Algorithm
Design and Analysis

Network Flow Part Il: Advanced Flow Algorithms



Roadmap for today

* Review network flow and the Ford-Fulkerson algorithm

* Applications of network flow: Bipartite matching

* Make the Ford-Fulkerson algorithm faster! (Edmonds-Karp algorithm)
* Another flow problem, minimum-cost flows

* The cheapest augmenting paths algorithm



e A is a directed graph with:
* capacities c(u, v)
* A source vertex s and sink vertex t

e A is an assignment of values to edges:
* Capacity constraint: 0 < f(u,v) < c(u,v)
* Conservation constraint: “flow in = flow out” for all vertices except s, t
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* The of a flow is the net flow out of the source (can prove via conservation
that is = net flow into sink)



* The problem is to find a flow of maximum value

* We learned the algorithm:

. . ers Ford Fulkerson Algorithm
* Define the residual capacities: &

while there exists an s-t path in the
_jeuv) - f(u,v), (u,v) € E residual network:
cr(u,v) = f(v,w), (v,u) € E add maximal flow to that path.




Applications



Problem (Bipartite matching): Given a bipartite graph G, find a largest possible set
of edges with no endpoints in common.
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Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching M in the original graph, there exists an integral flow f in
our flow network of value |M| (= max flow > max-matching)
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Important (flow model proofs): When modeling problems with flow, you need to
prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #2: Given an integral flow f in our flow network, there exists a matching M of
size |f| in the original graph (= max-flow < max-matching)
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Back to Network Flow Part Il



Worst-case runtime

Iheorem: Ford-Fulkerson runs in O (1m[) time (with integer capacities)

Also Theorem: This bound is tight
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* Ford-Fulkerson finds any augmenting path until there are none left

: Can we find “good” augmenting paths that guarantee a better
running time? Yes!

*Idea #1: [osmam botHeneck  part;

* Idea #2: S hortet cmamxf—wd povhs



* When we described Ford-Fulkerson, we found any augmenting path,
(usually DFS is the simplest possible implementation)

Algorithm ( ): Implement Ford-Fulkerson by finding shortest
augmenting paths (e.g., using BFS) at each iteration.

: Edmonds-Karp runs in O(nm?) time (polynomial time!)

O(nF)



: Let d be the distance from s to t in the residual graph G¢.
During Edmonds-Karp, d never decreases.



. After m iterations, d must increase.
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* Each iteration takes: 0 ( \ Corollary: Maximum flow

* |terations per value of d: O(Vh) => OCnm") can be solved in strongly

: olynomial time!
* dcanincrease: N-| +wo POy



Minimum-cost Flows



* There can be multiple maximum
flows in a particular network

 What if we want to preference some
over others?

* Example: Bipartite matching allows
us to find whether a matching is
possible. If there are multiple, can
we also have preferences so that we
get the “best” matching?
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* We consider the same setting as before: A directed graph with
capacities.

* Edges now also have . Edge e costs $(e)
* The cost of an edge is per unit of flow. The total cost is
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e Goal: Find maximum flow of minimum cost

* Note: Other variants of the problem exist. E.g., you might want the
minimum possible cost, regardless of the flow value (not maximum)



* Negative costs are allowed!

* Negative cycles are also allowed!!
 However, some algorithms don’t work.
e Assume that there is no infinite capacity negative cycle (or the cost is —0)



* The residual network is a powerful tool. Let's keep using it

* We define the residual capacities and

_eu,v) = f(u,v), (u,v) EE
(W) = fw,w), (v,u) EE

{ $(uv) (u,v) €EE
—~ j(v,u) (v,u) € E
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e Ford-Fulkerson finds a maximum flow (ignoring costs completely)

* What is a natural way to choose the augmenting paths?

* Find a
e Use Bellman-Ford to find the augmenting paths (why not Dijkstra?)
* Requires no negative cycles in the input network!

* Assume integer capacities as well for termination



* We need two things:
* Question 1: Does the algorithm terminate?
* Question 2: Does it give a minimum-cost flow?

To answer Question 1, we need to prove that G never contains a
negative-cost cycle! (Or the cheapest path would be undefined).



Theorem: Given a network G and flow f such that G¢ contains no

negative-cost cycles, if we augment a cheapest path, then the result still
has no negative-cost cycles.

Lemma: Augmenting a cheapest path does not decrease the cost of the
cheapest s-t path in the residual network.



: Augmenting a cheapest path does not decrease the cost of the
cheapest s — t path in the residual network.

Let c(v) = cost of cheapest s — v path in G

AFSOC that after augmenting, 3 an s-t walk cheaper than c(t)
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So, $¢1(u, v) must have changed! What is it? ﬂf (W) = — ﬂf 6V,VL)
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Lemma: Augmenting a cheapest path does not decrease the cost of the cheapest s-t path
in the residual network.

Theorem: Given a network G and flow f such that G; contains no negative-cost cycles, if
we augment a cheapest path, then the result still has no negative-cost cycles.

Corollary: The cheapest augmenting path algorithm terminates!



e Similar analysis to Ford-Fulkerson

: Cheapest augmenting paths runs in O (nmF) time

* Its just Ford-Fulkerson using Bellman-Ford at each iteration.
* Bellman-Ford costs O(nm) and each iteration adds at least 1 flow
* So, the algorithm runs in O(nmF)



 Maximum flow can be solved in polynomial time!
(shortest augmenting paths) runs in O (nm?) time

* The and an algorithm

* Ford-Fulkerson but always use cheapest cost augmenting path
* Works for integer-capacity, negative-cycle-free networks
* Runsin O(nmF) time
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