

Algorithm Design and Analysis

Game Theory (and applications to algorithm analysis!)

Welcome-back reminders

- **Midterm two is Tuesday 25th March (Week 10) at 7:00pm**
 - Conflict? We will post a form on Ed for you to apply for make-up exam
- Programming Homework 3 is coming out later today, due next week on Saturday
- Homework 6 (oral) is coming later today, oral presentations next week Wednesday - Friday

Mid-semester feedback feedback

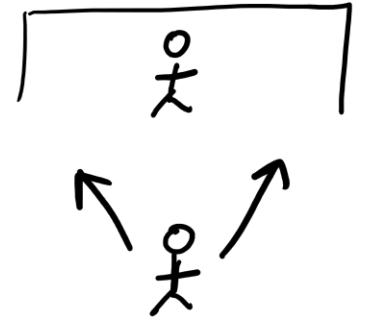
- Most common criticism: **Style grading**
 - Style grading will still exist, however,
 - we will try to make it more lenient
- Homework timeline:
 - HW6 and Programming 3 will release early (today),
 - Programming 3 due slightly later

Roadmap for today

- Two-player zero sum games
- *Minimax-optimal strategies* for two-player zero-sum games
- Using game theory to analyze randomized algorithms!

Game theory

- Game theory is the study of models of *strategic interactions* between agents/players
- Each agent/player must *choose an action*, and wants to figure out the “best” possible action *without knowing which action the other players will make*
- The combined actions of the players gives each player a *payoff*.
Players want their own payoff to be as high as possible.



Game Theory: Example

Example (Soccer / “shooter-goalie game”):

- 2 players: The shooter and the goalie
- Shooter has two possible actions: kick left or kick right (say $\{L, R\}$)
- Goalie has two possible actions: dive left or dive right (say $\{L, R\}$)
- If the shooter and goalie both choose L or both choose R , the goalie is happy (they block the ball)
- If the shooter and goalie pick different directions, the shooter gets the goal

Can encode the game
as a *payoff matrix*

shooter

	Goalie	
L	$(-1, 1)$	$(1, -1)$
R	$(1, -1)$	$(-1, 1)$

The Payoff Matrix

- In a 2-player game, the payoff is a pair (r, c) , the payoffs to the row player and column player respectively

Definition: If for every entry $r + c = 0$, the game is a *zero-sum game*

- For zero-sum games, we often just write the row-payoff matrix R since we can infer the column payoffs C (since $R + C = 0$)

		goalie	
		L	R
shooter	L	(-1, 1)	(1, -1)
	R	(1, -1)	(-1, 1)

→

$$R = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \quad C = -R$$

Strategies

- How should the players play if they want a high payoff?
 - **Definition (*Pure strategy*)**: Choose a single action deterministically.
 - Row player chooses an action i and column player chooses an action j
 - Payoff is $R_{i,j}$ for the row player and $C_{i,j}$ for the column player
 - **Definition (*Mixed strategy*)**: Choose an action randomly!
 - The row player has a probability distribution: $p_i \in [0,1]$ for each i
 - The column player has a probability distribution: $q_j \in [0,1]$ for each j

Expected payoff

- When playing a mixed strategy, we get an *expected payoff*
- Define $\underline{V}_R(p, q)$ as the expected row payoff
- Define $\underline{V}_C(p, q)$ as the expected column payoff

$$V_R(p, q) = \sum_{i,j} p_i q_j \cdot R_{ij}$$

$$V_C(p, q) = \sum_{i,j} p_i q_j \cdot C_{ij}$$

Expected payoff example

- Shooter-goalie game with mixed strategies $\mathbf{p} = \left(\frac{1}{2}, \frac{1}{2}\right)$ and $\mathbf{q} = \left(\frac{1}{2}, \frac{1}{2}\right)$

		goalie	
		L	R
shooter	L	(-1, 1)	(1, -1)
	R	(1, -1)	(-1, 1)

$\frac{1}{2} \cdot \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot \frac{1}{2} \cdot (1) + \frac{1}{2} \cdot \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot \frac{1}{2} \cdot (1) = 0$

- Shooter-goalie game with mixed strategies $\mathbf{p} = \left(\frac{3}{4}, \frac{1}{4}\right)$ and $\mathbf{q} = \left(\frac{3}{5}, \frac{2}{5}\right)$

$$\frac{3}{4} \cdot \frac{3}{5} (-1) + \frac{3}{4} \cdot \frac{2}{5} (1) + \frac{1}{4} \cdot \frac{3}{5} (1) + \frac{1}{4} \cdot \frac{2}{5} (-1) = -\frac{1}{10}$$

Lower bound strategies

- The row player wants to pick their strategy \mathbf{p}^* to maximize the expected payoff **over all possible strategies** \mathbf{q} of the column player.
- Given a strategy \mathbf{p} for the row player, define the *lower bound* as

$$\text{lb}(\mathbf{p}) := \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q})$$

- The row player can guarantee this expected payoff regardless of the column player's strategy, so the lower bound to the row player is:

$$\text{lb}^* := \max_{\mathbf{p}} \text{lb}(\mathbf{p}) = \max_{\mathbf{p}} \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q})$$

Upper bound strategies

- Similarly, given a strategy \mathbf{q} for the column player, there is some highest-payoff response from the row player

$$\text{ub}(\mathbf{q}) := \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q})$$

- This is an **upper bound** on the payoff that the row player can achieve.
- The worst possible upper bound for the row player is therefore

$$\text{ub}^* := \min_{\mathbf{q}} \text{ub}(\mathbf{q}) = \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q})$$

Usefulness of lower/upper bounds

- We know that $lb(\mathbf{p}) \leq ub(\mathbf{q})$ by definition
- This property can be used to **prove that a strategy is optimal**
- Like flows/cuts! If we find a flow with value F and a cut of capacity C , since $F \leq C$ for all F and C this proves that F was a max flow.
- That is, if we can find a \mathbf{p} and a \mathbf{q} such that $lb(\mathbf{p}) = ub(\mathbf{q})$ then this is a proof that these strategies are optimal!

Important lemma: pure response

- Suppose we consider a fixed row strategy \mathbf{p} and want to compute the lower bound, i.e., the best counter-strategy \mathbf{q} from the column player.

Theorem: To evaluate $lb(\mathbf{p})$, we can assume the column player plays a **pure strategy**

$$lb(\mathbf{p}) := \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_j \sum_i p_i R_{i,j}$$

$$\min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} \sum_{i,j} p_i q_j R_{i,j} = \min_{\mathbf{q}} \sum_j q_j \left(\sum_i p_i R_{i,j} \right)$$

constant

$$\min_{\mathbf{q}} \frac{1/10}{q_1} \times \text{const} + \frac{1}{q_2} \times \text{const} + \dots$$

Example: Shooter-Goalie game

- Suppose we (row player, i.e., shooter) play $\mathbf{p} = \left(\frac{1}{2}, \frac{1}{2}\right)$.
 - If Goalie plays L: payoff = $\frac{1}{2}(1) + \frac{1}{2}(-1) = 0$
 - If Goalie plays R: payoff = $\frac{1}{2}(-1) + \frac{1}{2}(1) = 0$
- So, $lb(\mathbf{p}) = \min(0, 0) = 0$

Example: Shooter-Goalie game

- Suppose the column player (goalie) plays $\mathbf{q} = \left(\frac{1}{2}, \frac{1}{2}\right)$
 - If Shooter plays L: payoff = $\frac{1}{2}(1) + \frac{1}{2}(-1) = 0$
 - If Shooter plays R: payoff = $\frac{1}{2}(-1) + \frac{1}{2}(1) = 0$
- So, $ub(\mathbf{q}) = \max(0, 0) = 0$

$$ub(p) = ub(q) = 0$$

Von-Neumann's Minimax Theorem

- Coincidentally, we had $lb^* = ub^*$
- Not a coincidence!!

Theorem: Given a finite two-player zero-sum game with payoff matrices $R = -C$,

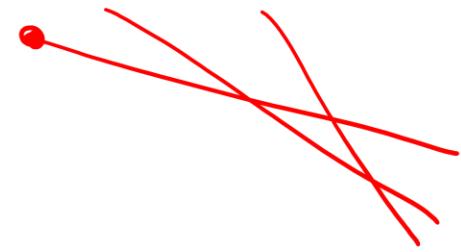
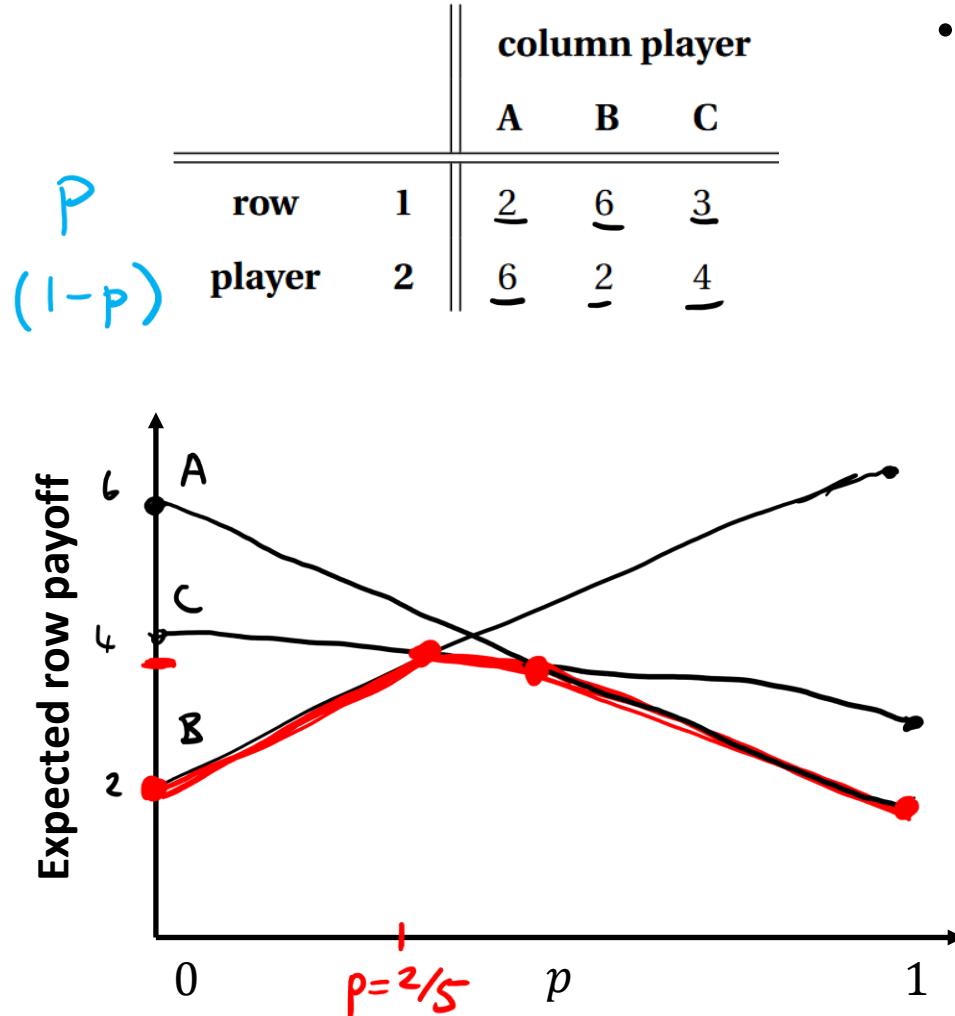
$$lb^* = \max_{\mathbf{p}} lb(\mathbf{p}) = \max_{\mathbf{p}} \min_{\mathbf{q}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} \max_{\mathbf{p}} V_R(\mathbf{p}, \mathbf{q}) = \min_{\mathbf{q}} ub(\mathbf{q}) = ub^*$$

- Proof in a few lectures from now!
- **Useful fact:** If you play a minimax strategy, you can even tell your opponent your strategy without losing anything!

Techniques for solving games

- **Strategy #1:** Guess and bound. We did this before by finding a pair of strategies \mathbf{p} and \mathbf{q} such that $\text{lb}(\mathbf{p}) = \text{ub}(\mathbf{q})$
- **Strategy #2:** Graph and optimize. We can try to do this if guessing the optimal value is too hard. Requires the game to have two rows.

Graph and optimize



- Say the row player plays row 1 with probability p and row 2 with probability $1 - p$

Expected payoff if column plays A:

$$2p + (1-p) \cdot 6 = 6 - 4p$$

Expected payoff if column plays B:

$$6p + (1-p)2 = 2 + 4p$$

Expected payoff if column plays C:

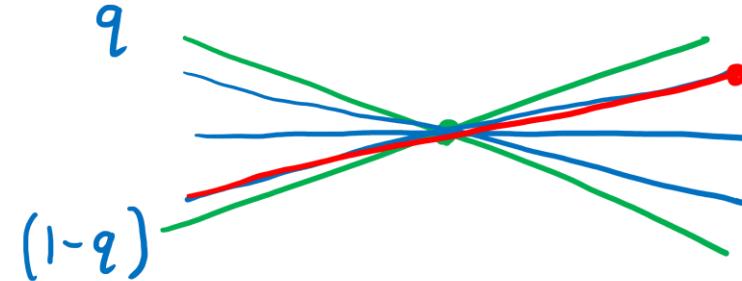
$$3p + (1-p)4 = 4 - p$$

Expected minimum payoff:

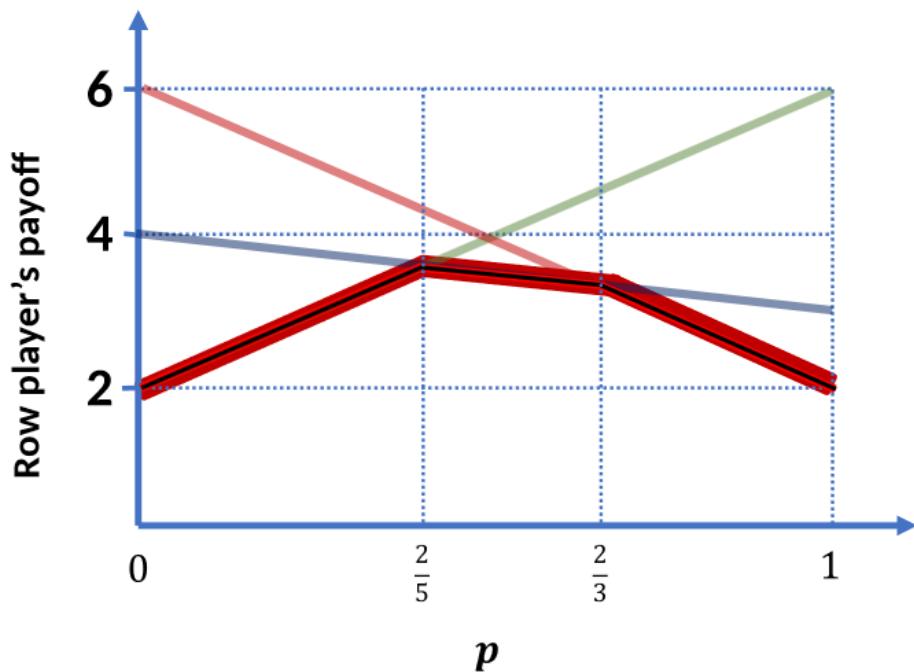
$$\min(6 - 4p, 2 + 4p, 4 - p)$$

$$\text{payoff} = 3 + \frac{3}{5}$$

Graph and optimize



		column player		
		A	B	C
row player	1	2	6	3
	2	6	2	4



- Given the row player strategy $\left(\frac{2}{5}, \frac{3}{5}\right)$ with payoff $3 + \frac{3}{5}$, how can we find the column player strategy?

$$q(2+4p) + (1-q)(4-p) \equiv 3 + \frac{3}{5}$$

$$= 5pq - 2q - p + 4 \equiv 3 + \frac{3}{5}$$

Choose q to make p coeff $\equiv 0$

$$(5q - 1)p - 2q + 4 \equiv 3 + \frac{3}{5}$$

$q = 1/5$

$$-2 \cdot \frac{1}{5} + 4 = 3 + \frac{3}{5}$$

Additional tricks

- Removing *dominated* rows or columns. Say the (row) payoff matrix is:

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 5 \\ 7 & 1 & 8 \end{bmatrix}$$

- *Convex combinations* of rows or columns

$$\begin{bmatrix} 10 & 0 \\ 0 & 10 \\ -3 & -3 \end{bmatrix} \begin{smallmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \end{smallmatrix}$$

Applications

Lower bounds for randomized algorithms!

- Earlier in the class we proved a worst-case $\Theta(n \log n)$ lower bound for sorting in the comparison model, for **deterministic** algorithms

Theorem: Any randomized sorting algorithm in the comparison model requires at least $\Omega(\log n!) = \Omega(n \log n)$ **expected** comparisons in the worst case.

- We will prove this using game theory!!

Turning algorithms into game theory

- The “game” is played by **the adversary (the row player)** whose actions are to choose an input for the problem, and **the algorithm designer (the column player)** who chooses an algorithm.
- The payoff is the cost (number of comparisons)
- A deterministic algorithm is a pure strategy

Key idea: A randomized algorithm is a mixed strategy! In other words, a randomized algorithm is the same thing as randomly picking from all possible deterministic algorithms.

Turning algorithms into game theory

- Say the adversary (row player) picks a pure strategy (an input) i and the column player picks a mixed strategy (= randomized algorithm) \mathbf{q} .
- A complexity lower bound is

$$\min_{\substack{\text{randomized inputs } i \\ \text{algorithms } \mathbf{q}}} \max_{\substack{\text{deterministic} \\ \text{distributions } \mathbf{p} \\ \text{algorithms } j}} V_R(i, \mathbf{q}) \quad \downarrow \quad = \quad \max_{\substack{\text{input} \\ \text{distributions } \mathbf{p}}} \min_{\substack{\text{deterministic} \\ \text{algorithms } j}} V_R(\mathbf{p}, j)$$

- So, we can instead find a mixed strategy (= distribution of inputs) \mathbf{p} for the adversary (row player) such that every column (deterministic algorithm) has high cost. What is this called??

Turning algorithms into game theory

Lemma: For any randomized algorithm, its expected worst-case cost is at least as large as the average cost of the best deterministic algorithm over any input distribution.

- So, we just need to prove that the **average cost** of any deterministic algorithm for sorting is at least $\Omega(n \log n)$.

Exercise (or see notes)

Hint: Use decision trees and argue that most of the leaves have high depth

Summary of today

- We learned about two-player zero-sum games
- We saw how to find minimax-optimal strategies
 - Guess and bound technique using lb and ub
 - Graph and optimize (for two-row games)
 - Eliminating dominated strategies
- The ***minimax theorem*** is a powerful tool
- We can prove worst-case lower bounds for randomized algorithms by converting them into average-case lower bounds for deterministic algorithms!