Algorithm
Design and Analysis

Dynamic Programming (Part Il)



Roadmap for today

* More dynamic programming
* Review Longest Increasing Subsequence (LIS) with SegTrees!
* Derive the Floyd-Warshall algorithm for all-pairs shortest paths

* See the Subset DP technique applied to the Travelling Salesperson Problem



2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems

e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!



Review of LIS



Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.
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LIS(i) := The length of the longest increasing subsequence
that ends with element a; (must include a;)

LIS(:) =1+ max LIS(j)
( aj<2L7;)



Optimized LIS: SegTree DP!
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All-pairs shortest paths



Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure: p
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Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:
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Runtime analysis:
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min(SP(u,v, k — 1),
SP(u,k, k — 1)+ SP(k,v, k— 1))

What about space?
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Optimization: Don’t store solutions to old
values of k. Paths can only stay the same or
get shorter as we add more vertices!



def floydWarshall (graph G) :

selul [v] = base case8 from prtwions slide

for k in [1, n]:
for u in [1, n]:
for v in [1, n]:

SP[ul [v] = min (SP[WJ[v], SP[u][r) +SP[k7[v])

return SP

Exercise: Prove correctness of the Floyd-Warshall algorithm.



Traveling Salesperson
Problem (TSP)



Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight
cycle that visits every vertex exactly once (called a “Hamiltonian Cycle”).

Idea 1: Find the minimum weight

cycle on a subgraph with one of the A~6 3 * \ T‘k
vertices removed, then add that X N
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vertex somewhere in the cycle.

Issue: No obvious optimal 6
substructure. The optimal cycle for \ !

{A,B,C,D,E} looks very different to E

the optimal cycle for {A,B,C,D}



The issue: Cycles don’t have any obvious optimal substructure

Can we look for another graph property that does?

How do we know which vertex
to put second last (before T)?

S —> A —> B —> C — T s—»c—»s—»@ T
S—>C—>A T

Observe:IfS > A—->B > C > Tis s—> a—> 8 —>(O)—> T

a minimum weight S — T path,

thenS > A > B — C must be a to the rescue!l

minimum weight S — C path. Try them all and take the best one.
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* How do we solve the original problem (TSP) using these subproblems?

P = tnew\}-zw*i (MmPaﬂa (V,€) + w(t ,sW))
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* Now we just need the recurrence for minimum weight paths
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Runtime of naive solution: o (f\ I )

DP solution: O(lh-h) Su,éfm/b%
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* Wait, isn’t each subset ®(n) space and therefore takes ®(n) time to
look up? So, we actually need more time and space?

Optimization: Represent subsets as bitsets. Each subset is represented by a
single integer, where the i bit is 1 if and only if the i*" vertex is in the subset.



* Breaking a problem into subproblems is hard.

e Can | use the first k elements of the input?
Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | store a subset of the input? (TSP subproblems)
Can | remember the most recent decision? (Previous vertex in TSP)

* Many techniques are useful to a DP algorithm:
e Can | remove redundant subproblems to save space? (Floyd-Warshall)
e Can | use a fancier data structure than an array? (LIS with SegTree)
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