
Algorithm
Design and Analysis

Dynamic Programming (Part II)



Roadmap for today

• More dynamic programming

• Review Longest Increasing Subsequence (LIS) with SegTrees!

• Derive the Floyd-Warshall algorithm for all-pairs shortest paths

• See the Subset DP technique applied to the Travelling Salesperson Problem



“Recipe” for dynamic programming

1. Identify a set of optimal subproblems

• Write down a clear and unambiguous definition of the 
subproblems. 

2. Identify the relationship between the subproblems

• Write down a recurrence that gives the solution to a problem in 
terms of its subproblems

3. Analyze the required runtime

• Usually (but not always) the number of subproblems multiplied 
by the time taken to solve a subproblem.

4. Select a data structure to store subproblems

• Usually just an array.  Occasionally something more complex

5. Choose between bottom-up or top-down implementation

6. Write the code!

Often all that is 
required for a 
theoretical solution

Only required if the 
answer is not “array”

Mostly ignored in this 
class (unless it’s a 
programming HW!)
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Review of LIS



Review of LIS (SegTree DP)
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Subproblems:

LIS 𝑖 ≔ The length of the longest increasing subsequence
that ends with element 𝑎𝑖 (must include 𝑎𝑖)

Definition (LIS): Given a sequence of 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛, find 
the length of a longest strictly increasing subsequence. 

7 0 4 3 10 11 17 15

Recurrence:



Optimized LIS: SegTree DP!

𝐴:
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7 0 4 3 10 11 17 15

SegTree:



All-pairs shortest paths



All-pairs shortest paths: Attempt 1

Definition (APSP) Given a directed, weighted graph, compute the 
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:



Writing a Recurrence: Attempt 1

൝SP(𝑢, 𝑣, ℓ)  =



Analyzing Runtime: Attempt 1

Naïve analysis: Better analysis:



All-pairs shortest paths: Attempt 2

Definition (APSP) Given a directed, weighted graph, compute the 
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:



Writing a Recurrence: Attempt 2

൝SP(𝑢, 𝑣, 𝑘)  =



Analyzing Runtime: Attempt 2

Runtime analysis: What about space?

Optimization: Don’t store solutions to old 

values of 𝑘. Paths can only stay the same or 

get shorter as we add more vertices!



Floyd-Warshall Algorithm

def floydWarshall(graph G):

  SP[u][v] = 

  for k in [1, n]:

    for u in [1, n]:

      for v in [1, n]:

       SP[u][v] = 

  return SP

Exercise: Prove correctness of the Floyd-Warshall algorithm.



Traveling Salesperson 
Problem (TSP)
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Traveling Salesperson Problem (TSP)
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Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight 
cycle that visits every vertex exactly once (called a “Hamiltonian Cycle”).

Idea 1: Find the minimum weight 
cycle on a subgraph with one of the 
vertices removed, then add that 
vertex somewhere in the cycle.

Issue: No obvious optimal 
substructure. The optimal cycle for 
{A,B,C,D,E} looks very different to 
the optimal cycle for {A,B,C,D}



Refining the Subproblems

The issue: Cycles don’t have any obvious optimal substructure
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Can we look for another graph property that does?

S A B C T

Paths!

Observe: If 𝑆 → 𝐴 → 𝐵 → 𝐶 → 𝑇 is 
a minimum weight 𝑆 → 𝑇 path, 
then 𝑆 → 𝐴 → 𝐵 → 𝐶 must be a 
minimum weight 𝑆 → 𝐶 path.

How do we know which vertex 
to put second last (before T)?

S C B A T

S C A B T

S A B C T

Clever brute force to the rescue! 
Try them all and take the best one.



Defining Subproblems

• How should we define subproblems for minimum-weight paths?
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• How do we solve the original problem (TSP) using these subproblems?



Writing a recurrence

• Now we just need the recurrence for minimum weight paths
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MinPath(𝑆, 𝑡) =



Analyzing Runtime

Runtime of naïve solution:
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DP solution:



Subset DP: Representing subsets

• Wait, isn’t each subset Θ(𝑛) space and therefore takes Θ(𝑛) time to 
look up? So, we actually need more time and space?

Optimization: Represent subsets as bitsets. Each subset is represented by a 

single integer, where the 𝑖th bit is 1 if and only if the 𝑖th vertex is in the subset.



Take-home messages

• Breaking a problem into subproblems is hard. Common patterns:
• Can I use the first 𝑘 elements of the input?

• Can I restrict an integer parameter (e.g., knapsack size) to a smaller value?

• On trees, can I solve the problem for each subtree? (Tree DP)

• Can I store a subset of the input?  (TSP subproblems)

• Can I remember the most recent decision?  (Previous vertex in TSP)

• Many techniques are useful to optimize a DP algorithm:
• Can I remove redundant subproblems to save space? (Floyd-Warshall)

• Can I use a fancier data structure than an array? (LIS with SegTree)
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