Algorithm Design and Analysis

Network Flows Part I: Flows, Cuts, and Matchings

Roadmap for today

- Define the *maximum network flow* problem
- Learn the Ford-Fulkerson algorithm for maximum flow
- Define the related *minimum cut* problem
- See and prove the min-cut max-flow theorem
- Study an application of network flow (bipartite matchings)

Definition: Network flow

Motivation (Flow network): Consider a network of pipes, each able to handle a certain number of liters of water per minute.

How much water can you send from *s* to *t*?

Definition (Flow network): A directed graph with

- Edge *capacities* c(u, v)
- A **source** vertex s
- A sink vertex t

Definition (A flow): A quantity of flow on each edge, $f: E \to \mathbb{R}$, called *feasible* if:

- **Conservation:** Flow in = Flow out $\forall v \notin \{s, t\}$
- Capacity: $0 \le f(u, v) \le c(u, v)$

Improving a flow: s-t paths

Is the flow on the right optimal?

Certifying optimality: s-t cuts

Is the flow on the right optimal?

Definition (s-t Cut): An **s-t cut** is a partition of the vertices into two disjoint sets (S, T) such that $s \in S$ and $t \in T$

Definition (Capacity): The *capacity* of an s-t cut (S,T) is the total capacity on edges (u,v) where $u \in S$ and $v \in T$:

$$cap(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Net flow across a cut

Definition (Net flow): The *net flow* across an s-t cut (S,T) is the amount of flow moving from S to T:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Observe: The value of a flow (which we defined as the net flow out of s) is the net flow across the cut $(\{s\}, V \setminus \{s\})$

Theorem: For any s-t cut (S, T), the net flow across the cut equals the value of the flow!

Proof: Algebra using the definitions.

Net flow theorem

Theorem: For any s-t cut (S, T):

$$f(S,T) \le \operatorname{cap}(S,T)$$

Proof:

$$f(S,T) = \sum_{u} \sum_{v} f(u,v) - \sum_{u} \sum_{v} f(v,u)$$

$$\leq \sum_{u} \sum_{v} C(u,v) - \sum_{v} \sum_{v} f(v,u)$$

$$\leq \sum_{u} \sum_{v} C(u,v) = Corp(S,T)$$

Corollary: max-flow ≤ min-cut

Definition (Capacity): The *capacity* of an s-t cut (S,T) is the total capacity on edges (u,v) where $u \in S$ and $v \in T$:

$$cap(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Definition (Net flow): The *net flow* across an s-t cut (S, T) is the amount of flow moving from S to T:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{u \in S} \sum_{v \in T} f(v,u)$$

Proof: any flow = min cut = any cut

Is greedy optimal?

The residual graph

Definition (residual capacity): An edge (u, v) with capacity c(u, v) and current flow f(u, v) has **residual capacity**

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v), & (u,v) \in E \\ f(v,u), & (v,u) \in E \end{cases}$$

Definition (residual network): Given a flow network G and a current flow f, the **residual network** G_f is a flow network whose capacities are the residual capacities $c_f(u, v)$

Augmenting paths

Definition (augmenting path): An *augmenting* path is a path from s to t of non-zero capacity in the residual network.

Key idea (reverse edges): Augmenting along a **reverse edge** removes that amount of flow from the edge.

The Ford-Fulkerson Algorithm

Algorithm (Ford-Fulkerson):

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

Flow network G

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

Flow network G

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

Flow network G

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E, \\ f(v,u) & \text{if } (v,u) \in E. \end{cases}$$

Flow network G

Theorem (runtime): Assuming integer capacities, Ford-Fulkerson runs in O(mF) time, where F is the value of the maximum s-t flow

```
Proof:

+| f(w) per iterations

=> \leq F(w) (n+m) O(m) for connected
```

Theorem (maximality): Ford-Fulkerson finds a flow whose value is equal to the capacity of the minimum cut.

Corollary (Min-cut Max-flow theorem): For any flow network, the value of the maximum s-t flow is equal to the capacity of the minimum s-t cut

Proof:

The projector stopped working at this point. Please read notes!

Theorem (Integral flows): For any flow network with integer capacities, there exists a maximum flow in which the flow on every edge is an integer

Proof:

Applications

Bipartite Matching

Problem (Bipartite matching): Given a bipartite graph G, find a largest possible set of edges with no endpoints in common.

Analysis of matching

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #1 Given a matching M in the original graph, there exists a flow f in our flow network of value |M| (\Rightarrow max flow \geq max-matching)

Analysis of matching

Important (flow model proofs): When modeling problems with flow, you need to prove that the reduction is correct! This usually consists of a bidirectional proof.

Claim #2: Given a flow f in our flow network, there exists a matching M of size |f| in the original graph (\Rightarrow max-flow \leq max-matching)

Summary of flow fundamentals

- Lots of definitions! Take time to review them.
 - Flow networks, flows, s-t cuts, residual networks, augmenting paths
- The Ford-Fulkerson algorithm
 - Finds a maximum flow (in an integer-capacity network) in O(mF) time
- Modeling with flows
 - Bipartite matching
 - Remember that the proofs must show both directions of correspondence!