
Algorithm
Design and Analysis

Game Theory (and applications to algorithm analysis!)
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Welcome-back reminders

• Midterm two is Tuesday 25th March (Week 10) at 7:00pm

• Conflict? We will post a form on Ed for you to apply for make-up exam

• Programming Homework 3 is coming out later today, due next week 
on Saturday

• Homework 6 (oral) is coming later today, oral presentations next week 
Wednesday - Friday
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Mid-semester feedback feedback

• Most common criticism:
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Style grading

• Style grading will still exist, however,

• we will try to make it more lenient

• Homework timeline:

• HW6 and Programming 3 will release early (today),

• Programming 3 due slightly later



Roadmap for today

• Two-player zero sum games

• Minimax-optimal strategies for two-player zero-sum games

• Using game theory to analyze randomized algorithms!
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Game theory

• Game theory is the study of models of strategic interactions between 
agents/players

• Each agent/player must choose an action, and wants to figure out the 
“best” possible action without knowing which action the other 
players will make

• The combined actions of the players gives each player a payoff. 
Players want their own payoff to be as high as possible.
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Game Theory: Example
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Can encode the game 
as a payoff matrix

Example (Soccer / “shooter-goalie game”):

• 2 players: The shooter and the goalie

• Shooter has two possible actions: kick left or kick right (say 𝐿, 𝑅 )

• Goalie has two possible actions: dive left or dive right (say 𝐿, 𝑅 )

• If the shooter and goalie both choose 𝐿 or both choose 𝑅, the goalie is happy (they block the ball)

• If the shooter and goalie pick different directions, the shooter get the goal



The Payoff Matrix

• In a 2-player game, the payoff is a pair 𝑟, 𝑐 , the payoffs to the row 
player and column player respectively
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• For zero-sum games, we often just write the row-payoff matrix 𝑅 
since we can infer the column payoffs 𝐶 (since 𝑅 + 𝐶 = 0)

Definition: If for every entry 𝑟 + 𝑐 = 0, the game is a zero-sum game



Strategies

• How should the players play if they want a high payoff?
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• Definition (Pure strategy): Choose a single action deterministically.
• Row player chooses an action 𝑖 and column player chooses an action 𝑗

• Payoff is 𝑅𝑖,𝑗 for the row player and 𝐶𝑖,𝑗 for the column player

• Definition (Mixed strategy): Choose an action randomly!
• The row player has a probability distribution: 𝑝𝑖 ∈ [0,1] for each 𝑖
• The column player has a probability distribution: 𝑞𝑗 ∈ 0,1  for each 𝑗



Expected payoff

• When playing a mixed strategy, we get an expected payoff

• Define 𝑉𝑅 𝐩, 𝐪  as the expected row payoff

• Define 𝑉𝑐 𝐩, 𝐪  as the expected column payoff
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Expected payoff example

• Shooter-goalie game with mixed strategies 𝐩 =
1

2
,

1

2
 and 𝐪 =

1

2
,

1

2

• Shooter-goalie game with mixed strategies 𝐩 =
3

4
,

1

4
 and 𝐪 =

3

5
,

2

5
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Lower bound strategies

• The row player wants to pick their strategy 𝐩∗ to maximize the 
expected payoff over all possible strategies 𝑞 of the column player.

• Given a strategy 𝐩 for the row player, define the lower bound as

lb 𝐩 ≔ min
𝐪

𝑉𝑅 𝐩, 𝐪
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• The row player can guarantee this expected payoff regardless of the 
column player’s strategy, so the lower bound to the row player is:

lb∗ ≔ max
𝐩

lb 𝐩 = max
𝐩

 min
𝐪

 𝑉R(𝐩, 𝐪)



Upper bound strategies

• Similarly, given a strategy 𝐪 for the column player, there is some 
highest-payoff response from the row player

ub 𝐪 ≔ max
𝐩

𝑉𝑅(𝐩, 𝐪)

• This is an upper bound on the payoff that the row player can achieve.
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• The worst possible upper bound for the row player is therefore

ub∗ ≔ min
𝐪

 ub 𝐪 = min
𝐪

max
𝐩

𝑉𝑅(𝐩, 𝐪)



Usefulness of lower/upper bounds

• We know that lb 𝐩 ≤ ub 𝐪  by definition

• This property can be used to prove that a strategy is optimal

13

• Like flows/cuts! If we find a flow with value 𝐹 and a cut of capacity 𝐶, 
since 𝐹 ≤ 𝐶 for all 𝐹 and 𝐶 this proves that 𝐹 was a max flow.

• That is, if we can find a 𝐩 and a 𝐪 such that lb 𝐩 = ub 𝐪  then this is 
a proof that these strategies are optimal!



Important lemma: pure response

• Suppose we consider a fixed row strategy 𝐩 and want to compute the 
lower bound, i.e., the best counter-strategy 𝐪 from the column player.
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Theorem: To evaluate lb(𝐩), we can assume the column player plays a pure strategy

lb 𝐩 ≔ min
𝐪

𝑉𝑅 𝐩, 𝐪 = min
𝑗

෍

𝑖

𝑝𝑖𝑅𝑖,𝑗



Example: Shooter-Goalie game

• Suppose we (row player, i.e., shooter) play 𝐩 =
1

2
,

1

2
.

• If Goalie plays L: payoff = 

• If Goalie plays R: payoff = 

• So, lb 𝐩 =
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Example: Shooter-Goalie game

• Suppose the column player (goalie) plays 𝐪 =
1

2
,

1

2

• If Shooter plays L: payoff = 

• If Shooter plays R: payoff = 

• So, ub 𝐪 =
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Von-Neumann’s Minimax Theorem

• Coincidentally, we had lb∗ = ub∗

• Not a coincidence!!
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• Proof in a few lectures from now!

• Useful fact: If you play a minimax strategy, you can even tell your 
opponent your strategy without losing anything!

Theorem: Given a finite two-player zero-sum game with payoff matrices 𝑅 = −𝐶,

lb∗ = max
𝐩

lb 𝐩 = max
𝐩

min
𝐪

𝑉𝑅 𝐩, 𝐪 = min
𝐪

max
𝐩

𝑉𝑅(𝐩, 𝐪) = min
𝐪

 ub 𝐪 = ub∗



Techniques for solving games

• Strategy #1: Guess and bound. We did this before by finding a pair of 
strategies 𝐩 and 𝐪 such that lb 𝐩 = ub 𝐪  
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• Strategy #2: Graph and optimize. We can try to do this if guessing the 
optimal value is too hard. Requires the game to have two rows.



Graph and optimize

• Say the row player plays row 1 with probability 𝑝 and row 2 
with probability 1 − 𝑝
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Expected payoff if 
column plays A:

𝑝0 1

Ex
p

e
ct

e
d

 r
o

w
 p

ay
o

ff

Expected payoff if 
column plays B:

Expected payoff if 
column plays C:

Expected 
minimum payoff:



Graph and optimize

• Given the row player strategy 
2

5
,

3

5
 with 

payoff 3 +
3

5
, how can we find the column 

player strategy?
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Additional tricks

• Removing dominated rows or columns. Say the (row) payoff matrix is:
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• Convex combinations of rows or columns



Applications
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Lower bounds for randomized algorithms!

• Earlier in the class we proved a worst-case Θ 𝑛 log 𝑛  lower bound 
for sorting in the comparison model, for deterministic algorithms
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• We will prove this using game theory!!

Theorem: Any randomized sorting algorithm in the comparison model requires at 
least Ω log 𝑛! = Ω(𝑛 log 𝑛) expected comparisons in the worst case.



Turning algorithms into game theory

• The “game” is played by the adversary (the row player) whose 
actions are to choose an input for the problem, and the algorithm 
designer (the column player) who chooses an algorithm.

• The payoff is the cost (number of comparisons)

• A deterministic algorithm is a pure strategy
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Key idea: A randomized algorithm is a mixed strategy! In other words, a 
randomized algorithm is the same thing as randomly picking from all possible 
deterministic algorithms.



Turning algorithms into game theory

• Say the adversary (row player) picks a pure strategy (an input) 𝑖 and 
the column player picks a mixed strategy (= randomized algorithm) 𝐪.

• A complexity lower bound is
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min
randomized
algorithms 𝐪

max
inputs 𝑖

𝑉𝑅 𝑖, 𝐪

• So, we can instead find a mixed strategy (= distribution of inputs) 𝐩 
for the adversary (row player) such that every column (deterministic 
algorithm) has high cost. What is this called??

= max
input

distributions 𝐩

max
deterministic
algorithms 𝑗

𝑉𝑅 𝐩, 𝑗

Von-Neumann’s Theorem



Turning algorithms into game theory
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• So, we just need to prove that the average cost of any deterministic 
algorithm for sorting is at least Ω 𝑛 log 𝑛 .

Lemma: For any randomized algorithm, its expected worst-case cost is at least as 
large as the average cost of the best deterministic algorithm over any input 

distribution.

Exercise (or see notes)
Hint: Use decision trees and argue that most of the leaves have high depth



Summary of today

• We learned about two-player zero-sum games

• We saw how to find minimax-optimal strategies
• Guess and bound technique using lb and ub

• Graph and optimize (for two-row games)

• Eliminating dominated strategies

• The minimax theorem is a powerful tool

• We can prove worst-case lower bounds for randomized algorithms by 
converting them into average-case lower bounds for deterministic 
algorithms!
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