
Algorithm
Design and Analysis

Dynamic Programming (Part II)

Roadmap for today

• More dynamic programming

• Review Longest Increasing Subsequence (LIS) with SegTrees!

• Derive the Floyd-Warshall algorithm for all-pairs shortest paths

• See the Subset DP technique applied to the Travelling Salesperson Problem

“Recipe” for dynamic programming

1. Identify a set of optimal subproblems

• Write down a clear and unambiguous definition of the
subproblems.

2. Identify the relationship between the subproblems

• Write down a recurrence that gives the solution to a problem in
terms of its subproblems

3. Analyze the required runtime

• Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

4. Select a data structure to store subproblems

• Usually just an array. Occasionally something more complex

5. Choose between bottom-up or top-down implementation

6. Write the code!

Often all that is
required for a
theoretical solution

Only required if the
answer is not “array”

Mostly ignored in this
class (unless it’s a
programming HW!)

3

Review of LIS

Review of LIS (SegTree DP)

5

Subproblems:

LIS 𝑖 ≔ The length of the longest increasing subsequence
that ends with element 𝑎𝑖 (must include 𝑎𝑖)

Definition (LIS): Given a sequence of 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛, find
the length of a longest strictly increasing subsequence.

7 0 4 3 10 11 17 15

Recurrence:

Optimized LIS: SegTree DP!

𝐴:

6

7 0 4 3 10 11 17 15

SegTree:

All-pairs shortest paths

All-pairs shortest paths: Attempt 1

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 1

൝SP(𝑢, 𝑣, ℓ) =

Analyzing Runtime: Attempt 1

Naïve analysis: Better analysis:

All-pairs shortest paths: Attempt 2

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 2

൝SP(𝑢, 𝑣, 𝑘) =

Analyzing Runtime: Attempt 2

Runtime analysis: What about space?

Optimization: Don’t store solutions to old

values of 𝑘. Paths can only stay the same or

get shorter as we add more vertices!

Floyd-Warshall Algorithm

def floydWarshall(graph G):

 SP[u][v] =

 for k in [1, n]:

 for u in [1, n]:

 for v in [1, n]:

 SP[u][v] =

 return SP

Exercise: Prove correctness of the Floyd-Warshall algorithm.

Traveling Salesperson
Problem (TSP)

15

Traveling Salesperson Problem (TSP)

16

Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight
cycle that visits every vertex exactly once (called a “Hamiltonian Cycle”).

Idea 1: Find the minimum weight
cycle on a subgraph with one of the
vertices removed, then add that
vertex somewhere in the cycle.

Issue: No obvious optimal
substructure. The optimal cycle for
{A,B,C,D,E} looks very different to
the optimal cycle for {A,B,C,D}

Refining the Subproblems

The issue: Cycles don’t have any obvious optimal substructure

17

Can we look for another graph property that does?

S A B C T

Paths!

Observe: If 𝑆 → 𝐴 → 𝐵 → 𝐶 → 𝑇 is
a minimum weight 𝑆 → 𝑇 path,
then 𝑆 → 𝐴 → 𝐵 → 𝐶 must be a
minimum weight 𝑆 → 𝐶 path.

How do we know which vertex
to put second last (before T)?

S C B A T

S C A B T

S A B C T

Clever brute force to the rescue!
Try them all and take the best one.

Defining Subproblems

• How should we define subproblems for minimum-weight paths?

18

• How do we solve the original problem (TSP) using these subproblems?

Writing a recurrence

• Now we just need the recurrence for minimum weight paths

19

MinPath(𝑆, 𝑡) =

Analyzing Runtime

Runtime of naïve solution:

20

DP solution:

Subset DP: Representing subsets

• Wait, isn’t each subset Θ(𝑛) space and therefore takes Θ(𝑛) time to
look up? So, we actually need more time and space?

Optimization: Represent subsets as bitsets. Each subset is represented by a

single integer, where the 𝑖th bit is 1 if and only if the 𝑖th vertex is in the subset.

Take-home messages

• Breaking a problem into subproblems is hard. Common patterns:
• Can I use the first 𝑘 elements of the input?

• Can I restrict an integer parameter (e.g., knapsack size) to a smaller value?

• On trees, can I solve the problem for each subtree? (Tree DP)

• Can I store a subset of the input? (TSP subproblems)

• Can I remember the most recent decision? (Previous vertex in TSP)

• Many techniques are useful to optimize a DP algorithm:
• Can I remove redundant subproblems to save space? (Floyd-Warshall)

• Can I use a fancier data structure than an array? (LIS with SegTree)

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: “Recipe” for dynamic programming
	Slide 4: Review of LIS
	Slide 5: Review of LIS (SegTree DP)
	Slide 6: Optimized LIS: SegTree DP!
	Slide 7: All-pairs shortest paths
	Slide 8: All-pairs shortest paths: Attempt 1
	Slide 9: Writing a Recurrence: Attempt 1
	Slide 10: Analyzing Runtime: Attempt 1
	Slide 11: All-pairs shortest paths: Attempt 2
	Slide 12: Writing a Recurrence: Attempt 2
	Slide 13: Analyzing Runtime: Attempt 2
	Slide 14: Floyd-Warshall Algorithm
	Slide 15: Traveling Salesperson Problem (TSP)
	Slide 16: Traveling Salesperson Problem (TSP)
	Slide 17: Refining the Subproblems
	Slide 18: Defining Subproblems
	Slide 19: Writing a recurrence
	Slide 20: Analyzing Runtime
	Slide 21: Subset DP: Representing subsets
	Slide 22: Take-home messages

