
Algorithm
Design and Analysis

Network Flow Part II: Advanced Flow Algorithms

Roadmap for today

• Review network flow and the Ford-Fulkerson algorithm

• Applications of network flow: Bipartite matching

• Make the Ford-Fulkerson algorithm faster! (Edmonds-Karp algorithm)

• Another flow problem, minimum-cost flows

• The cheapest augmenting paths algorithm

2

Network Flow recap

• A flow network is a directed graph with:
• capacities 𝑐(𝑢, 𝑣)

• A source vertex 𝑠 and sink vertex 𝑡

• A flow is an assignment of values to edges:
• Capacity constraint: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣

• Conservation constraint: “flow in = flow out” for all vertices except 𝑠, 𝑡

෍

𝑣∈𝑉

𝑓 𝑢, 𝑣 = ෍

𝑣∈𝑉

𝑓 𝑣, 𝑢

• The value of a flow is the net flow out of the source (can prove via conservation
that is = net flow into sink)

𝑠

𝑎

𝑏

𝑐

𝑑

𝑡

𝟑/4

𝟐/2

𝟑/3

1/1

𝟑/3

𝟑/4

𝟐/2

0/3

3

• The maximum flow problem is to find a flow of maximum value

• We learned the Ford-Fulkerson algorithm:
• Define the residual capacities:

Network Flow recap

𝑠

𝑎

𝑏

𝑡

1/1

0/1 1/1

0/1

1/1 𝑠

𝑎

𝑏

𝑡

1

1

1

1

1

𝑐𝑓 𝑢, 𝑣 = ቊ
𝒄 𝒖, 𝒗 − 𝒇 𝒖, 𝒗 , 𝒖, 𝒗 ∈ 𝑬

𝒇 𝒗, 𝒖 , 𝒗, 𝒖 ∈ 𝑬

𝑠

𝑎

𝑏

𝑡

1/1

1/1 1/1

1/1

0/1

4

Ford Fulkerson Algorithm

while there exists an 𝑠-𝑡 path in the
residual network:
 add maximal flow to that path.

Applications

5

Bipartite Matching

6

Problem (Bipartite matching): Given a bipartite graph 𝐺, find a largest possible set
of edges with no endpoints in common.

Analysis of matching

Claim #1 Given a matching 𝑀 in the original graph, there exists an integral flow 𝑓 in
our flow network of value 𝑀 (⇒ max flow ≥ max-matching)

7

Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction is correct! This usually consists of a bidirectional proof.

Analysis of matching

Claim #2: Given an integral flow 𝑓 in our flow network, there exists a matching 𝑀 of
size 𝑓 in the original graph (⇒ max-flow ≤ max-matching)

8

Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction is correct! This usually consists of a bidirectional proof.

Back to Network Flow Part II

9

Worst-case runtime

Also Theorem: This bound is tight

10

Theorem: Ford-Fulkerson runs in 𝑶(𝒎𝑭) time (with integer capacities)

How to make it faster?

• Ford-Fulkerson finds any augmenting path until there are none left

• Idea: Can we find “good” augmenting paths that guarantee a better
running time? Yes!

• Idea #1:

• Idea #2:

11

Edmonds-Karp (Shortest Augmenting Paths)

• When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

12

Algorithm (Edmonds-Karp): Implement Ford-Fulkerson by finding shortest
augmenting paths (e.g., using BFS) at each iteration.

Theorem: Edmonds-Karp runs in 𝑂(𝑛𝑚2) time (polynomial time!)

Analysis

𝑠 𝑡

𝑢 𝑣

13

Lemma: Let 𝑑 be the distance from 𝑠 to 𝑡 in the residual graph 𝐺𝑓.

During Edmonds-Karp, 𝑑 never decreases.

Analysis

14

Conclusion:

• Each iteration takes:

• Iterations per value of 𝑑:

• 𝑑 can increase:

Lemma: After 𝑚 iterations, 𝑑 must increase.

Corollary: Maximum flow
can be solved in strongly

polynomial time!

Minimum-cost Flows

15

Motivation

• There can be multiple maximum
flows in a particular network

• What if we want to preference some
over others?

• Example: Bipartite matching allows
us to find whether a matching is
possible. If there are multiple, can
we also have preferences so that we
get the “best” matching?

𝑎

𝑏

𝑐

1

2

3

16

1

5

4

3

2

3

Minimum-cost flows

• We consider the same setting as before: A directed graph with
capacities.

• Edges now also have costs. Edge 𝑒 costs $(𝑒)

• The cost of an edge is per unit of flow. The total cost is

cost 𝑓 = ෍

𝑒∈𝐸

$ 𝑒 ⋅ 𝑓(𝑒)

17

• Goal: Find maximum flow of minimum cost

• Note: Other variants of the problem exist. E.g., you might want the
minimum possible cost, regardless of the flow value (not maximum)

Assumptions

• Negative costs are allowed!

• Negative cycles are also allowed!!
• However, some algorithms don’t work.

• Assume that there is no infinite capacity negative cycle (or the cost is −∞)

18

The residual network

• The residual network is a powerful tool. Let's keep using it

• We define the residual capacities and residual costs

19

𝑐𝑓 𝑢, 𝑣 = ቊ
𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣 , 𝑢, 𝑣 ∈ 𝐸

𝑓 𝑣, 𝑢 , 𝑣, 𝑢 ∈ 𝐸

$𝒇 𝒖, 𝒗 = ቊ
 𝑢, 𝑣 ∈ 𝐸
 𝑣, 𝑢 ∈ 𝐸

An augmenting path algorithm

• Ford-Fulkerson finds a maximum flow (ignoring costs completely)

• What is a natural way to choose the augmenting paths?

• Find a cheapest augmenting path.

• Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)

• Requires no negative cycles in the input network!

• Assume integer capacities as well for termination

20

Does it work?

• We need two things:
• Question 1: Does the algorithm terminate?

• Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that 𝑮𝒇 never contains a
negative-cost cycle! (Or the cheapest path would be undefined).

21

A powerful lemma

22

Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no

negative-cost cycles, if we augment a cheapest path, then the result still
has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the
cheapest 𝑠-𝑡 path in the residual network.

23

𝑠 𝑣𝑢 𝑡

Let 𝑐 𝑣 = cost of cheapest 𝑠 → 𝑣 path in 𝐺𝑓 (before augmenting)

𝑮𝒇′

Lemma: Augmenting a cheapest path does not decrease the cost of the
cheapest 𝑠 − 𝑡 path in the residual network.

A powerful lemma

AFSOC that after augmenting, ∃ an 𝑠-𝑡 walk cheaper than 𝑐 𝑡

24

So, $𝑓′ 𝑢, 𝑣 must have changed! What is it?

𝑠 𝑢𝑣 𝑡𝑮𝒇

A powerful lemma, continued…

25

A powerful lemma

Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no negative-cost cycles, if

we augment a cheapest path, then the result still has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the cheapest 𝑠-𝑡 path
in the residual network.

Corollary: The cheapest augmenting path algorithm terminates!

Cheapest augmenting paths: cost

• Similar analysis to Ford-Fulkerson

• Its just Ford-Fulkerson using Bellman-Ford at each iteration.

• Bellman-Ford costs 𝑂 𝑛𝑚 and each iteration adds at least 1 flow

• So, the algorithm runs in 𝑂 𝑛𝑚𝐹

26

Theorem: Cheapest augmenting paths runs in 𝑂(𝑛𝑚𝐹) time

Take-home messages

• Maximum flow can be solved in polynomial time!

• Edmonds-Karp (shortest augmenting paths) runs in 𝑂 𝑛𝑚2 time

• The minimum-cost flow problem, and an algorithm

• Cheapest augmenting paths
• Ford-Fulkerson but always use cheapest cost augmenting path

• Works for integer-capacity, negative-cycle-free networks

• Runs in 𝑂(𝑛𝑚𝐹) time

27

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Network Flow recap
	Slide 4: Network Flow recap
	Slide 5: Applications
	Slide 6: Bipartite Matching
	Slide 7: Analysis of matching
	Slide 8: Analysis of matching
	Slide 9: Back to Network Flow Part II
	Slide 10: Worst-case runtime
	Slide 11: How to make it faster?
	Slide 12: Edmonds-Karp (Shortest Augmenting Paths)
	Slide 13: Analysis
	Slide 14: Analysis
	Slide 15: Minimum-cost Flows
	Slide 16: Motivation
	Slide 17: Minimum-cost flows
	Slide 18: Assumptions
	Slide 19: The residual network
	Slide 20: An augmenting path algorithm
	Slide 21: Does it work?
	Slide 22: A powerful lemma
	Slide 23
	Slide 24
	Slide 25: A powerful lemma
	Slide 26: Cheapest augmenting paths: cost
	Slide 27: Take-home messages

