
Algorithm
Design and Analysis

Network Flow Part II: Advanced Flow Algorithms



Roadmap for today

• Review network flow and the Ford-Fulkerson algorithm

• Applications of network flow: Bipartite matching

• Make the Ford-Fulkerson algorithm faster! (Edmonds-Karp algorithm)

• Another flow problem, minimum-cost flows

• The cheapest augmenting paths algorithm
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Network Flow recap

• A flow network is a directed graph with:
•  capacities 𝑐(𝑢, 𝑣)

• A source vertex 𝑠 and sink vertex 𝑡

• A flow is an assignment of values to edges:
• Capacity constraint: 0 ≤ 𝑓 𝑢, 𝑣 ≤ 𝑐 𝑢, 𝑣

• Conservation constraint: “flow in = flow out” for all vertices except 𝑠, 𝑡
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• The value of a flow is the net flow out of the source (can prove via conservation 
that is = net flow into sink)
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• The maximum flow problem is to find a flow of maximum value

• We learned the Ford-Fulkerson algorithm:
• Define the residual capacities:

Network Flow recap
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Ford Fulkerson Algorithm

while there exists an 𝑠-𝑡 path in the 
residual network:
    add maximal flow to that path.



Applications
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Bipartite Matching
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Problem (Bipartite matching): Given a bipartite graph 𝐺, find a largest possible set 
of edges with no endpoints in common.



Analysis of matching

Claim #1 Given a matching 𝑀 in the original graph, there exists an integral flow 𝑓 in 
our flow network of value 𝑀  (⇒ max flow ≥ max-matching)

7

Important (flow model proofs): When modeling problems with flow, you need to 
prove that the reduction is correct! This usually consists of a bidirectional proof.



Analysis of matching

Claim #2: Given an integral flow 𝑓 in our flow network, there exists a matching 𝑀 of 
size 𝑓  in the original graph (⇒ max-flow ≤ max-matching)
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Important (flow model proofs): When modeling problems with flow, you need to 
prove that the reduction is correct! This usually consists of a bidirectional proof.



Back to Network Flow Part II
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Worst-case runtime

Also Theorem: This bound is tight 
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Theorem: Ford-Fulkerson runs in 𝑶(𝒎𝑭) time (with integer capacities)



How to make it faster?

• Ford-Fulkerson finds any augmenting path until there are none left

• Idea:  Can we find “good” augmenting paths that guarantee a better 
running time?  Yes!

• Idea #1:

• Idea #2:
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Edmonds-Karp (Shortest Augmenting Paths)

• When we described Ford-Fulkerson, we found any augmenting path, 
(usually DFS is the simplest possible implementation)

12

Algorithm (Edmonds-Karp): Implement Ford-Fulkerson by finding shortest 
augmenting paths (e.g., using BFS) at each iteration.

Theorem: Edmonds-Karp runs in 𝑂(𝑛𝑚2) time (polynomial time!)



Analysis
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Lemma: Let 𝑑 be the distance from 𝑠 to 𝑡 in the residual graph 𝐺𝑓. 

During Edmonds-Karp, 𝑑 never decreases.



Analysis
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Conclusion:

•  Each iteration takes: 

•  Iterations per value of 𝑑: 

•  𝑑 can increase:

Lemma:  After 𝑚 iterations, 𝑑 must increase.

Corollary: Maximum flow 
can be solved in strongly 

polynomial time!



Minimum-cost Flows
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Motivation

• There can be multiple maximum 
flows in a particular network

• What if we want to preference some 
over others?

• Example: Bipartite matching allows 
us to find whether a matching is 
possible.  If there are multiple, can 
we also have preferences so that we 
get the “best” matching?
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Minimum-cost flows

• We consider the same setting as before: A directed graph with 
capacities.

• Edges now also have costs. Edge 𝑒 costs $(𝑒)

• The cost of an edge is per unit of flow. The total cost is

cost 𝑓 = ෍

𝑒∈𝐸

$ 𝑒 ⋅ 𝑓(𝑒)
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• Goal: Find maximum flow of minimum cost

• Note: Other variants of the problem exist. E.g., you might want the 
minimum possible cost, regardless of the flow value (not maximum)



Assumptions

• Negative costs are allowed!

• Negative cycles are also allowed!!
• However, some algorithms don’t work.

• Assume that there is no infinite capacity negative cycle (or the cost is −∞)
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The residual network

• The residual network is a powerful tool. Let's keep using it

• We define the residual capacities and residual costs
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𝑐𝑓 𝑢, 𝑣 = ቊ
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An augmenting path algorithm

• Ford-Fulkerson finds a maximum flow (ignoring costs completely)

• What is a natural way to choose the augmenting paths?

• Find a cheapest augmenting path.

• Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)

• Requires no negative cycles in the input network!

• Assume integer capacities as well for termination
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Does it work?

• We need two things:
• Question 1: Does the algorithm terminate?

• Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that 𝑮𝒇 never contains a 
negative-cost cycle! (Or the cheapest path would be undefined).
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A powerful lemma
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Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no 

negative-cost cycles, if we augment a cheapest path, then the result still 
has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the 
cheapest 𝑠-𝑡 path in the residual network.
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𝑠 𝑣𝑢 𝑡

Let 𝑐 𝑣 = cost of cheapest 𝑠 → 𝑣 path in 𝐺𝑓     (before augmenting)

𝑮𝒇′

Lemma: Augmenting a cheapest path does not decrease the cost of the 
cheapest 𝑠 − 𝑡 path in the residual network.

A powerful lemma

AFSOC that after augmenting, ∃ an 𝑠-𝑡 walk cheaper than 𝑐 𝑡
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So, $𝑓′ 𝑢, 𝑣  must have changed! What is it?

𝑠 𝑢𝑣 𝑡𝑮𝒇

A powerful lemma, continued…
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A powerful lemma

Theorem: Given a network 𝐺 and flow 𝑓 such that 𝐺𝑓 contains no negative-cost cycles, if 

we augment a cheapest path, then the result still has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the cheapest 𝑠-𝑡 path 
in the residual network.

Corollary: The cheapest augmenting path algorithm terminates!



Cheapest augmenting paths: cost

• Similar analysis to Ford-Fulkerson

• Its just Ford-Fulkerson using Bellman-Ford at each iteration.

• Bellman-Ford costs 𝑂 𝑛𝑚  and each iteration adds at least 1 flow

• So, the algorithm runs in 𝑂 𝑛𝑚𝐹
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Theorem: Cheapest augmenting paths runs in 𝑂(𝑛𝑚𝐹) time



Take-home messages

• Maximum flow can be solved in polynomial time!

• Edmonds-Karp (shortest augmenting paths) runs in 𝑂 𝑛𝑚2  time

• The minimum-cost flow problem, and an algorithm

• Cheapest augmenting paths
• Ford-Fulkerson but always use cheapest cost augmenting path

• Works for integer-capacity, negative-cycle-free networks

• Runs in 𝑂(𝑛𝑚𝐹) time
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