shooter get the goal
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* |n a 2-player game, the payoff is a pair (r, ¢), the payoffs to the row
player and column player respectively

. If for every entry r + ¢ = 0, the game is a

* For zero-sum games, we often just write the row-payoff matrix R
since we can infer the column payoffs C (since R + C = 0)
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 How should the players play if they want a high payoff?

: Choose a single action deterministically.
* Row player chooses an action i and column player chooses an action j
* Payoff is R; ; for the row player and C; ; for the column player

: Choose an action randomly!
* The row player has a probability distribution: p; € [0,1] for each i
* The column player has a probability distribution: q; € 10,1] for each j



* When playing a mixed strategy, we get an
* Define Vg (p, q) as the expected row payoff
* Define V.(p, q) as the expected column payoff
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* The row player wants to pick their strategy p* to maximize the
expected payoff over all possible strategies g of the column player.

* Given a strategy p for the row player, define the lower bound as
Ib(p) := min Vx(p, q)

* The row player can guarantee this expected payoff regardless of the
column player’s strategy, so the lower bound to the row player is:

Ib* := max1b(p) = max min Vg (p, q)
p P q



 Similarly, given a strategy q for the column player, there is some
highest-payoff response from the row player

ub(q) = mI?X Ve(DP,q)

* This is an upper bound on the payoff that the row player can achieve.

* The worst possible upper bound for the row player is therefore

ub* := min ub(q) = min max V,(p, q)
q q p



* We know that Ib(p) < ub(q) by definition
* This property can be used to prove that a strategy is optimal

* Like flows/cuts! If we find a flow with value F and a cut of capacity C,
since F < C for all F and C this proves that F was a max flow.

* That is, if we can find a p and a q such that Ib(p) = ub(q) then this is
a proof that these strategies are optimal!



* Suppose we consider a fixed row strategy p and want to compute the
lower bound, i.e., the best counter-strategy q from the column player.

: To evaluate Ib(p), we can assume the column player plays a pure strategy

Ib(p) = m(}n Ve(p, q) = mjin Z DiR;
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* Suppose we (row player, i.e., shooter) play p = (%,%)
* |f Goalie plays L: payoff = 7 () ¢ HORE O

* If Goalie plays R: payoff= 3 (-!) + ()= 0

3
+So,Ib(p)= Mmn(0,0) = O



* Suppose the column player (goalie) plays q = (%,%)
* |f Shooter plays L: payoff = *;_(l) + é(" ’) =0

* |f Shooter plays R: payoff = "2‘,(") n é(l) =0

- So,ub(q) = Mmax(0,0) = D

b (p) = wb(g) = O



 Coincidentally, we had Ib® = ub”
* Not a coincidence!!

: Given a finite two-player zero-sum game with payoff matrices R = —C,

Ib* = maxlb(p) = maxmin Vi (p,q) = min max Vi (p, q) = min ub(q) = ub”
p P q qQ p q

* Proof in a few lectures from now!

* Useful fact: If you play a minimax strategy, you can even tell your
opponent your strategy without losing anything!



: Guess and bound. We did this before by finding a pair of
strategies p and q such that Ib(p) = ub(q)

: Graph and optimize. We can try to do this if guessing the
optimal value is too hard. Requires the game to have two rows.



column player * Say the row player plays row 1 with probability p and row 2
with probability 1 —p
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Row player’s payoff

q
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Additional tricks

* Removing dominated rows or columns. Say the (row) payoff matrix is:

* Convex combinations of rows or columns

(10 03
3
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Applications



* Earlier in the class we proved a worst-case ©(n log n) lower bound
for sorting in the comparison model, for deterministic algorithms

: Any randomized sorting algorithm in the comparison model requires at
least Q(log n!) = Q(n log n) expected comparisons in the worst case.

* We will prove this using game theory!!



* The “game” is played by the adversary (the row player) whose
actions are to choose an input for the problem, and the algorithm
designer (the column player) who chooses an algorithm.

* The payoff is the cost (number of comparisons)
* A deterministic algorithm is a pure strategy

In other words, a
randomized algorithm is the same thing as randomly picking from all possible
deterministic algorithms.



 Say the adversary (row player) picks a pure strategy (an input) i and
the column player picks a mixed strategy (= randomized algorithm) q.

* A complexity lower bound is

Mmin
min max Vp(i = max V. (p, i
randomized inputs [ R( ’ q) input detef‘nrr'?ilr%istic R(p ])
algorithms q distributions p algorithms j

* So, we can instead find a mixed strategy (= distribution of inputs) p
for the adversary (row player) such that every column (deterministic
algorithm) has high cost. What is this called??



: For any randomized algorithm, its expected worst-case cost is at least as
large as the average cost of the best deterministic algorithm over any input
distribution.

* So, we just need to prove that the average cost of any deterministic
algorithm for sorting is at least Q(n log n).

Exercise (or see notes)

Hint: Use decision trees and argue that most of the leaves have high depth
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* We learned about two-player zero-sum games

* We saw how to find minimax-optimal strategies
* Guess and bound technique using Ib and ub
e Graph and optimize (for two-row games)
* Eliminating dominated strategies

* The is a powerful tool

* We can prove worst-case lower bounds for randomized algorithms by
converting them into average-case lower bounds for deterministic
algorithms!
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