Algorithm
Design and Analysis

Dynamic Programming (Part Il)

Roadmap for today

* More dynamic programming
* Review Longest Increasing Subsequence (LIS) with SegTrees!
* Derive the Floyd-Warshall algorithm for all-pairs shortest paths

* See the Subset DP technique applied to the Travelling Salesperson Problem

2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems

e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!

Review of LIS

Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.

7 0| 4 3 1011 17 15

— 0 e—— — —

LIS(i) := The length of the longest increasing subsequence
that ends with element a; (must include a;)

LIS(:) =1+ max LIS(j)
(aj<2L7;)

Optimized LIS: SegTree DP!

A:

SegTree:

LIS(i) = 1+ max LIS(j)
> a,j<5,z- &

LY 1 3 2 5 /4 4 7

/7 0 4 | 3 10 11 17 15

11|22 (3| %Y 5|5
Ls (1) Us(zy LER) Lis(8)

LIS (i)

N Se(j/‘;’tt Rowge. M- + ASK’S"‘ = ()(n [Ogr\)

All-pairs shortest paths

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure: p

\
@Mﬁ@ SPC“:"') < mih SPUV)+ W (uv)

v'eV

Subproblems: SP(U: v, 6) = oJ e L iy

0 g w=v .
>0 lf UWF V ‘5)@)
SP(u,v,f) =

min SP(U;T', e—l)-r w(u‘,\r)
Ve

Splwhen t"‘é"SPC“n"_,é)

SP(u,v,¢) = min(SP(u,v’, £ — 1) + w(v', v))

v'eVv

Naive analysis: Better analysis:
N gmbfmfuwg NS S ndepe (V)
() eadn o
O = n?. Z'“’l"f"“"("‘)
— O(n%) Y,

- 0(n*m)

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:

B DU

V"W\"'"'%W r,d'l« Py@vw U3\ D(S'/V.U
Subproblems: SPC“;\‘-l k) N OM:) (L. k3 o4 \Werpeduate. yerties

O If w=v
NI (V) eE / k<O

SP(u,v, k) = 9 (i) €€

m in {sr(umh-'), SP(u, k, k1) + SP(kv, H)B

) =

))

SP(u
J

U
A
n on

5= N

Runtime analysis:

N swhproblons
O(n) wok

=> OCY\‘) HW\b]

min(SP(u,v, k — 1),
SP(u,k, k — 1)+ SP(k,v, k— 1))

What about space?

B(n®) spaec

Optimization: Don’t store solutions to old
values of k. Paths can only stay the same or
get shorter as we add more vertices!

def floydWarshall (graph G) :

selul [v] = base case8 from prtwions slide

for k in [1, n]:
for u in [1, n]:
for v in [1, n]:

SP[ul [v] = min (SP[WJ[v], SP[u][r) +SP[k7[v])

return SP

Exercise: Prove correctness of the Floyd-Warshall algorithm.

Traveling Salesperson
Problem (TSP)

Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight
cycle that visits every vertex exactly once (called a “Hamiltonian Cycle”).

Idea 1: Find the minimum weight

cycle on a subgraph with one of the A~6 3 * \ T‘k
vertices removed, then add that X N

\ c
D

vertex somewhere in the cycle.

Issue: No obvious optimal 6
substructure. The optimal cycle for \ !

{A,B,C,D,E} looks very different to E

the optimal cycle for {A,B,C,D}

The issue: Cycles don’t have any obvious optimal substructure

Can we look for another graph property that does?

How do we know which vertex
to put second last (before T)?

S —> A —> B —> C — T s—»c—»s—»@ T
S—>C—>A T

Observe:IfS > A—->B > C > Tis s—> a—> 8 —>(O)—> T

a minimum weight S — T path,

thenS > A > B — C must be a to the rescue!l

minimum weight S — C path. Try them all and take the best one.

YN ET
* How should we define subproblems for minimum-weight paths? gﬁ%
v
MinPath (S, €)= MY M fram [sloct
e t , &)U.,@‘\IVU W:j e x Ih,__’.S.:-

7
Sobcet of verhees

* How do we solve the original problem (TSP) using these subproblems?

P = tnew\}-zw*i (MmPaﬂa (V,€) + w(t ,sW))

=t
O~—"_—"—""7-0—0

* Now we just need the recurrence for minimum weight paths

 (stort, E) f S= (skh ¢

MinPath(S,t) = < |
min MinParh(S-6t3 ')+ w(e')

L'€ES —

Kt‘us&w' L)

19

Runtime of naive solution: o (f\ I)

DP solution: O(lh-h) Su,éfm/b%
O(n work

—> O(zm' nz)

* Wait, isn’t each subset ®(n) space and therefore takes ®(n) time to
look up? So, we actually need more time and space?

Optimization: Represent subsets as bitsets. Each subset is represented by a
single integer, where the i bit is 1 if and only if the i*" vertex is in the subset.

* Breaking a problem into subproblems is hard.

e Can | use the first k elements of the input?
Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | store a subset of the input? (TSP subproblems)
Can | remember the most recent decision? (Previous vertex in TSP)

* Many techniques are useful to a DP algorithm:
e Can | remove redundant subproblems to save space? (Floyd-Warshall)
e Can | use a fancier data structure than an array? (LIS with SegTree)

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: “Recipe” for dynamic programming
	Slide 4: Review of LIS
	Slide 5: Review of LIS (SegTree DP)
	Slide 6: Optimized LIS: SegTree DP!
	Slide 7: All-pairs shortest paths
	Slide 8: All-pairs shortest paths: Attempt 1
	Slide 9: Writing a Recurrence: Attempt 1
	Slide 10: Analyzing Runtime: Attempt 1
	Slide 11: All-pairs shortest paths: Attempt 2
	Slide 12: Writing a Recurrence: Attempt 2
	Slide 13: Analyzing Runtime: Attempt 2
	Slide 14: Floyd-Warshall Algorithm
	Slide 15: Traveling Salesperson Problem (TSP)
	Slide 16: Traveling Salesperson Problem (TSP)
	Slide 17: Refining the Subproblems
	Slide 18: Defining Subproblems
	Slide 19: Writing a recurrence
	Slide 20: Analyzing Runtime
	Slide 21: Subset DP: Representing subsets
	Slide 22: Take-home messages

