Algorithm Design and Analysis

Network Flow Part II: Advanced Flow Algorithms

Roadmap for today

- Review network flow and the Ford-Fulkerson algorithm
- Applications of network flow: Bipartite matching
- Make the Ford-Fulkerson algorithm faster! (Edmonds-Karp algorithm)
- Another flow problem, minimum-cost flows
- The *cheapest augmenting paths* algorithm

Network Flow recap

- A flow network is a directed graph with:
 - capacities c(u, v)
 - A source vertex s and sink vertex t
- A flow is an assignment of values to edges:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - Conservation constraint: "flow in = flow out" for all vertices except s, t

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$$

• The value of a flow is the net flow out of the source (can prove via conservation that is = net flow into sink)

Network Flow recap

- The maximum flow problem is to find a flow of maximum value
- We learned the *Ford-Fulkerson* algorithm:
 - Define the *residual capacities:*

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \end{cases}$$

Ford Fulkerson Algorithm

while there exists an *s-t* path in the residual network:

add maximal flow to that path.

Applications

Bipartite Matching

Problem (Bipartite matching): Given a bipartite graph G, find a largest possible set of edges with no endpoints in common.

Analysis of matching

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching M in the original graph, there exists an integral flow f in our flow network of value |M| (\Rightarrow max flow \geq max-matching)

Analysis of matching

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #2: Given an integral flow f in our flow network, there exists a matching M of size |f| in the original graph (\Rightarrow max-flow \leq max-matching)

Back to Network Flow Part II

Worst-case runtime

Theorem: Ford-Fulkerson runs in O(mF) time (with integer capacities)

Also Theorem: This bound is tight

How to make it faster?

- Ford-Fulkerson finds any augmenting path until there are none left
- *Idea*: Can we find "good" augmenting paths that guarantee a better running time? Yes!
- · Idea #1: Maximum bothlereck parts
- · Idea #2: Shortest augmenting paths

Edmonds-Karp (Shortest Augmenting Paths)

 When we described Ford-Fulkerson, we found any augmenting path, (usually DFS is the simplest possible implementation)

Algorithm (Edmonds-Karp): Implement Ford-Fulkerson by finding **shortest augmenting paths** (e.g., using BFS) at each iteration.

Theorem: Edmonds-Karp runs in $O(nm^2)$ time (polynomial time!)

Analysis

Lemma: Let d be the distance from s to t in the residual graph G_f . During Edmonds-Karp, d never decreases.

Analysis

Lemma: After m iterations, d must increase.

An edge obly unsaturate after d'increases.

Conclusion:

- Each iteration takes: O(m)
- Iterations per value of $d: O(m) \Rightarrow O(nm^2)$
- d can increase: N-1 times

Corollary: Maximum flow can be solved in strongly polynomial time!

Minimum-cost Flows

Motivation

- There can be multiple maximum flows in a particular network
- What if we want to preference some over others?
- Example: Bipartite matching allows us to find whether a matching is possible. If there are multiple, can we also have preferences so that we get the "best" matching?

Minimum-cost flows

- We consider the same setting as before: A directed graph with capacities.
- Edges now also have *costs*. Edge e costs \$(e)
- The cost of an edge is per unit of flow. The total cost is

$$Cost(f) = \sum_{e \in E} \#(e) f(e)$$

- Goal: Find maximum flow of minimum cost
- Note: Other variants of the problem exist. E.g., you might want the minimum possible cost, regardless of the flow value (not maximum)

Assumptions

- Negative costs are allowed!
- Negative cycles are also allowed!!
 - However, some algorithms don't work.
 - Assume that there is no infinite capacity negative cycle (or the cost is $-\infty$)

The residual network

- The residual network is a powerful tool. Let's keep using it
- We define the residual capacities and residual costs

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \end{cases}$$

An augmenting path algorithm

- Ford-Fulkerson finds a maximum flow (ignoring costs completely)
- What is a natural way to choose the augmenting paths?
- Find a *cheapest augmenting path*.
- Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)
- Requires no negative cycles in the input network!
- Assume integer capacities as well for termination

Does it work?

- We need two things:
 - Question 1: Does the algorithm terminate?
 - Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that G_f never contains a negative-cost cycle! (Or the cheapest path would be undefined).

A powerful lemma

Theorem: Given a network G and flow f such that G_f contains no negative-cost cycles, if we augment a cheapest path, then the result still has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest s-t path in the residual network.

A powerful lemma

Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest s-t path in the residual network.

Let $c(v) = cost \ of \ cheapest \ s \rightarrow v \ path \ in \ G_f$ (before augmenting) AFSOC that after augmenting, \exists an s-t walk cheaper than c(t)

G_{f'} (s)
$$C'(u) \Rightarrow C(u) \Rightarrow C'(u) \Rightarrow C'($$

Assume
$$A_{\beta}(u_{i}v) = A(u_{i}v)$$

 $C'(v) > C(u) + A_{\beta}(u_{i}v) = C(v) + A(u_{i}v) = C(v)$

A powerful lemma, continued...

So, $\$_{f'}(u, v)$ must have changed! What is it? $\$_{f}(u, v) = - \$_{f}(v, v)$

A powerful lemma

Lemma: Augmenting a cheapest path does not **decrease** the cost of the cheapest s-t path in the residual network.

Theorem: Given a network G and flow f such that G_f contains no negative-cost cycles, if we augment a cheapest path, then the result still has no negative-cost cycles.

Corollary: The cheapest augmenting path algorithm terminates!

Cheapest augmenting paths: cost

Similar analysis to Ford-Fulkerson

Theorem: Cheapest augmenting paths runs in O(nmF) time

- Its just Ford-Fulkerson using Bellman-Ford at each iteration.
- Bellman-Ford costs O(nm) and each iteration adds at least 1 flow
- So, the algorithm runs in O(nmF)

Take-home messages

- Maximum flow can be solved in polynomial time!
- Edmonds-Karp (shortest augmenting paths) runs in $O(nm^2)$ time
- The *minimum-cost flow problem*, and an algorithm
- Cheapest augmenting paths
 - Ford-Fulkerson but always use cheapest cost augmenting path
 - Works for integer-capacity, negative-cycle-free networks
 - Runs in O(nmF) time